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ABSTRACT  

This study presents a comprehensive framework for enhancing automated prostate 

segmentation in transrectal ultrasound (TRUS) images using a combination of tailored 

preprocessing techniques, dual-input architectures, and automated hyperparameter 

optimization. TRUS images are widely used in clinical practice but suffer from low 

contrast, speckle noise, and boundary ambiguity, which present challenges for accurate 

segmentation. To address these issues, this work evaluates three preprocessing schemes—

intensity normalization, despeckling, and their combination—to improve input 

consistency and reduce imaging artifacts. Furthermore, it introduces and compares two 

multi-input strategies: channel expansion and a dual-branch network that separately 

processes normalized images and structural priors (binary or contour maps). The 

segmentation is performed using a modified DeepLabv3+ architecture with a 

MobileNetV2 backbone, and hyperparameters are optimized through a two-stage grid and 

Bayesian search. Experimental results on 289 TRUS images demonstrate that the dual-

branch architecture, particularly the NBD strategy, achieves superior performance, with 

a Dice coefficient of 0.969 and strong robustness across varying conditions. These results 

confirm the framework’s effectiveness in enhancing accuracy and generalizability, 

supporting its potential clinical utility. 

Keywords: Prostate segmentation, Ultrasound imaging, DeepLabv3+, Dual-input 

architecture, Hyperparameter optimization 
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1 Introduction 

1.1 Background and Motivation 

Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide 

and is a leading cause of cancer-related mortality. With an aging population, the demand 

for early diagnosis and accurate treatment of PCa continues to grow [1]. Among various 

imaging modalities, Transrectal Ultrasound (TRUS) stands out for its cost-effectiveness, 

non-invasiveness, and real-time imaging capabilities, making it widely used in clinical 

prostate examination. However, TRUS images suffer from challenges such as speckle 

noise, low tissue contrast, intensity inhomogeneity, and highly variable prostate shapes 

and boundaries. These limitations hinder the performance of automated segmentation 

algorithms and restrict their clinical deployment. Automated prostate segmentation is 

crucial for biopsy guidance, treatment planning, and longitudinal disease monitoring [2]. 

In recent years, deep learning (DL)-based segmentation models have shown tremendous 

promise in tackling medical image analysis tasks. Encoder-decoder architectures such as 

U-Net and DeepLabv3+ have achieved state-of-the-art performance in various 

segmentation challenges [3]. Nevertheless, when applied to TRUS images, these models 

often struggle, especially with images that exhibit blurry or ambiguous prostate 

boundaries. The primary obstacles include (1) image appearance variability due to 

acquisition settings (e.g., gain and echogenicity differences), and (2) a lack of explicit 

structural guidance during segmentation [4]. 

1.2 Innovation 

This research centers on enhancing prostate segmentation accuracy and robustness on 

TRUS images through a systematic investigation of image preprocessing strategies and 

dual-input guidance mechanisms. Specifically, we explore three preprocessing 

approaches: intensity normalization (N) [5], despeckling (D)[6], and a combination of 

both (ND). These techniques aim to reduce inter-image variability and provide consistent 

intensity representations for the model. 

To further guide the segmentation network, we design two structural guidance strategies: 

channel expansion and dual-branch input fusion. Each strategy incorporates additional 
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structural cues—either binary maps or initial contour maps—alongside the preprocessed 

images. In the channel expansion approach, the auxiliary image is concatenated with the 

normalized image along the channel dimension. In contrast, the dual-branch structure 

processes the two inputs independently through separate branches before merging their 

features [7]. 

This study covers the full pipeline from preprocessing design and structural input 

formulation to in-depth evaluation across different image quality conditions. By 

experimenting with combinations such as NBE, NBD, NCE, and NCD, we assess the 

effectiveness of each preprocessing and fusion method. 

1.3 Objectives 

The central objective of this study is to design and validate an enhanced deep learning-

based segmentation approach for transrectal ultrasound (TRUS) prostate images that 

effectively handles the inherent challenges associated with this imaging modality. These 

challenges include high levels of speckle noise, low contrast, intensity inhomogeneity, 

and significant variability in anatomical structure, especially under poor image quality 

conditions. Traditional segmentation methods often struggle under these conditions, 

leading to inconsistent and unreliable clinical outcomes [8]. Therefore, this study aims to 

create a segmentation framework that not only improves segmentation accuracy but also 

exhibits robustness across diverse image qualities. 

To this end, the study first investigates the role of image preprocessing in enhancing 

segmentation performance. Three preprocessing schemes are evaluated: (1) intensity 

normalization (N) [5], which aims to standardize image brightness and contrast; (2) 

despeckling (D) [6], which reduces noise while preserving structural features; and (3) a 

combined approach (ND)[6] that integrates both normalization and despeckling. These 

techniques are intended to improve the quality of input data and facilitate more accurate 

learning by the network. 

The study then focuses on the design and evaluation of dual-input segmentation strategies. 

Two integration strategies are proposed and compared: the channel expansion method 

and the dual-branch architecture [7]. Both strategies use an additional guidance input—

either a binarized mask or an initial contour map derived from the original image—to 

provide structural context during segmentation. The dual-branch architecture is 

specifically designed to independently process the two input channels before fusing their 

features, with the aim of leveraging complementary information more effectively. 

Additionally, the study addresses the often-overlooked aspect of training configuration 

by incorporating an automatic hyperparameter optimization mechanism [9]. This two-

stage strategy first employs a grid search to determine the best combination of discrete 
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hyperparameters (batch size, optimizer type) and then applies Bayesian optimization to 

fine-tune continuous parameters [10], particularly the learning rate. The objective is to 

enhance convergence speed, model accuracy, and generalization capacity. 

Collectively, this study seeks to answer the following research questions: 

1. Which preprocessing strategy yields the most consistent and accurate 

segmentation results for TRUS images. 

2. How do different dual-input integration methods impact segmentation 

performance, particularly in images with ambiguous boundaries. 

3. To what extent can automated hyperparameter tuning improve segmentation 

accuracy and training efficiency. 

By answering these questions, this research aims to provide a clinically relevant, 

technically robust framework for automatic prostate segmentation in ultrasound images. 
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1.4 Contributions 

This research makes several novel and practical contributions to the field of medical 

image segmentation, particularly in the context of prostate cancer diagnosis and treatment 

planning using TRUS imaging. The key contributions are as follows: 

• Systematic Evaluation of Preprocessing Strategies: The study presents a 

thorough analysis of how different preprocessing methods affect segmentation 

outcomes [5], [6]. By comparing intensity normalization, despeckling, and their 

combination, the study identifies preprocessing configurations that are 

particularly effective in enhancing image clarity and aiding model learning. 

• Development and Assessment of Dual-Input Architectures: Two dual-input 

fusion strategies are proposed—channel expansion and dual-branch. The dual-

branch model, which processes each input independently before feature fusion, is 

shown to outperform simpler fusion methods [7]. This architecture is especially 

effective in segmenting images with poor boundary definition, demonstrating the 

value of incorporating structural priors such as binary maps and contour images. 

• Incorporation of Structural Guidance: The study demonstrates that supplying 

structural priors (e.g., binary masks or initial contours) to the segmentation model 

can significantly enhance boundary delineation [11]. This is particularly useful in 

clinical scenarios where the prostate boundaries are not clearly visible due to 

image quality limitations. 

• Automated Hyperparameter Optimization: By integrating grid search with 

Bayesian optimization, the study introduces an efficient and systematic approach 

to hyperparameter tuning [10]. This contributes to improved model performance 

without the need for exhaustive manual experimentation. 

• Comprehensive Evaluation and Statistical Validation: The proposed methods 

are validated using a broad set of evaluation metrics, including Dice coefficient 

(DC), precision (P), specificity (S), accuracy (AC), Cohen’s Kappa (CK), and 

Hausdorff Distance (HD) [12]. Additionally, statistical analyses such as the 

Wilcoxon rank-sum test, Bland-Altman analysis, and Spearman correlation are 

employed to ensure the reliability and significance of the results [13]. 

• Performance Benchmarking Against Literature: The study situates its findings 

within the broader research context by comparing results with those reported in 

recent literature. It highlights how the proposed dual-input strategies and 

preprocessing methods achieve competitive or superior results in terms of 

segmentation accuracy and robustness. 

• Real-World Clinical Applicability: The proposed framework demonstrates 

strong performance not only on high-quality images but also in cases with poor 

boundary visibility. This robustness suggests that the method could be effectively 
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integrated into real-world clinical workflows, assisting radiologists in accurately 

identifying prostate boundaries during diagnosis and treatment planning. 

• Scalable and Flexible Design: The modular structure of the proposed framework 

allows for easy adaptation to other medical imaging modalities and organs, laying 

the groundwork for future research in multi-organ segmentation tasks. 

In summary, this study delivers a comprehensive, flexible, and clinically relevant solution 

to the problem of prostate segmentation in TRUS images by combining methodological 

innovation, rigorous validation, and practical design. 

2 Literature review 

Several studies have explored deep learning-based prostate region segmentation methods 

using TRUS images (Table 1). Van Sloun et al.[14], [15] deeply integrated advanced 

technologies to construct an efficient segmentation architecture, innovating the fully 

convolutional neural network based on U-Net. At the data processing end, histogram 

equalization was used to enhance image features, normalization was applied to unify data 

scales, and multi-strategy data augmentation, including affine and elastic deformations, 

was employed to enhance the model’s generalization and robustness. For optimization, 

the Adam optimizer was introduced to minimize cross-entropy loss, driving the model 

towards accurate convergence. The unique network architecture, such as the encoder-

decoder module with skip connections, effectively fused multi-scale features. 

Anas et al.[2] expanded on the U-Net architecture, using dilated convolutions to improve 

local predictions and residual convolutions to optimize training. For feature extraction, 

convolutional gated recurrent units (ConvGRU) were used to mine temporal features from 

ultrasound images, with GRU serving as the core, and update and reset gates modulating 

the feature flow. Residual convolutions were used for optimization. Innovative cyclic 

connections were employed, with ConvGRU replacing residual convolutions for 

enhancement; specific layers embedded ConvGRU and interconnected branches, 

strengthening feature fusion to improve segmentation. Additionally, far-frame 

information was also included with different frame sequences and parameters to enhance 

the network’s robustness against ultrasound artifacts, achieving accurate segmentation 

even under calcification shadows. 

Karimi et al.[3] focused on improving the accuracy and robustness of prostate CTV 

segmentation in TRUS images. They used an adaptive sampling strategy, analyzing 
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training image features with convolutional autoencoders and clustering them, then 

selecting samples based on their similarity to difficult-to-segment images in the validation 

set, helping the model focus on challenging images and improving generalization. A CNN 

ensemble model was constructed to assess segmentation uncertainty, using a unique 

algorithm to generate uncertainty maps. To address uncertain segmentations, a statistical 

shape model was introduced, combining prior shape knowledge and uncertainty maps to 

optimize boundaries. 

Vesal et al.[16] innovatively built a Coordinated Dilated Residual UNet (CoordDR-UNet) 

network architecture, using 2.5D input to integrate multi-scale information, dilated 

convolutions to expand the receptive field, residual connections to optimize gradient flow, 

and coordinate attention modules to focus on key regions, improving accuracy, especially 

in enhancing the segmentation of fuzzy prostate boundaries. To address the domain 

generalization problem in multi-institutional data, they proposed a knowledge distillation 

loss-based model training strategy, maintaining the model’s knowledge of the source 

domain during fine-tuning. 

Peng et al.[17] first used an attention-gated U-Net for rough segmentation of the 

prostate’s general contour, then refined it using optimized multi-segment tracking and 

storage-based differential evolution neural networks (SDENN). They improved the OPST 

method by optimizing normalization, projection, vertex optimization, and cleaning steps, 

with Z-score normalization for robustness, local scanning for efficiency, new functions 

for vertex optimization, and rule-based filtering of outliers to accurately refine the contour. 

In SDENN, SDE uses stored reuse, multi-operators, and dynamic scaling for optimal 

global search, while ABNN selects suitable functions and parameters to solve gradient 

challenges for accurate boundary fitting. 

Jiang et al.[18] proposed the MicroSegNet model for prostate micro-ultrasound image 

segmentation. Its core innovation lies in the fusion of a unique loss function and multi-

scale deep supervision modules. The newly designed AG-BCE loss function cleverly 

defines the difficulty of segmenting regions based on expert and non-expert annotations, 

applying heavy penalties to errors in difficult regions, guiding the model to focus on 

learning features from critical areas, thus enhancing its ability to segment complex 

boundaries. The multi-scale deep supervision module embeds multi-scale convolutional 

layers at intermediate network layers, generating multi-resolution segmentation images 
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and incorporating differences between predicted and corresponding downsampled ground 

truth into the loss calculation, effectively combining high and low-level information and 

improving the model’s perception of both global context and local details. 

As shown in Table 2-1, most of the studies above have achieved significant model 

performance in prostate region segmentation. However, many of the proposed systems 

lack effective and detailed preprocessing steps for images, which are beneficial for 

prostate region segmentation. Furthermore, these methods primarily rely on simple min-

max normalization[5] and contrast enhancement, without targeted normalization and 

denoising[6] for ultrasound image artifacts and noise. In contrast to the aforementioned 

studies, we propose and evaluate three preprocessing strategies for TRUS images, 

including intensity normalization, Gaussian filtering to remove noise, and the combined  

application of intensity normalization and Gaussian filtering, as recommended 

preprocessing steps before deep learning-based prostate region segmentation [citation 

needed]. Importantly, we focus on: 

 Applying DeepLabV3+ for prostate ultrasound image segmentation, training on 

prostate ultrasound images with the aim of improving the accuracy of prostate region 

segmentation [19]. 

 Evaluating the impact of image preprocessing on the overall performance of the 

model in prostate region segmentation, as well as the evaluation of plaque type 

segmentation [12], [13]. 

Although the studies reviewed in Table 2-1 have contributed significantly to the field of 

prostate ultrasound image segmentation, the method proposed in this study introduces 

several key innovations that distinguish it from previous approaches. Firstly, unlike most 

existing methods that rely solely on standard normalization or basic image enhancement, 

this work systematically explores three distinct preprocessing strategies—intensity 

normalization, despeckling filtering, and their combination [20]. These methods 

effectively reduce noise and enhance structural clarity in TRUS images, thus providing a 

more reliable input foundation for deep learning models. 

Secondly, in terms of input architecture, prior works generally employ single-channel 

inputs without incorporating structural guidance. In contrast, this study proposes two 

dual-input strategies: channel expansion and dual-branch design.[7] By incorporating   
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binary maps or initial contour maps as auxiliary inputs, the model benefits from additional 

spatial and structural information. Notably, the dual-branch structure allows separate 

encoding of the two input streams before fusing their features, significantly improving 

segmentation performance in regions with ambiguous boundaries—an area where 

conventional models tend to struggle [21]. 

Lastly, while most literature uses fixed or manually tuned hyperparameters, this research 

integrates an automated hyperparameter optimization mechanism. By combining grid 

search for discrete variables and Bayesian optimization for continuous ones, the training 

process becomes both more efficient and better adapted to the dataset, enhancing overall 

model robustness and generalization [10]. 

In summary, the proposed method introduces novel preprocessing pipelines, dual-input 

designs, and an automated parameter tuning strategy. These innovations collectively offer 

improvements in segmentation accuracy, stability, and clinical applicability, addressing 

important limitations in the current body of literature.  
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3 Research Methodology 

In this Chapter the methodology of the proposed system is presented based on the flow 

diagram of Fig. 3.1, which is separated in the following steps: 1. data acquisition, 2. 

Data selection, 3. data preprocessing, 4, model input, 5. Automated segmentation, 6. 

Model output, 7. Segmentation visualization and overlay, 8. Evaluation, 9.binarlize and 

contour detection, 10. Muti input, 11. Evaluation. 

3.1 Acquisition of Ultrasound Images and Manual Delineations 

We included a total of 647 transrectal ultrasound (TRUS) images of the prostate from 

nine patients, collected at the German Oncology Center (GOC) in Limassol, Cyprus. 

These images were acquired using a BK Medical ultrasound system (model BK3000), 

equipped with an E14CL4b (9048) endocavity biplane transducer [22]. This specialized 

probe is designed for high-resolution internal imaging and is particularly well-suited for 

prostate examinations. Image acquisition was carried out using B-mode scanning, which 

provides grayscale imaging of tissue structures, in combination with transverse scanning 

techniques to capture cross-sectional views of the prostate [23]. 

The imaging protocol consisted of obtaining a series of transverse images, beginning from 

the cranial end of the prostate and progressing systematically toward the caudal direction. 

This approach ensured thorough anatomical coverage of the prostate gland. All images 

were acquired without any needle insertion, preserving the anatomical integrity of the 

scanned area. It is important to note that not all image slices from each patient contained 

visible prostate tissue [24]. Therefore, after reviewing the full dataset and excluding 

images that did not contain relevant anatomical regions, we retained a final subset of 289 

TRUS images across all nine patients (see Figure 3-1, step 2). 

All imaging and associated clinical data were collected following a written informed 

consent from the patients and were anonymized prior to use. For the purpose of 

establishing ground truth (GT) segmentations, a radiation oncologist manually delineated 

the boundaries of the prostate region in selected images beyond image N [25] (see Figure 

3-1, step 1), providing accurate reference annotations for further analysis and model 

training. 
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Figure 3-1: Flow Diagram of the proposed DL prostate image segmentation method 
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3.2 Image Pre-processing 

3.2.1 Image Intensity Normalization  

In medical image analysis, particularly in the domain of semantic segmentation, intensity 

normalization plays a pivotal role in enhancing the robustness and generalization 

capability of deep learning models. Variations in intensity distributions across images—

caused by differences in patient anatomy, acquisition settings, or imaging protocols—can 

introduce inconsistencies that hinder model performance [26]. Therefore, implementing 

a tailored normalization strategy is essential to reduce such inter-image variability and 

ensure consistent data representation for network training.  

In this study, we focus on transrectal ultrasound (TRUS) images, which differ from other 

modalities such as CT or MRI in terms of grayscale intensity characteristics. Unlike CT 

or MRI, where pixel values are often spread across a broad and well-defined intensity 

range (e.g., from 0 for air to 255 for bone), TRUS images typically do not contain pure 

black (0) or pure white (255) regions, and their effective intensity range can vary 

significantly from image to image due to ultrasound-specific factors such as probe gain, 

tissue echogenicity, and scan angle. 

To address these challenges and ensure consistent input distributions, we propose an 

image-specific intensity normalization method as proposed in Loizou et al. [27]. For each 

image, we manually select two rectangular regions of interest (ROIs) representing low-

Figure 3-2: Original (O) and normalized (N) ultrasound images of the prostate with 

manually selected reference regions for intensity normalization [4] 
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intensity and high-intensity areas, respectively (see also Fig. 3.2 left). The average 

intensity within each ROI is computed and used to define the lower and upper bounds of 

normalization. The pixel values are then normalized according to the following min-max 

scaling formula: 

 low
norm

high low

I I
I

I I

−
=

−
 (1.1) 

where I  is the original pixel intensity, and 
lowI , 

highI  are the average intensities of the 

selected low and high intensity ROIs, respectively. This process maps the pixel values 

of each image to the standardized range of [0, 1], effectively aligning the contrast and 

brightness distributions across different samples. 

Figure 3-2 illustrates the normalization process. In the original TRUS image (left), two 

representative ROIs are marked in red, with average intensities of 38 and 225, 

respectively. The original pixel intensity distribution spans from approximately 15 to 250. 

By applying the above normalization using 
lowI  = 38 and 

highI  = 225, the entire image is 

remapped to a standardized scale, as shown in the normalized result on the right. 

To further assess the effect of normalization within anatomically relevant regions, we 

compute and compare intensity histograms for a manually delineated region of interest 

(ROI) before and after normalization. As shown in Figure 3-3, the original intensity 

distribution within the ROI ranged from 15 to 250, with a highly variable spread. After 

normalization, the pixel values are redistributed and constrained to the new range of 38 

Figure 3-3: Comparison of ROI Pixel Intensity Histograms Before and After 

Normalization 
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to 225, resulting in a more compact and contrast-enhanced distribution. This not only 

mitigates intensity variability but also facilitates better feature extraction by the 

segmentation model. 

In summary, the proposed ROI-driven intensity normalization method effectively adapts 

to the intrinsic variability of ultrasound imaging and improves the consistency of intensity 

profiles across samples. This contributes to a more stable learning process and enhances 

the network's ability to extract discriminative features for accurate segmentation. 

3.2.2 Despeckling 

Ultrasound imaging is inherently affected by speckle noise, a granular interference pattern 

caused by the constructive and destructive interference of backscattered echoes [6]. This 

type of multiplicative noise not only degrades the visual quality of the image but also 

adversely impacts the performance of downstream tasks such as semantic segmentation. 

To mitigate these effects, we incorporate Gaussian filtering [28] during the preprocessing 

stage as a standard noise reduction strategy. 

Gaussian filtering is a classical linear smoothing technique that involves convolving the 

image with a two-dimensional Gaussian kernel. The kernel assigns weights to 

Figure 3-4: Heatmap of a 2D Gaussian Kernel Used for Image Smoothing  
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neighboring pixels based on their distance from the center, with closer pixels receiving 

higher weights. This spatial weighting allows the filter to suppress high-frequency 

variations (i.e., noise) while preserving edge and structural information in the image [29]. 

As shown in Figure 3-4, a 9×9 Gaussian kernel exhibits a symmetric bell-shaped 

distribution, where the center has the highest intensity (weight) and the values gradually 

decay towards the edges. This enables local smoothing that respects spatial locality, 

making it well-suited for medical image denoising. 

In our implementation, a Gaussian filter with a standard deviation (σ) of 1.2 was applied 

once to each image. This configuration was empirically selected to achieve a desirable 

balance between noise suppression and edge preservation. Figure 3-5 presents a visual 

comparison between the original ultrasound image (left) and the filtered result (right). It 

is evident that speckle noise has been significantly reduced in the filtered image, while 

the anatomical structures—particularly the prostate boundaries and internal tissue texture 

remain well preserved. This highlights the filter’s effectiveness in enhancing image 

clarity without sacrificing important diagnostic content. 

In summary, the use of Gaussian filtering with a moderate kernel size and standard 

deviation provides an effective means to reduce speckle noise in ultrasound images. It 

serves as a critical preprocessing step that improves the consistency and quality of the 

input data for subsequent segmentation tasks. 

Figure 3-5: Comparison of Original (O) and Despeckled (D) Ultrasound Images 
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3.3 Segmentation Algorithm 

3.3.1 DeepLabv3+ architecture 

In this study, we adopt the DeepLabv3+ architecture [19] as the core segmentation 

network for processing transrectal ultrasound (TRUS) images. DeepLabv3+ is a state-of-

the-art deep convolutional neural network designed for semantic segmentation, and it 

effectively combines the advantages of atrous convolution and encoder–decoder 

architecture. Its design enables robust multi-scale feature extraction while maintaining 

accurate localization of object boundaries, which is essential for segmenting complex and 

ambiguous anatomical structures in ultrasound images [30]. 

As illustrated in Figure 3-6, the architecture consists of two main components: the 

encoder and the decoder. The encoder is typically based on a backbone such as ResNet, 

and incorporates an Atrous Spatial Pyramid Pooling (ASPP) module, which applies atrous 

convolutions with varying dilation rates (e.g., 6, 12, 18) in parallel, along with a global 

average pooling branch [19]. These parallel operations allow the model to capture 

contextual information at multiple scales without sacrificing spatial resolution. The 

Figure 3-6: Architecture of the Proposed Semantic Segmentation Network [8] 
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outputs of ASPP are concatenated and passed through a 1×1 convolution to form the final 

high-level feature representation. 

The decoder module is introduced in DeepLabv3+ to refine segmentation details, 

particularly along object boundaries. It first extracts low-level features from earlier layers 

of the backbone, which retain fine spatial details. These features are passed through a 1×1 

convolution and then concatenated with the upsampled high-level features from the 

encoder. This fused representation is then processed through a 3×3 convolution to 

enhance spatial coherence, followed by another upsampling step to produce the final 

prediction at the original image resolution. 

We selected DeepLabv3+ for its strong ability to handle noisy textures, fuzzy boundaries, 

and variable-scale features, all of which are common challenges in TRUS image 

segmentation. The architecture’s ability to combine deep semantic understanding with 

fine-grained spatial detail makes it particularly well suited for accurate prostate 

delineation in ultrasound images. 

In the original implementation of DeepLabv3+, the authors employed the Xception 

network [31] as the backbone to extract deep features due to its strong representational 

capacity [32] . 

To improve efficiency while maintaining satisfactory segmentation performance, we 

replace Xception with MobileNetV2 [33], a lightweight convolutional neural network 

specifically designed for speed and low memory footprint. MobileNetV2 is based on 

inverted residual blocks with linear bottlenecks, which consist of a sequence of 

Figure 3-7: Structure of the Basic Building Blocks in MobileNetV2 [10] 
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convolutions: an initial 1×1 expansion layer with ReLU6 activation, a depthwise 

separable 3×3 convolution, and a final 1×1 linear projection. When the stride is 1 and the 

input/output channels match, a residual connection is added. This structure is illustrated 

in Figure 3-7.  

In our implementation as proposed in this work, we adapt MobileNetV2 to the 

segmentation task by removing the classification head, exposing intermediate low-level 

and high-level features, and replacing late-stage downsampling with dilated convolutions 

to preserve spatial resolution (with a downsampling factor of 16). The modified network 

architecture is detailed in Table 3-1. 

By employing MobileNetV2 as the encoder, we achieve a significant reduction in model 

complexity and computational overhead, making the overall network more efficient for 

high-resolution ultrasound segmentation tasks. At the same time, the use of dilated 

convolutions and a DeepLabv3+-style decoder ensures sufficient receptive field and 

accurate boundary delineation [34]. 

3.3.2 Muti-Input 

3.3.2.1 Binarized and initial contour images 

To generate the initial boundary cues for our multi-input framework, we perform a three-

step preprocessing pipeline as illustrated in Figure 3-9: Channel Expansion and Fusion 

Prior to Backbone Input. First, we apply intensity normalization to the original ultrasound 

Table 3-1: Modified MobileNetV2 Architecture Used as the Backbone in the 

Proposed Network [12] 

Input Size Operator t c n s 
224² × 3 conv2d 3×3 – 32 1 2 
112² × 32 bottleneck 1 16 1 1 
112² × 16 bottleneck 6 24 2 2 
56² × 24 bottleneck 6 32 3 2 
28² × 32 bottleneck 6 64 4 2 
14² × 64 bottleneck (dilated) 6 96 3 1 
14² × 96 bottleneck (dilated) 6 160 3 1 
14² × 160 bottleneck (dilated) 6 320 1 1 
14² × 320 conv2d 1×1 – 1280 1 1 
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images to reduce inter-sample intensity variability and enhance the structural contrast. 

The N image is shown on the left of the figure. 

Next, based on the N image, a manually selected global threshold is applied to convert 

the image into a binary mask (middle image). This threshold is empirically determined to 

capture the most prominent echogenic regions across the dataset and is then fixed for 

batch-level binarization. 

Finally, we extract the structural boundaries from the binary mask using contour detection, 

a standard image processing technique implemented via cv2.findContours in OpenCV 

[35]. The resulting contour map (right image) highlights the initial structural outlines in 

green, which serve as an auxiliary spatial input in our subsequent multi-stream learning 

architecture. 

3.3.2.2 Channel Expansion 

As illustrated in Figure 3-9, we introduce a channel expansion strategy to incorporate 

structural priors into the input of our network. In this design, a binary structural cue—

such as an initial contour map extracted from the normalized ultrasound image—is 

concatenated with the original 3-channel ultrasound image along the channel axis (i.e., 

dim=1), forming a 4-channel composite input [36]. To ensure compatibility with 

conventional backbone networks (e.g., MobileNetV2 or Xception), which are typically 

designed to accept 3-channel inputs, a 1 × 1 convolutional layer is applied to compress 

the 4-channel input back to 3 channels. This approach preserves both the original image 

intensity and the spatial contour information, enabling early fusion of complementary 

modalities. By introducing this structural guidance at the input level, the network is able 

Figure 3-8: Illustration of Pre-processing Steps: Normalization (N), Binarization (B), 

and Initial Contour Extraction (C) in an ultrasound prostate image  
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to more effectively focus on relevant anatomical regions in subsequent stages of feature 

extraction. 

3.3.2.3 Dual-Branch 

To enable comparative experiments with different input combinations, we adopt a 

generalized dual-input architecture where the two inputs are denoted as Input_1 and 

Input_2, as illustrated in Figure 3-10. Input_1 is fed into the main encoder path, which is 

composed of a DCNN backbone equipped with Atrous Spatial Pyramid Pooling (ASPP) 

to extract rich multi-scale semantic features. Meanwhile, Input_2 is passed through a 

Lightweight Context Module that captures both mid-range and global contextual 

information using dilated convolution and global average pooling [37]. The processed 

features from Input_2 are further refined through a 1 × 1 convolution and then used to 

enhance the shallow features from the encoder via feature fusion. This flexible design 

supports the integration of various structural or modality cues (e.g., grayscale, binary, 

edge maps) and facilitates a fair evaluation of how different auxiliary inputs influence 

segmentation performance. 

3.3.3 Automatic Hyperparameter Optimization Algorithm 

To efficiently identify optimal hyperparameters, we adopt a two-stage auto-tuning 

strategy that combines grid search and Bayesian optimization [38]. 

Figure 3-9: Channel Expansion and Fusion Prior to Backbone Input [14] 
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In the first stage, we employ grid search, a brute-force method [39] that exhaustively 

evaluates all predefined combinations of discrete hyperparameters across a fixed grid. 

While simple and effective for low-dimensional, structured search spaces, grid search is 

computationally expensive and inefficient in the presence of unimportant or redundant 

parameters (see Figure 3-10, left). In our implementation, grid search is applied to explore 

discrete parameters such as batch size ({8, 16}), optimizer (Adam, SGD), and a coarse 

range of learning rates (1e-4 to 7e-3) [40]. 

Once the best-performing combination from the discrete space is identified, the second 

stage uses Bayesian optimization to refine continuous parameters—specifically, the 

learning rate. Bayesian optimization constructs a surrogate model, often using Gaussian 

Processes, to approximate the objective function. An acquisition function, specifically the 

Expected Improvement (EI) function (1.2) is then used to select the most promising 

hyperparameter configurations for evaluation, balancing exploration and exploitation. As 

shown in Figure 3-11 (right), this strategy allows the search to focus adaptively on regions 

likely to contain optima, significantly reducing the number of evaluations needed. 

 
( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( ) ( )
( ) ( )

f x x f x x
EI x f x x x

x x

 
  

 

+ +
+ − −

= −  +  (1.2) 

Figure 3-10: Overall Architecture of the Proposed Network with Dual Input and 

Contextual Feature Fusion [ref] 
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( )x  and ( )x are the predicted mean and standard deviation of the surrogate model at 

point x . (.) is the cumulative distribution function (CDF) of the standard normal 

distribution, (.)  is the probability density function (PDF) of the standard normal 

distribution, and 
+( )f x  denotes the best objective value observed so far [41], [42].  

By combining grid search for robust discrete-space exploration and Bayesian 

optimization for sample-efficient continuous-space refinement, our method achieves 

strong parameter tuning performance while maintaining computational efficiency. 

3.3.4 Early stop 

To prevent overfitting and improve training efficiency, we employ an early stopping 

strategy during model training. Early stopping is a widely used regularization technique 

that monitors the validation performance (e.g., mIoU) over epochs and halts training when 

no further improvement is observed. The core idea is to stop the optimization process 

once the model begins to overfit the training data, thereby preserving the generalization 

capability of the network [43]. 

In our implementation, we monitor the validation mIoU and define a stopping criterion 

based on three parameters: the patience, the minimum delta, and the warm-up period. 

Specifically, we set a warm-up period of 80 epochs during which early stopping is 

Figure 3-11: Illustration of the Automatic Hyperparameter Optimization Method 

[19], [20] 
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disabled to ensure sufficient initial training. After this phase, the training loop checks if 

the validation score has improved by at least a minimum delta of 0.0005. If no significant 

improvement is observed for 20 consecutive epochs (i.e., patience), training is terminated 

automatically. The best model is determined by the highest recorded mIoU during the 

training process. This method allows us to reduce unnecessary computation while 

maintaining robust model performance. 

3.3.5 Evaluation Metrics for the Segmentation 

To quantitatively evaluate the performance of the proposed deep learning (DL) 

segmentation method, we computed six standard evaluation metrics (EMs) to compare 

the agreement between the automated segmentation results and the manually annotated 

ground truth. These metrics include the Dice Coefficient (DC), which measures spatial 

overlap and is particularly suitable for imbalanced segmentation tasks; Precision (P), 

reflecting the proportion of correctly predicted positive pixels among all predicted 

positives; Specificity (S), indicating the model's ability to correctly identify negative 

regions; and Accuracy (AC), which measures the overall proportion of correctly classified 

pixels [44]. Additionally, we calculated Cohen’s Kappa coefficient (CK) to assess the 

agreement beyond chance between predicted and ground truth labels, and the Hausdorff 

Distance (HD), which quantifies the maximum surface distance between the predicted 

and reference contours and is useful for detecting boundary-level discrepancies [45]. 

The overall effectiveness of the segmentation model was assessed by averaging these six 

metrics across all test images within each fold of a three-fold cross-validation scheme, 

and for each of the four image preprocessing configurations. This ensured a 

comprehensive and fair comparison of the model's performance under varying input 

conditions. 

To further evaluate differences between the segmentation outcomes obtained under 

different preprocessing strategies, we applied additional statistical analyses. Specifically, 

the Wilcoxon rank-sum test (non-parametric, p < 0.05) was used to assess the statistical 

significance of segmentation performance differences between image groups. The 

Spearman rank correlation coefficient (ρ) was also computed to investigate monotonic 

relationships between model predictions and manual annotations [46]. 
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Prior to inferential analysis, we assessed the distributional properties of all variables using 

two widely adopted normality tests: the Kolmogorov–Smirnov test [47] and the Shapiro–

Wilk test [48]. As most distributions significantly deviated from normality (p < 0.05), we 

reported all quantitative results in terms of median ± interquartile range (IQR) instead of 

mean ± standard deviation, to better reflect central tendency and dispersion in non-

Gaussian data. 

In addition to these tests, box plots were utilized for visual inspection of the metric 

distributions across different groups, clearly illustrating variability, outliers, and overall 

data spread. We also performed Bland–Altman analysis [13], a standard method for 

evaluating agreement between two measurement methods, to examine the consistency 

between the manual and automated segmentations, as well as among different 

preprocessing strategies. Furthermore, a linear regression analysis was conducted to 

explore potential trends and predictive relationships between the different methods, 

providing deeper insight into the behavior of the segmentation models across varying 

preprocessing pipelines.  
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4 Results 

In this chapter the results of the proposed segmentation algorithm are presented using 

tables and bar charts in order to illustrate the applicability of the algorithm. The settings 

of the algorithm are given in subsection 3.3. Figure 4-1 presents a visual comparison of 

the segmentation performance of the proposed DL method (see subsection 3.3) under four 

different image preprocessing strategies: O, N, D, and ND. Each column corresponds to 

one preprocessing method, with the top row showing examples with clear prostate 

boundaries and the bottom row showing challenging cases with blurry boundaries. In each 

image, the white dashed line represents the automatic segmentation result from the model, 

while the white solid line denotes the manually annotated ground truth. 

Quantitative metrics including the DC, AC are reported within each image. The N strategy 

yielded the best results in clear-boundary cases, achieving a DSC of 98.1% and an AC of 

99.2%. For the blurry-boundary cases, the ND strategy showed superior robustness, with 

a DSC of 85.3% and an AC of 95.6%. In contrast, the model’s performance on O images 

in blurry scenarios dropped to a DSC of 82.0% and an AC of 94.3%. 

Figure 4-2 presents box plots illustrating the distribution of six EM used to assess the 

performance of the proposed DP segmentation method on the N PCa ultrasound images. 

The N PCa images were selected as were those showed best performance compared with 

the rest of the preprocessing schemes (O, D, ND). The horizontal axis represents the 

different metrics, including the DC, P, S, AC, CK, and HD. Each box plot depicts the 

statistical distribution of the corresponding metric across all test images, with the median 

and IQR range annotated as (median, IQR) below each box plot. 

The detailed median±IQR results for each EM are as follows: DC = 0.949 ± 0.038, P = 

0.964 ± 0.058, S = 0.994 ± 0.009, AC = 0.984 ± 0.008, CK = 0.938 ± 0.042, and HD = 

3.378 ± 1.739 mm. The left vertical axis corresponds to the normalized metrics (DC, P, 

S, AC, CK), ranging from 0.8 to 1.0, while the right vertical axis indicates the HD values 

in millimeters. As shown in the boxplot, the interquartile ranges (IQR) of the Specificity 

(S) and Accuracy (AC) metrics are notably smaller compared to those of other metrics 

such as Dice coefficient (DC) and Cohen’s Kappa (CK). This indicates that S and AC 

have higher stability and less variability across the test set, suggesting consistently high 

performance in these metrics. On the contrary, Precision (P) and CK exhibit relatively  
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larger IQRs, reflecting greater variability in segmentation outcomes. 

Regarding the median positions, the medians for most metrics, including DC, S, AC, and 

CK, are approximately centered within their respective boxes, indicating a relatively 

symmetric distribution. However, for Precision (P), the median appears slightly skewed 

toward the upper boundary of the box, suggesting a slight negative skewness in the 

distribution. 

Overall, the smaller IQRs and centered medians in S and AC metrics demonstrate the 

robustness of the segmentation model, while the slightly larger spread in other metrics 

highlights the areas where performance consistency can still be further improved. 

 Table 4-1 presents a comprehensive statistical summary of the segmentation 

performance of the proposed DL method across four preprocessing schemes (O, N, D, 

NDon a test set consisting of 58 TRUS images. The EM evaluated include DC, P, S, AC, 

CK, and the HD, each reflecting different aspects of segmentation accuracy and 

consistency.  

Following the presentation of Table 4-1, which summarizes the segmentation 

performance across different preprocessing schemes, several observations can be made. 

Firstly, all evaluated metrics (DC, P, S, AC, CK) exhibited high median values above 

92%, indicating that the proposed DL method consistently achieved good segmentation 

performance across the dataset. Among them, specificity (S) achieved the highest median 

value (99.4%), suggesting excellent ability to correctly identify non-boundary regions. 

Figure 4-2: Box plots of segmentation EM for N PCa images 
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In terms of variability, the interquartile range (IQR) values show that metrics such as S 

(IQR = 1.35%) and AC (IQR = 0.98%) had very narrow spreads, implying high 

consistency of model performance among different test images. In contrast, precision (P) 

displayed a relatively larger IQR (8.36%), indicating greater variation in the model's 

ability to accurately predict boundary pixels under different conditions. 

The Hausdorff Distance (HD), which is measured in millimeters, had a median value of 

3.083 mm with a comparatively larger IQR of 1.881 mm, reflecting some variability in 

boundary localization accuracy, especially in more challenging cases.  

Figure 4-3: Bland-Altman plot in Fig. 4-3a) and linear regression analysis in Fig. 4-3b), 

of the DC under different preprocessing methods (N vs D) 
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Skewness and kurtosis values provided additional insights into distribution characteristics: 

metrics like DC and CK showed relatively symmetrical distributions, whereas HD 

presented a higher skewness and kurtosis, indicating a few extreme outliers where the 

segmentation boundary differed more significantly from the ground truth. 

Overall, Table 4-1 highlights that while the proposed method performs robustly overall, 

certain metrics and extreme cases warrant further attention to optimize boundary 

delineation accuracy in difficult ultrasound images. 

Figure 4-3 presents a comprehensive analysis of the consistency and correlation of the 

DC across different preprocessing methods for prostate ultrasound image segmentation 

using the proposed DL approach. The figure is divided into two subplots, where Figure 

4-3(a) shows a Bland-Altman analysis comparing the segmentation results obtained from 

two preprocessing methods (N vs D) The Bland Altman method is commonly used to 

assess the agreement between two measurement techniques. The x-axis represents the 

mean DC values between the N and D methods for each image, while the y-axis shows 

the difference in DC values (N - D). The plot demonstrates that most data points lie within 

the limits of agreement, with a mean difference of 0.0039, an upper limit of 0.0415, and 

a lower limit of -0.0336. These results indicate that the N and D preprocessing methods 

yield highly consistent segmentation performance, with only minor deviations across 

samples. The equation shown in the top-left corner of Figure 4.3(a),

0.1999 0.2085
2

( )N D
ND

+
= −  , represents a regression model that approximates the 

relationship between the difference in DC values (N - D) and their mean. This negative 

slope suggests that as the average segmentation performance of the two methods increases, 

the difference between them slightly decreases. In other words, the agreement between N 

and D becomes more stable when segmentation accuracy is high, further supporting the 

consistency of these preprocessing approaches. 

Figure 4-3(b) illustrates a linear regression analysis between the DC values obtained from 

the N and ND preprocessing methods. The x-axis represents the DC from the N method, 

and the y-axis represents the DC from the ND method. The regression line follows the  
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equation ND = 0.202 + 0.789 × N, indicating a strong linear relationship between the two 

sets of results. The correlation coefficient is ρ = 0.87, with a statistical significance of p 

< 0.001, suggesting a robust positive correlation between the segmentation results from 

these two preprocessing strategies. The shaded region around the regression line 

represents the 95% confidence interval, providing visual evidence of the reliability of this 

relationship. 

Figure 4-4 presents a comparative visualization of the segmentation performance under 

five different preprocessing schemes and input fusion strategies for TRUS prostate 

images. The five configurations include: N, NBD (normalized image + binary map, dual-

branch), NBE (normalized + binary image, channel expansion), NCD (normalized + 

initial contour map, dual-branch), and NCE (normalized + initial contour map, channel 

expansion). In each case, segmentation results are shown for two representative images—

one with a clear prostate boundary (top row) and one with an ambiguous boundary 

(bottom row). In all images presented in Fig. 4-4, the white solid line indicates the ground 

truth (manual segmentation), while the dashed line represents the automatic segmentation 

predicted by the network. The DSC and AC are annotated on each example to 

quantitatively reflect the performance.  

From the top row in Figure 4-4, we observe that all five methods perform similarly well 

on images with clear boundaries, achieving high DSC and AC values (e.g., N: 98.1% 

DSC / 99.2% AC; NBD: 98.2% / 99.2%). However, differences become more evident in 

the bottom row, where the prostate boundaries are less distinct. Here, the NCD method 

achieves the highest accuracy (91.1% DSC / 97.6% AC), suggesting its superior ability 

to incorporate structural guidance from initial contours. Comparatively, the NBE and 

NCE approaches show slightly reduced performance, highlighting the benefit of using 

dedicated dual-branch structures over direct channel expansion in complex boundary 

conditions. Best results were obtained for the NBD images where a DC=0.969 was 

obtained. 

Figure 4-5 illustrates the distribution of the DC across five different preprocessing and 

input fusion strategies for prostate ultrasound image segmentation. The groups include: 

N (segmentation with normalized images only), NBD (dual-branch input using normaliz- 
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ed and binary images), NBE (channel expansion with normalized and binary images), 

NCD (dual-branch input using normalized and initial contour images derived from the 

binary map), and NCE (channel expansion with normalized and initial contour images). 

Each box plot represents the DC distribution for the corresponding strategy across all test 

images. The values in parentheses below each plot indicate the median and interquartile 

range (±IQR) for that group. Outliers are marked individually, providing insight into the 

stability of segmentation performance under each method. This visualization facilitates a 

clear comparison of central tendency and variability among the evaluated methods. 

Figure 4-6 contains two subplots illustrating the consistency and correlation of DC values 

obtained from the N and NBD groups. Figure 4-6(a) on the left displays a Bland-Altman 

plot, where the x-axis represents the mean DC values of the two methods 

Figure 4-5: Box plots of the DC for different input fusion strategies on images 

investigated in this study (N=58). The (median, IQR) are shown below each boxplot.  
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 and the y-axis shows the difference (NBD−N). The central solid line represents the mean 

difference, while the upper and lower dashed lines indicate the limits of agreement (±1.96 

b. 

a. 

Figure 4-6: Bland-Altman plot (see Fig. 4-6a) and correlation analysis of the DC (see Fig. 4-

6b) between the N and NBD groups on images investigated in this study. 
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SD). A regression line is also included, with its equation shown in the top-left corner of 

the plot. Figure 4-6(b) on the right presents a linear regression analysis comparing the DC 

scores of the N and NBD methods. The x-axis indicates the DC scores of the N method, 

while the y-axis represents the scores of the NBD method. The plot includes the 

regression line, the 95% confidence interval band, and the regression equation shown in 

the lower-right corner, along with the sample size (N = 58) and the statistical results: 

Spearman's correlation coefficient (ρ = 0.77) and significance level (P < 0.001).  

Figure 4-10 presents a comparative analysis of four dual-input segmentation strategies 

(NBD, NBE, NCD, and NCE) before and after hyperparameter optimization. Overall, the 

results after optimization consistently outperform those obtained with manually set 

Figure 4-7: Comparative segmentation results of four dual-input strategies before and 

after hyperparameter optimization on TRUS images. 
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parameters, as reflected by improved Dice Similarity Coefficients (DSC), higher accuracy 

(AC), and segmentation contours that better align with the ground truth. 

For the NBD method, strong performance is observed both before and after optimization, 

indicating the inherent robustness of its dual-branch architecture. However, with 

optimized parameters—batch size of 8, Adam optimizer, and a learning rate of 0.007—

the segmentation becomes smoother and more stable, especially in challenging cases. 

The improvements are particularly noticeable in NBE and NCD. After optimization, NBE 

achieves tighter boundary alignment, especially in low-quality images. NCD also shows 

higher accuracy, with more precise delineation in areas with ambiguous boundaries, such 

as the lower prostate edge. These gains can be attributed to strategic parameter changes, 

including switching optimizers (e.g., from SGD to Adam), adjusting the learning rate, and 

increasing batch size. 

Although the performance increase in NCE is relatively modest, it still shows more 

consistent segmentation results after optimization. 

In conclusion, the application of automated hyperparameter tuning significantly enhances 

model performance across various preprocessing and fusion strategies. This approach 

proves especially beneficial in handling images with poor quality or unclear boundaries, 

offering a more reliable and generalizable segmentation framework than manually 

configured training setups. 

After introducing the results without automatic hyperparameter optimization (see Table 

4-3), it becomes evident that the model performs worse without tuning compared to the 

optimized version (see Table 4-1). Specifically, in terms of the Dice Similarity 

Coefficient (DC), the median value in the unoptimized NBD group is 95.92% and 95.71% 

for NCD, both of which are lower than the optimized counterparts (96.89% and 96.77%, 

respectively). While the maximum DC values are relatively close, the minimum DC 

values differ significantly. For example, the minimum DC of the unoptimized NBD group   
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is 88.26%, which improves to 89.15% after optimization, highlighting the effectiveness 

of optimization in reducing the performance lower bound. 

Similarly, for the Hausdorff Distance (HD)—a metric sensitive to boundary accuracy—

the unoptimized models show higher median and maximum values. For instance, the 

median HD in the NBD group is 2.53 mm before optimization, which decreases to 1.94 

mm afterward, indicating more precise boundary prediction. Other key metrics such as 

accuracy (AC) and Cohen’s Kappa (CK) also exhibit similar trends. In the NCE group, 

the minimum CK value increases from 84.31% to 87.62% post-optimization, suggesting 

improved prediction consistency. 

These comparisons clearly demonstrate the importance of automatic hyperparameter 

optimization in enhancing overall model performance, stability, and generalization ability. 

By systematically adjusting parameters such as learning rate, optimizer type, and batch 

size, the optimization process enables the model to better learn features, mitigate 

overfitting, and exhibit greater robustness in complex ultrasound segmentation tasks. 

Therefore, automatic hyperparameter optimization is a key strategy for improving the 

performance of deep learning models in prostate ultrasound image segmentation. 

By systematically adjusting parameters such as learning rate, optimizer type, and batch 

size, the optimization process enables the model to better learn features, mitigate 

overfitting, and exhibit greater robustness in complex ultrasound segmentation tasks. 

Therefore, automatic hyperparameter optimization is a key strategy for improving the 

performance of deep learning models in prostate ultrasound image segmentation. 
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5 Discussion 

The primary objective of this study was to develop a robust and accurate deep learning-

based segmentation method for delineating the prostate in transrectal ultrasound (TRUS) 

images, addressing the inherent challenges of speckle noise, low contrast, and irregular 

boundary definitions. To achieve this, the research focused on three major aspects: image 

preprocessing strategies, dual-input network fusion mechanisms, and automated 

hyperparameter optimization. This chapter discusses the experimental results presented 

in Chapter 4, evaluates the proposed methods in detail, compares them with existing 

techniques reported in the literature, and outlines the strengths, limitations, and future 

potential of this work. 

The discussion begins with an evaluation of four preprocessing strategies: the original 

image (O), intensity normalization (N) [5], despeckling filtering (D) [6], and their 

combination (ND). These preprocessing methods aim to enhance image quality before 

segmentation. A comparative analysis reveals how each preprocessing approach 

influences segmentation performance, particularly in images with varying degrees of 

boundary clarity. 

Following this, the chapter focuses on the dual-input strategy, comparing the baseline 

normalized-only input (N) with four different dual-input configurations [7]: NBD 

(Normalized + Binary, Dual-Branch), NBE (Normalized + Binary, Channel Expansion), 

NCD (Normalized + Initial Contour, Dual-Branch), and NCE (Normalized + Initial 

Contour, Channel Expansion). These methods aim to integrate additional structural 

guidance into the segmentation network, either via separate feature extraction branches 

or through direct channel concatenation. The results demonstrate how dual-branch 

architectures significantly outperform simple expansion methods, especially in complex 

imaging scenarios with blurred boundaries [49]. 

Moreover, this study incorporated an automated hyperparameter optimization process. 

Initially, grid search was applied to determine optimal discrete parameter settings (e.g., 

batch size and optimizer) [50]. This was followed by Bayesian optimization to fine-tune 

continuous parameters, particularly the learning rate. The effectiveness of this two-stage 

tuning process is discussed through a comparison of segmentation results before and after 
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optimization, highlighting improvements in model generalizability, accuracy, and 

training efficiency [10]. 

In addition to evaluating results, this chapter outlines the advantages and disadvantages 

of the proposed segmentation method. It considers the contributions made by each 

component of the pipeline—preprocessing, fusion strategies, and parameter tuning—as 

well as the trade-offs in terms of complexity, interpretability, and clinical usability. 

Finally, future research directions are presented, including suggestions for improving 

structural guidance input, integrating more advanced attention and fusion mechanisms, 

expanding to other imaging modalities, and enhancing the automation and efficiency of 

model training and deployment. This discussion also acknowledges areas not addressed 

in the current study, such as real-time segmentation, clinical validation on larger and more 

diverse datasets, and interactive systems that incorporate clinician feedback. 

The following sections will systematically present the results and interpretation related to 

each of the three core components of this research: preprocessing, fusion strategies, and 

hyperparameter optimization, thereby providing a comprehensive understanding of the 

proposed method’s capabilities and limitations. 

 

5.1 Pre-Processing 

This study aimed to present an improved automated segmentation method in prostate 

TRUS images by integrating N [5], D [6], and ND as preprocessing strategies within a 

DeepLabv3+ segmentation framework. The innovation of the study lies in the 

combination of these techniques to address noise, inhomogeneity, and boundary 

ambiguity in TRUS images, enhancing segmentation accuracy and robustness [51].  

Results show that N improves almost all EM presented in Table 4-1. The D preprocessing 

enhances segmentation performance, particularly in terms of P (93.50/96.00/94.35/95.56) 

and S (98.87/99.34/98.90/99.14), suggesting effectiveness in noise reduction and 

structural enhancement. The N preprocessing achieved superior results across all EM as 

shown in Table 4-1. All EM achieved their highest values. The lowest HD (HD=3.36 In 

Table 4.1) values for the ND confirm improved accuracy of segmentation boundaries 

(ACC=98.40, see Table 4-1). The marked improvement in CK reflects greater consistency 
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between segmentation outcomes and ground truth (see Table 4-1). However, when HD 

decreases (DC=94.22 To HD=3.76 In Table 4-1), the improvement is less substantial than 

achieved by N (see Table 4-1), suggesting noise reduction alone is insufficient to address 

inhomogeneities [52]. Results in Figure 4-1 demonstrate that preprocessing techniques 

have a more significant impact on segmentation performance for images with unclear 

boundaries. In high-quality images, improvement in DSC and AC is minimal (see Figure 

4-1, while for low-quality images, N achieves a 6.4% increase in DSC and 2.5% in AC, 

and ND improves DSC by 3.3% and AC by 1.3%. The difference is most pronounced for 

N, with DSC increasing 5.5% more in low-quality images. These findings suggest that N 

and ND are particularly beneficial in challenging segmentation scenarios, enhancing 

boundary delineation and overall accuracy. In Figure 4-2 best EM were reported for AC 

and S, which exhibited very low variability (AC IQR = 0.008, S IQR = 0.009). The N 

group outperforms other groups across all EM. The median±IQR values were for the 

DC=0.949±0.038, indicating a high segmentation accuracy of the EM (AC=0.984±, 

P=0.964±, and S=0.994. The AC (0.984) and CK (0.938) further support improved 

segmentation consistency. N provides the best results with minimal variability [53]. 

The regression curve in Figure 4-3 with a slight downward slope suggests that at higher 

DC, the D method slightly outperforms N, showing a trend where the N-D difference 

decreases as mean DC increases [54]. The plot contains a regression curve (solid line) 

with the equation N−D=0.1999−0.2085*(N+D)/2. This curve indicates that as mean DC 

increases, the difference between N and D methods decreases suggesting that the 

segmentation performances of the two preprocessing strategies become more consistent 

when the segmentation accuracy is higher overall [55]. In other words, for images with 

higher DC values (i.e., easier cases), both methods produce more similar results, while in 

harder cases (lower DC), the choice of preprocessing has a larger impact. Figure 4-3(b) 

demonstrates a strong correlation (r=0.87 at p<0.001) between the DC of N and the ND 

methods. The regression equation ND=0.202+0.789*N indicates that the DC of the ND 

method increases with that of the N method; however, the slope 0.789 is less than 1, 

suggesting that despeckling may slightly reduce the variation in DC. The correlation 

coefficient (ρ = 0.87) and its statistical significance (p<0.001) confirm the robustness of 

this relationship. The 95% confidence intervals (shaded region) are relatively narrow, 

indicating a well-fitted regression model with stable data trends [56]. Overall, while the 



43 

 

DC of the ND and N methods exhibit a high degree of consistency, despeckling may 

introduce minor variations, leading to a slightly lower growth rate than the ideal 1:1 

relationship. 

A number of other studies have been presented in the literature for the segmentation of 

prostate TRUS images. More specifically, Peng et al. [17], proposed a semi-automatic 

segmentation method based on the principal curve model (CCPS) and differential 

evolution algorithm (IDEML), which performed excellently (average DC = 94.2% ± 

3.2% ) in small-sample scenarios of prostate ultrasound images. By allowing clinicians 

to select initial seed points, the model optimized segmentation for complex regions, 

achieving a DC = 96.5%. However, this method requires manual intervention and has 

high computational complexity. Vesal et al. [16] introduced the CoordDR-UNet model, 

incorporating 2.5D input, attention mechanisms, and knowledge distillation techniques 

generalization of segmentation models. On a multi-center dataset, their model achieved a 

DC of 94.0% within a single domain and 82.0% in cross-domain evaluations. Despite 

robust generalization performance, this approach requires significant computational 

resources during training and shows room for improvement in handling side-fire probe 

images. The present study utilized the DeepLabv3+ model with multiple preprocessing 

methods (O, N, D, and ND) to perform fully automatic segmentation. ND preprocessing 

achieved a slightly better DC of 94.22%, improving segmentation performance. The core 

advantage of this study lies in its systematic preprocessing design, which enhances model 

robustness against noise and intensity variations in images, addressing poor performance 

of raw data. Compared to Peng et al. [17], this study avoids manual intervention and 

achieves full automation. It also simplifies the training process without relying on 

complex knowledge distillation techniques, as demonstrated by Vesal et al. [16]. In 

comparison, Van Sloun et al. [14] achieved an AC=98% and a DC= 0.96, but did not 

incorporate preprocessing, making it susceptible to artifacts. Karimi et al. [57] used 

ensemble learning and reported a DC=0.939, but lacked preprocessing, potentially 

affecting robustness. Anas et al. [15] utilized recurrent networks for real-time 

segmentation with a DC=0.93, but also did not include preprocessing, which may impact 

stability on low-quality images. Jiang et al. [58] introduced MicroSegNet with a DC= 

0.939, leveraging multi-scale supervision but omitting preprocessing, which could limit 

performance on complex cases. Compared to these studies, our approach where 
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DC=0.948 where reported, integrates preprocessing techniques to improve segmentation 

accuracy and robustness across varied imaging conditions. 

In comparison with other existing methods, the proposed approach demonstrates distinct 

advantages, which are below outlined. Van Sloun et al.[14], method emphasizes real-time 

inference and zonal segmentation but does not address the optimization of image quality, 

which could lead to suboptimal performance in images affected by noise and artifacts 

(DC= 0.96). Similarly, Karimi et al. [57], enhances robustness through ensemble learning; 

however, it fails to incorporate image preprocessing, thereby limiting its potential to 

improve image quality (DC= 0.939). Anas et al. [15] approach, which utilizes recurrent 

neural networks for sequence processing, also does not include any form of image 

preprocessing, which may result in instability when handling images of lower quality 

(DC= 0.93). Jiang et al. [58] MicroSegNet, while innovative in terms of multi-scale 

supervision and AG-BCE loss functions, does not mention any image preprocessing 

techniques, potentially reducing its effectiveness in segmentation tasks involving 

complex or low-quality images (DC= 0.939). In contrast, our proposed method (DC= 

0.942) integrates effective preprocessing techniques, resulting in comparable or superior 

segmentation performance. 

While methods [15], [18], [57] offer valuable innovations, none addresses the importance 

of N and ND preprocessing. Optimizing image quality is crucial in medical image 

segmentation. Preprocessing techniques significantly enhance segmentation accuracy, 

particularly in challenging cases, outperforming methods that ignore image quality issues 

[59]. By systematically designing and validating pre-processing methods, the model's 

robustness was enhanced. This design addresses performance fluctuations using raw data 

and improves the model's ability to capture boundaries and details, particularly in blurry 

or discontinuous regions [60]. Unlike methods relying on manual interventions [22], this 

study achieves fully automated segmentation, reducing manual workload and human 

error. Utilizing the dilated con-volution feature of DeepLabv3+[10], segmentation 

performance on complex boundaries was optimized. This approach balances performance 

and efficiency, providing a stable, effective solution for clinical applications in prostate 

ultrasound segmentation. 

This study evaluated the effects of different pre-processing techniques on prostate 

segmentation in TRUS images, including intensity normalization (N) [5], despeckling [6] 
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(D), and their combination (ND). Results showed that N outperformed the others in most 

segmentation metrics. For example, the N method achieved a median DC of 94.84% and 

AC of 98.40%, indicating improved boundary clarity and reduced image variability. 

Compared to previous studies [16], [58] applied basic preprocessing such as histogram 

equalization or global normalization. In contrast, this study introduces a carefully 

designed normalization strategy based on region-specific ROI intensity mapping and 

targeted despeckling, which leads to improved input consistency and segmentation 

accuracy. 

Contribution: Unlike prior works that typically use global intensity normalization or 

minimal preprocessing, this study quantitatively shows that detailed, customized 

preprocessing leads to enhanced segmentation performance, especially in ambiguous 

images. The systematic comparison provides evidence of its importance in TRUS 

segmentation workflows. 

5.2 Fusion strategy 

Figure 4-4 illustrates the segmentation performance of five different preprocessing and 

fusion strategies on TRUS images with both clear and ambiguous prostate boundaries. 

Compared to the baseline normalized input (N), both dual-branch fusion approaches—

NBD (Normalized + Binary, Dual-Branch) and NCD (Normalized + Initial Contour, 

Dual-Branch)—consistently outperform the channel expansion counterparts (NBE and 

NCE) under both conditions. 

Notably, in the bottom row depicting images with indistinct prostate boundaries (see 

Figure 4-4), the dual-branch models provide more accurate alignment of the predicted 

contours (dashed lines) with the ground truth (solid lines), particularly along the upper 

prostate edge. This demonstrates the effectiveness of structural guidance in challenging 

segmentation scenarios. 

When comparing the two dual-branch methods, although NCD yields the highest DSC 

(91.1%) and AC (97.6%) on blurry-boundary images—indicating better utilization of 

initial contour information—NBD exhibits more stable performance across both types of 

images (DSC ranging from 88.4% to 98.2%; AC from 96.8% to 99.2%), suggesting 

superior robustness and generalization. 
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In contrast, the channel expansion approaches (NBE and NCE) show a noticeable drop in 

performance under more complex conditions, underscoring the limitations of simple 

channel concatenation for leveraging structural cues. Altogether, Figure 4-5 highlights 

the advantage of dual-branch architectures in effectively integrating complementary 

information and enhancing segmentation accuracy, particularly in cases with low 

boundary clarity. 

As shown in Figure 4-5, the DC distributions across the five evaluated methods reveal 

insightful differences in segmentation performance and stability. Compared to the 

baseline method using only N images N, all other fusion strategies demonstrate improved 

median DC values, indicating enhanced segmentation accuracy through the integration of 

additional structural information. 

Among them, the NBD (Normalized + Binary, Dual-Branch) configuration achieves the 

highest median DC= 0.969 with a narrow interquartile range (±IQR = 0.024), reflecting 

both strong accuracy and consistency across the dataset. This highlights the effectiveness 

of the dual-branch design in leveraging complementary information from the binary map 

[61]. 

Similarly, the NCD (Normalized + Contour, Dual-Branch) approach (see Table 4-2) also 

performs well (median = 0.968, IQR = ±0.024), slightly behind NBD, and confirms the 

utility of structural contour guidance. On the other hand, the channel expansion variants—

NBE (median = 0.963, IQR = ±0.027) and NCE (median = 0.955, IQR = ±0.026)—while 

still outperforming the baseline, show slightly lower accuracy and greater variability. This 

suggests that simply concatenating additional channels may not fully exploit the structural 

cues provided by binary or contour maps.  

Overall, the Figure 4-5 supports that dual-branch input strategies, particularly NBD, 

provide more reliable and accurate segmentation results for prostate ultrasound images. 

Figure 4-6(a) on the left is a Bland-Altman plot, where the x-axis represents the mean DC 

values of the two methods, and the y-axis shows their difference (NBD − N). The solid 

central line denotes the mean difference (0.022), while the dashed lines indicate the limits 

of agreement (±1.96 SD), specifically 0.053 and −0.009. Most of the data points lie within 

these limits, suggesting a strong agreement between the two methods. Additionally, a 
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regression line and its equation are presented, illustrating the trend in difference values 

relative to their mean.  

Figure 4-6(b) on the right displays a linear regression analysis comparing the DC values 

of the N and NBD methods. The x-axis shows the DC values for N, and the y-axis shows 

those for NBD. The regression line (NBD = 0.441 + 0.555 * N) demonstrates a strong 

linear relationship, with a shaded area indicating the 95% confidence interval. The 

Spearman correlation coefficient is ρ = 0.77, and the p-value is less than 0.001, 

confirming a statistically significant positive correlation between the two methods. 

Overall, this analysis highlights that the NBD approach not only improves segmentation 

accuracy over the normalized-only method but also maintains a high degree of 

consistency and robustness, making it a reliable enhancement for clinical applications. 

In comparison with Peng et al. [62]'s MicroSegNet, which introduced a multi-scale 

annotation-guided Transformer UNet architecture for prostate segmentation in micro-

ultrasound images, our proposed dual-input fusion approach also demonstrates strong 

segmentation performance. While MicroSegNet achieved a Dice coefficient of 0.939 and 

Hausdorff Distance (HD) of 2.02 mm on their test set, our best-performing 

configuration—NBD (Normalized image + Binary map, Dual-Branch)—achieved a 

higher Dice coefficient of 0.969 and a comparable HD of 3.38 mm on conventional TRUS 

data. 

This suggests that although MicroSegNet introduces architectural innovations with 

Transformer and annotation-guided losses, our strategy of fusing structural information 

such as binary masks and initial contours via dual-branch networks can achieve 

competitive or even superior accuracy in Dice metric on a different ultrasound modality. 

Furthermore, our methods also demonstrate consistent robustness across different 

boundary clarity conditions, which is not addressed in the MicroSegNet study. Overall, 

this comparison highlights the effectiveness of dual-input structural guidance as a 

lightweight yet powerful alternative for improving segmentation in prostate ultrasound 

imaging. 

We evaluated two major types of fusion strategies: channel expansion (NBE, NCE) and 

dual-branch (NBD, NCD). Results indicated that dual-branch strategies consistently 

outperformed channel expansion methods. NBD achieved the highest median DC 
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(96.89%) and the lowest HD (1.94 mm), showing superior accuracy and boundary 

adherence. 

In precious studies, dual-path or multi-branch architectures have been explored, such as 

Peng et al. [62] using gated attention modules, and Anas et al. [15] using ConvGRU for 

temporal fusion. However, few studies applied spatial structural priors (binary or contour 

maps) through dual-branch architectures. Our approach differs by explicitly introducing 

spatial priors into a lightweight MobileNetV2+ DeepLabV3+ backbone with dual-input 

fusion. 

Contribution: This study quantitatively demonstrates that dual-branch fusion using 

structural priors yields significantly better segmentation performance than channel 

concatenation. The architecture offers a more effective way to integrate auxiliary 

structural information, enhancing both robustness and generalization. 

5.3 Automatic Hyperparameter Optimization 

As illustrated in Figure 4-7, the comparison of segmentation results before and after 

hyperparameter optimization clearly demonstrates the effectiveness of tuning in 

enhancing model performance. Across all four dual-input strategies (NBD, NBE, NCD, 

NCE), the Dice Coefficient (DC) and Accuracy (AC) metrics show consistent 

improvements, especially in challenging cases shown in the second row of images. After 

optimization, the predicted contours better align with the ground truth, indicating a 

significant enhancement in both robustness and generalization. 

For instance, the NBE method improved from a pre-optimization DC of 84.2% and AC 

of 94.8% to 85.4% and 95.5%, respectively. Similarly, the NCD method achieved a post-

optimization DC of 91.1%, reflecting stronger boundary adherence. These improvements 

are attributed to the refined selection of hyperparameters such as learning rate, batch size, 

and optimizer type, which enabled more efficient convergence and better feature 

extraction. 

Overall, hyperparameter optimization not only contributes to better average performance 

but also enhances reliability in difficult cases, making it a critical step in achieving robust 

and accurate prostate segmentation in ultrasound images, as evidenced visually in Figure 

4-7. 
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In the domain of prostate ultrasound image segmentation, hyperparameter optimization 

has been widely adopted to enhance model performance. For instance, the DSU-Net 

model, which incorporates shear transformation and deformable convolution modules, 

achieved significant improvements in segmentation accuracy. With optimized parameters 

including a learning rate of 0.001, batch size of 8, and the Adam optimizer, the model 

attained a Dice Similarity Coefficient (DSC) of 96.5% and an Accuracy (ACC) of 96.3% 

on the test set. 

Similarly, the H-SegMod framework, integrating an improved principal curve model with 

a backpropagation neural network using an adaptive learning rate, also achieved strong 

results through tuning the number of hidden neurons and training epochs. This method 

reached a DC of 96.5% and an ACC of 96.3%. 

These studies highlight that careful tuning of hyperparameters such as learning rate, batch 

size, and optimizer type plays a critical role in improving the performance of prostate 

segmentation models. Comparisons between different configurations demonstrate that 

optimized models consistently yield superior accuracy and stability. 

In contrast to most existing methods that either manually tune parameters or rely on fixed 

settings, our study integrates automatic hyperparameter optimization using a hybrid 

approach. We first use grid search to determine the best batch size and optimizer type, 

then apply Bayesian optimization to fine-tune the learning rate. This approach led to a 

consistent improvement of around 1–2% in DSC and AC across all fusion strategies. For 

instance, NBD improved from 95.9% to 96.9% DSC after optimization. Compared to Liu 

et al. [40], who used genetic algorithms with higher computational costs, our method 

balances efficiency and performance, making it more practical for clinical deployment. 

5.4 Advantages and disadvantages of the proposed segmentation 

method  

The proposed prostate segmentation framework demonstrates several notable strengths 

derived from the combination of preprocessing, dual-input strategies, and automated 

hyperparameter optimization. This section expands upon the advantages and 

disadvantages of the proposed method, incorporating comparative analysis with relevant 

literature to provide a broader context and quantitative validation. 
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First, the tailored preprocessing techniques—especially intensity normalization (N) and 

despeckling (D)—effectively reduce noise and intensity inconsistency in transrectal 

ultrasound (TRUS) images. This significantly enhances segmentation accuracy, 

particularly in images with unclear prostate boundaries. As shown in Figure 4.1 and Table 

4.1, the N and ND preprocessing schemes consistently outperformed the original (O) 

input across all evaluation metrics, demonstrating strong generalizability and robustness. 

Compared with the preprocessing approaches used by Masoudi et al. [63], who applied 

histogram equalization and Gaussian filtering, our use of targeted despeckling and 

normalization offers more stable boundary preservation and less information distortion, 

particularly beneficial for the heterogeneous prostate gland texture. 

Second, the use of dual-input architectures (NBD and NCD) offers a considerable 

advantage over conventional channel expansion methods. By separating the processing 

of structural priors (binary or contour maps) from normalized images and later fusing 

them, the model extracts complementary features more effectively. The NBD method, in 

particular, achieved the highest median dice coefficient (DC = 0.969) and demonstrated 

minimal variability (IQR = 0.024), as shown in Figure 4.5. This confirms the superiority 

of dual-branch designs in integrating spatial guidance for complex segmentation tasks. 

Similar strategies have been employed by Guo et al., who used edge-aware multi-branch 

networks for prostate segmentation, but our work demonstrates improved consistency and 

accuracy with a simpler architecture. Additionally, the NCD method leverages initial 

contour approximations to achieve similarly high DC values (0.968), indicating strong 

spatial awareness. Compared to works like Ding et al. [64], which fused multi-scale 

features using attention mechanisms, our method simplifies the integration process while 

maintaining competitive segmentation outcomes. 

Third, automated hyperparameter optimization contributed significantly to performance 

improvements across all evaluated dual-input strategies. By fine-tuning parameters such 

as learning rate, batch size, and optimizer type, the segmentation accuracy and reliability 

improved, particularly in challenging cases (Figure 4-7). This eliminates the need for 

extensive manual tuning and supports more reproducible and optimal configurations 

across datasets. In comparison, studies like Zhu et al. [65] reported marginal DC 

improvements (<1%) after manual tuning, whereas our Bayesian-guided optimization 

achieved consistent boosts of 1–2% in DC and AC across all configurations, underlining 



51 

 

the method's effectiveness. Similarly, Roman et al. [66] implemented grid search for 

hyperparameter tuning but failed to achieve stable gains across different input modalities, 

highlighting the advantage of our combined two-stage strategy. 

From a practical perspective, our results indicate that when no optimization is performed, 

the Dice Coefficients of all dual-input methods drop by approximately 0.8–1.2% (Table 

4.3 vs Table 4.2), demonstrating the importance of parameter tuning not just for peak 

performance but also for model stability. Moreover, this automatic optimization step 

reduces dependency on empirical heuristics, making the model more adaptable for 

clinical deployment across varied datasets. 

Despite these advantages, the proposed approach is not without limitations. First, the 

dual-branch architecture increases computational complexity and memory requirements 

compared to single-input or channel expansion designs. This may limit real-time 

deployment or application in resource-constrained environments. Although some 

lightweight implementations such as MobileNet-based backbones partially address this, 

further compression techniques may be necessary. Prior works like Rong et al. [67] 

addressed this issue by pruning model layers post-training, a direction we may explore in 

future extensions. 

Second, although hyperparameter optimization enhances overall performance, it requires 

substantial computational resources during the search phase. While the final model is 

efficient, the training process may not be ideal for rapid prototyping or large-scale model 

testing in early research stages. To mitigate this, future studies could integrate early 

stopping or surrogate performance estimators to reduce tuning overhead. Work by Luo et 

al. [68] on adaptive sampling during Bayesian optimization suggests a promising path to 

lower computational costs. 

Lastly, the approach still relies on manually defined thresholds for generating binary and 

contour maps during preprocessing, which may introduce bias or require adaptation when 

applied to different imaging setups or institutions. Addressing this limitation could 

involve learning-based or adaptive thresholding techniques that tailor binary map 

generation to the local image context, improving generalization across centers. 

In summary, our segmentation framework provides quantifiable improvements in 

segmentation performance over conventional methods, supported by evidence from 
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comparative studies. Its combination of preprocessing, dual-input strategy, and automated 

hyperparameter tuning makes it robust and generalizable. However, improvements in 

efficiency, automation, and scalability will be important directions for future work to 

ensure broader clinical utility and deployment. 

5.5 Future directions  

Building upon the outcomes and current limitations of this study, several potential 

directions for future research are proposed to further optimize and expand the 

applicability of the proposed prostate ultrasound image segmentation method: 

 Incorporating Attention Mechanisms and Adaptive Fusion Modules 

Although dual-branch structures have proven effective, the current fusion 

strategies are relatively straightforward. Advanced fusion mechanisms, such as 

channel or spatial attention modules (e.g., SE or CBAM) [69], [70], or cross-

modal fusion modules, could be introduced to allow the model to dynamically 

assign importance to different inputs, thereby improving feature integration and 

representation capacity. 

 Expanding to Cross-Modality and Multi-Organ Applications 

While the proposed method is tailored to TRUS prostate segmentation, future 

studies could extend it to other ultrasound-based organs (e.g., liver, thyroid) or 

even other imaging modalities such as MRI and CT. This would help evaluate the 

generalizability of the model across various anatomical structures, imaging 

conditions, and noise patterns[71]. 

 Improving Parameter Optimization and Training Efficiency 

Although this work introduced an automated hyperparameter tuning strategy, it 

remains computationally demanding. Future directions may include lightweight 

alternatives such as meta-learning-based parameter predictors, evolutionary 

algorithms, or gradient-guided search techniques [72]. Transfer learning could 

also be utilized to share optimization knowledge across tasks or datasets, further 

accelerating the tuning process. 

 Incorporating Uncertainty Estimation and Confidence Assessment 

In clinical image analysis, interpretability and reliability are essential. Future work 
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could integrate Bayesian deep learning techniques or Monte Carlo dropout to 

quantify uncertainty in segmentation results, providing clinicians with confidence 

intervals that may inform diagnostic decisions[73]. 

 Facilitating Clinical Deployment and Interactive Segmentation 

Beyond accuracy, real-world applicability requires practical responsiveness and 

usability. A future direction is to develop an interactive segmentation interface 

based on the proposed method, enabling clinicians to provide real-time feedback 

and corrections [74]. Clinical validation should also be performed under multi-

institution and multi-device conditions to ensure robustness in diverse scenarios. 
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6 Conclusions 

This study set out to develop a robust and accurate deep learning-based segmentation 

framework tailored for delineating the prostate region in transrectal ultrasound (TRUS) 

images. The key motivation was to address persistent challenges such as speckle noise, 

low tissue contrast, and ambiguous boundaries that often hinder automated segmentation 

performance in clinical ultrasound imaging. 

The proposed method integrates three core components: (1) a comprehensive 

preprocessing pipeline including intensity normalization and despeckle filtering; (2) a 

dual-input fusion strategy using either binary or contour structural priors through channel 

expansion or dual-branch architectures; and (3) an automated hyperparameter 

optimization procedure combining grid search and Bayesian tuning to enhance training 

convergence and segmentation performance. 

The results demonstrated that intensity normalization (N) significantly outperformed raw 

and despeckled inputs, offering consistent performance across quality conditions. Dual-

branch fusion strategies, particularly NBD and NCD, consistently yielded higher Dice 

Similarity Coefficients (up to 96.9%) and better boundary accuracy compared to single-

input and channel expansion models. Moreover, automated parameter tuning led to 

additional improvements in both average accuracy and robustness, confirming its value 

as a systematic optimization step. 

However, the study has several limitations. The sample size was relatively small (9 

patients, 289 images), limiting the statistical power and generalizability of the findings. 

The dataset was also acquired from a single clinical source, potentially introducing 

institutional bias. Furthermore, while the segmentation model was thoroughly evaluated, 

it was not tested in a real-time or clinician-in-the-loop workflow. The proposed dual-input 

strategies increased architectural complexity, which could be a barrier to deployment in 

resource-constrained environments. 

For future work, it is recommended to validate the model on larger and more diverse 

datasets from multiple institutions to enhance generalizability. Incorporating real-time 

segmentation feedback or interactive editing tools may also improve clinical usability. 

Additionally, future research could explore integrating advanced attention mechanisms, 
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self-supervised pretraining, or multimodal imaging data (e.g., MRI + TRUS) to further 

enhance segmentation precision and clinical relevance. 

In summary, this study successfully demonstrated that the proposed combination of 

optimized preprocessing, dual-input structural guidance, and automated parameter tuning 

can significantly improve TRUS prostate segmentation. These findings provide a 

promising foundation for the development of reliable and deployable ultrasound-based 

prostate image analysis tools. 
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APPENDIX I 

Appendix GUI Code 

main_gui.py 

import tkinter as tk 

from predict_single_10 import PredictorGUI as SingleInputGUI 

from predict_double_1045 import DoubleInputGUI 

 

class MainMenu(tk.Tk): 

    def __init__(self): 

        super().__init__() 

        self.title("Segmentation Mode Selector") 

        self.geometry("300x200") 

        tk.Label(self, text="Select segmentation mode:").pack(pady=10) 

        tk.Button(self, text="Single Input Mode", width=20, 

command=self.open_single).pack(pady=5) 

        tk.Button(self, text="Double Input Mode", width=20, 

command=self.open_double).pack(pady=5) 

        tk.Button(self, text="Exit", width=20, command=self.quit).pack(pady=5) 

 

    def open_single(self): 

        # hide main window and open single-input GUI in new window 

        self.withdraw() 

        win = tk.Toplevel(self) 

        win.title("Single Input Mode") 

        gui = SingleInputGUI(win) 

        tk.Button(win, text="Back", command=lambda: 

self.back_to_main(win)).pack(side="bottom", pady=10) 

        win.protocol("WM_DELETE_WINDOW", lambda: self.back_to_main(win)) 

 

    def open_double(self): 

        # hide main window and open double-input GUI in new window 
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        self.withdraw() 

        win = tk.Toplevel(self) 

        win.title("Double Input Mode") 

        gui = DoubleInputGUI(win) 

        tk.Button(win, text="Back", command=lambda: 

self.back_to_main(win)).pack(side="bottom", pady=10) 

        win.protocol("WM_DELETE_WINDOW", lambda: self.back_to_main(win)) 

 

    def back_to_main(self, child_win): 

        child_win.destroy() 

        self.deiconify() 

 

if __name__ == '__main__': 

    app = MainMenu() 

    app.mainloop() 

 

predict_double.py 

import os 

from tkinter import Tk, filedialog, Button, Label, messagebox, Checkbutton, IntVar, 

Scale, Toplevel 

from PIL import Image, ImageTk 

import cv2 

import numpy as np 

import torch 

import pandas as pd 

from predict_double import prepare_img, postprocess, DeepLab 

from sklearn.metrics import confusion_matrix, cohen_kappa_score 

from scipy.spatial.distance import directed_hausdorff 
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# ---- Metrics ---- 

def load_bin(path): 

    img = Image.open(path).convert('L') 

    return np.array(img) > 128 

 

def calculate_metrics(pred_path, gt_path, row_spacing=0.11655, 

col_spacing=0.12474): 

    pred = load_bin(pred_path) 

    gt = load_bin(gt_path) 

    tn, fp, fn, tp = confusion_matrix(gt.flatten(), pred.flatten()).ravel() 

    dice = 2*tp/(2*tp+fp+fn) if (2*tp+fp+fn)>0 else 0 

    jaccard = tp/(tp+fp+fn) if (tp+fp+fn)>0 else 0 

    precision = tp/(tp+fp) if (tp+fp)>0 else 0 

    recall = tp/(tp+fn) if (tp+fn)>0 else 0 

    specificity = tn/(tn+fp) if (tn+fp)>0 else 0 

    accuracy = (tp+tn)/(tp+fp+tn+fn) if (tp+fp+tn+fn)>0 else 0 

    kappa = cohen_kappa_score(gt.flatten(), pred.flatten()) 

    def hd(a, b): 

        d1 = directed_hausdorff(np.argwhere(a), np.argwhere(b))[0] 

        d2 = directed_hausdorff(np.argwhere(b), np.argwhere(a))[0] 

        return max(d1, d2) * (row_spacing + col_spacing) / 2 

    haus = hd(pred, gt) 

    return {'Dice':dice, 'Jaccard':jaccard, 'Precision':precision, 'Recall':recall, 

            'Specificity':specificity, 'Accuracy':accuracy, 'Kappa':kappa, 

'Hausdorff(mm)':haus} 
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class DoubleInputGUI: 

    def __init__(self, master: Tk): 

        self.master = master 

        master.title('Dual Input Predictor') 

        master.geometry('400x240') 

        self.enable_gt = IntVar() 

 

        Button(master, text='Single Image', command=self.predict_single).pack(pady=8) 

        Button(master, text='Batch Folder', command=self.predict_batch).pack(pady=8) 

        Checkbutton(master, text='Overlay GT Mask', 

variable=self.enable_gt).pack(pady=5) 

 

        self.model = None 

 

    def load_model(self): 

        if self.model is None: 

            self.model = DeepLab(num_classes=2, backbone='mobilenet', 

downsample_factor=16, pretrained=False) 

            w = torch.load('logs/best_epoch_weights_NB_double_branch.pth', 

map_location='cpu') 

            self.model.load_state_dict(w) 

            self.model.eval() 

        return self.model 

 

    def ask_threshold(self, img_path): 

        gray = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) 
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        popup = Toplevel(self.master) 

        popup.title('Select Threshold') 

        Label(popup, text='Adjust threshold:').pack() 

        thr = IntVar(popup, 128) 

        lbl = Label(popup) 

        lbl.pack() 

        def update(v): 

            v = int(v) 

            _, bm = cv2.threshold(gray, v, 255, cv2.THRESH_BINARY) 

            tkimg = ImageTk.PhotoImage(Image.fromarray(bm).resize((256,256))) 

            lbl.config(image=tkimg) 

            lbl.image = tkimg 

        Scale(popup, from_=0, to=255, orient='horizontal', variable=thr, 

command=update).pack() 

        update(128) 

        mask = {'img': None} 

        def confirm(): 

            v = thr.get() 

            _, bm = cv2.threshold(gray, v, 255, cv2.THRESH_BINARY) 

            mask['img'] = Image.fromarray(bm) 

            popup.destroy() 

        Button(popup, text='Confirm', command=confirm).pack(pady=5) 

        self.master.wait_window(popup) 

        return mask['img'] 
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    def draw_contours(self, pred_img: Image.Image, gt_path: str, orig_path: str, 

save_path: str): 

        arr = np.array(pred_img.convert('RGB')) 

        gray = cv2.cvtColor(arr, cv2.COLOR_RGB2GRAY) 

        _, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY) 

        orig = cv2.imread(orig_path) 

        cnt, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

        res = orig.copy() 

        cv2.drawContours(res, cnt, -1, (0,255,0), 2) 

        if gt_path: 

            gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) 

            _, gbin = cv2.threshold(gt, 1, 255, cv2.THRESH_BINARY) 

            gc, _ = cv2.findContours(gbin, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

            cv2.drawContours(res, gc, -1, (0,0,255), 2) 

        cv2.imwrite(save_path, res) 

 

    def predict_single(self): 

        model = self.load_model() 

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

        in_path = filedialog.askopenfilename(title='Select original image', 

filetypes=[('Image','*.jpg *.png *.jpeg')]) 

        if not in_path: return 

        # always threshold 

        bin_img = self.ask_threshold(in_path) 
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        image = Image.open(in_path) 

        img_t, bin_t, oh, ow, nh, nw, old = prepare_img(image, bin_img) 

        img_tensor = torch.from_numpy(img_t).to(device) 

        bin_tensor = torch.from_numpy(bin_t).to(device) 

        model.to(device) 

        with torch.no_grad(): pr = model(img_tensor, bin_tensor)[0] 

        res_img = postprocess(pr, oh, ow, nh, nw, ['_background_','1'], old, num_class=2, 

mix_type=1) 

        out = filedialog.asksaveasfilename(defaultextension='.png', 

filetypes=[('PNG','*.png')]) 

        if not out: return 

        gt = filedialog.askopenfilename(title='Select GT mask', filetypes=[('Image','*.jpg 

*.png')]) if self.enable_gt.get() else None 

        if gt: 

            tmp = out + '_tmp.png' 

            res_img.save(tmp) 

            mets = calculate_metrics(tmp, gt) 

            os.remove(tmp) 

            messagebox.showinfo('Metrics', '\n'.join([f'{k}: {v:.4f}' for k,v in mets.items()])) 

        self.draw_contours(res_img, gt, in_path, out) 

        messagebox.showinfo('Done', f'Saved to {out}') 

 

    def predict_batch(self): 

        model = self.load_model() 

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

        in_dir = filedialog.askdirectory(title='Select original folder') 
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        out_dir = filedialog.askdirectory(title='Select output folder') 

        if not in_dir or not out_dir: return 

        gt_dir = filedialog.askdirectory(title='Select GT folder') if self.enable_gt.get() else 

None 

        records = [] 

        for fname in os.listdir(in_dir): 

            if not fname.lower().endswith(('.jpg','.png','.jpeg')): continue 

            orig = os.path.join(in_dir, fname) 

            # always threshold 

            mask_img = self.ask_threshold(orig) 

            image = Image.open(orig) 

            img_t, bin_t, oh, ow, nh, nw, old = prepare_img(image, mask_img) 

            img_tensor = torch.from_numpy(img_t).to(device) 

            bin_tensor = torch.from_numpy(bin_t).to(device) 

            model.to(device) 

            with torch.no_grad(): pr = model(img_tensor, bin_tensor)[0] 

            res_img = postprocess(pr, oh, ow, nh, nw, ['_background_','1'], old, 

num_class=2, mix_type=1) 

            savep = os.path.join(out_dir, fname) 

            gt = os.path.join(gt_dir, fname) if gt_dir else None 

            if gt and os.path.exists(gt): 

                tmp = savep + '_tmp.png' 

                res_img.save(tmp) 

                mets = calculate_metrics(tmp, gt) 

                mets['Image'] = fname 

                records.append(mets) 
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                os.remove(tmp) 

            self.draw_contours(res_img, gt, orig, savep) 

        if records: 

            pd.DataFrame(records).to_excel(os.path.join(out_dir, 'metrics_summary.xlsx'), 

index=False) 

        messagebox.showinfo('Done', f'Batch saved to {out_dir}') 

 

if __name__ == '__main__': 

    root = Tk() 

    app = DoubleInputGUI(root) 

root.mainloop() 

 

predict_single.py 

import os 

from tkinter import Tk, filedialog, Button, Label, messagebox, Checkbutton, IntVar, 

Scale, Toplevel 

from PIL import Image, ImageTk 

import cv2 

import numpy as np 

import torch 

import pandas as pd 

from predict_double import prepare_img, postprocess, DeepLab 

from sklearn.metrics import confusion_matrix, cohen_kappa_score 

from scipy.spatial.distance import directed_hausdorff 

 

# ---- Metrics ---- 
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def load_bin(path): 

    img = Image.open(path).convert('L') 

    return np.array(img) > 128 

 

def calculate_metrics(pred_path, gt_path, row_spacing=0.11655, 

col_spacing=0.12474): 

    pred = load_bin(pred_path) 

    gt = load_bin(gt_path) 

    tn, fp, fn, tp = confusion_matrix(gt.flatten(), pred.flatten()).ravel() 

    dice = 2*tp/(2*tp+fp+fn) if (2*tp+fp+fn)>0 else 0 

    jaccard = tp/(tp+fp+fn) if (tp+fp+fn)>0 else 0 

    precision = tp/(tp+fp) if (tp+fp)>0 else 0 

    recall = tp/(tp+fn) if (tp+fn)>0 else 0 

    specificity = tn/(tn+fp) if (tn+fp)>0 else 0 

    accuracy = (tp+tn)/(tp+fp+tn+fn) if (tp+fp+tn+fn)>0 else 0 

    kappa = cohen_kappa_score(gt.flatten(), pred.flatten()) 

    def hd(a, b): 

        d1 = directed_hausdorff(np.argwhere(a), np.argwhere(b))[0] 

        d2 = directed_hausdorff(np.argwhere(b), np.argwhere(a))[0] 

        return max(d1, d2) * (row_spacing + col_spacing) / 2 

    haus = hd(pred, gt) 

    return {'Dice':dice, 'Jaccard':jaccard, 'Precision':precision, 'Recall':recall, 

            'Specificity':specificity, 'Accuracy':accuracy, 'Kappa':kappa, 

'Hausdorff(mm)':haus} 

 

class DoubleInputGUI: 
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    def __init__(self, master: Tk): 

        self.master = master 

        master.title('Dual Input Predictor') 

        master.geometry('400x240') 

        self.enable_gt = IntVar() 

 

        Button(master, text='Single Image', 

command=self.predict_single).pack(pady=8) 

        Button(master, text='Batch Folder', command=self.predict_batch).pack(pady=8) 

        Checkbutton(master, text='Overlay GT Mask', 

variable=self.enable_gt).pack(pady=5) 

 

        self.model = None 

 

    def load_model(self): 

        if self.model is None: 

            self.model = DeepLab(num_classes=2, backbone='mobilenet', 

downsample_factor=16, pretrained=False) 

            w = torch.load('logs/best_epoch_weights_NB_double_branch.pth', 

map_location='cpu') 

            self.model.load_state_dict(w) 

            self.model.eval() 

        return self.model 

 

    def ask_threshold(self, img_path): 

        gray = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) 
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        popup = Toplevel(self.master) 

        popup.title('Select Threshold') 

        Label(popup, text='Adjust threshold:').pack() 

        thr = IntVar(popup, 128) 

        lbl = Label(popup) 

        lbl.pack() 

        def update(v): 

            v = int(v) 

            _, bm = cv2.threshold(gray, v, 255, cv2.THRESH_BINARY) 

            tkimg = ImageTk.PhotoImage(Image.fromarray(bm).resize((256,256))) 

            lbl.config(image=tkimg) 

            lbl.image = tkimg 

        Scale(popup, from_=0, to=255, orient='horizontal', variable=thr, 

command=update).pack() 

        update(128) 

        mask = {'img': None} 

        def confirm(): 

            v = thr.get() 

            _, bm = cv2.threshold(gray, v, 255, cv2.THRESH_BINARY) 

            mask['img'] = Image.fromarray(bm) 

            popup.destroy() 

        Button(popup, text='Confirm', command=confirm).pack(pady=5) 

        self.master.wait_window(popup) 

        return mask['img'] 
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    def draw_contours(self, pred_img: Image.Image, gt_path: str, orig_path: str, 

save_path: str): 

        arr = np.array(pred_img.convert('RGB')) 

        gray = cv2.cvtColor(arr, cv2.COLOR_RGB2GRAY) 

        _, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY) 

        orig = cv2.imread(orig_path) 

        cnt, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

        res = orig.copy() 

        cv2.drawContours(res, cnt, -1, (0,255,0), 2) 

        if gt_path: 

            gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) 

            _, gbin = cv2.threshold(gt, 1, 255, cv2.THRESH_BINARY) 

            gc, _ = cv2.findContours(gbin, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

            cv2.drawContours(res, gc, -1, (0,0,255), 2) 

        cv2.imwrite(save_path, res) 

 

    def predict_single(self): 

        model = self.load_model() 

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

        in_path = filedialog.askopenfilename(title='Select original image', 

filetypes=[('Image','*.jpg *.png *.jpeg')]) 

        if not in_path: return 

        # always threshold 

        bin_img = self.ask_threshold(in_path) 
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        image = Image.open(in_path) 

        img_t, bin_t, oh, ow, nh, nw, old = prepare_img(image, bin_img) 

        img_tensor = torch.from_numpy(img_t).to(device) 

        bin_tensor = torch.from_numpy(bin_t).to(device) 

        model.to(device) 

        with torch.no_grad(): pr = model(img_tensor, bin_tensor)[0] 

        res_img = postprocess(pr, oh, ow, nh, nw, ['_background_','1'], old, 

num_class=2, mix_type=1) 

        out = filedialog.asksaveasfilename(defaultextension='.png', 

filetypes=[('PNG','*.png')]) 

        if not out: return 

        gt = filedialog.askopenfilename(title='Select GT mask', filetypes=[('Image','*.jpg 

*.png')]) if self.enable_gt.get() else None 

        if gt: 

            tmp = out + '_tmp.png' 

            res_img.save(tmp) 

            mets = calculate_metrics(tmp, gt) 

            os.remove(tmp) 

            messagebox.showinfo('Metrics', '\n'.join([f'{k}: {v:.4f}' for k,v in 

mets.items()])) 

        self.draw_contours(res_img, gt, in_path, out) 

        messagebox.showinfo('Done', f'Saved to {out}') 

 

    def predict_batch(self): 

        model = self.load_model() 

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
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        in_dir = filedialog.askdirectory(title='Select original folder') 

        out_dir = filedialog.askdirectory(title='Select output folder') 

        if not in_dir or not out_dir: return 

        gt_dir = filedialog.askdirectory(title='Select GT folder') if self.enable_gt.get() 

else None 

        records = [] 

        for fname in os.listdir(in_dir): 

            if not fname.lower().endswith(('.jpg','.png','.jpeg')): continue 

            orig = os.path.join(in_dir, fname) 

            # always threshold 

            mask_img = self.ask_threshold(orig) 

            image = Image.open(orig) 

            img_t, bin_t, oh, ow, nh, nw, old = prepare_img(image, mask_img) 

            img_tensor = torch.from_numpy(img_t).to(device) 

            bin_tensor = torch.from_numpy(bin_t).to(device) 

            model.to(device) 

            with torch.no_grad(): pr = model(img_tensor, bin_tensor)[0] 

            res_img = postprocess(pr, oh, ow, nh, nw, ['_background_','1'], old, 

num_class=2, mix_type=1) 

            savep = os.path.join(out_dir, fname) 

            gt = os.path.join(gt_dir, fname) if gt_dir else None 

            if gt and os.path.exists(gt): 

                tmp = savep + '_tmp.png' 

                res_img.save(tmp) 

                mets = calculate_metrics(tmp, gt) 

                mets['Image'] = fname 
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                records.append(mets) 

                os.remove(tmp) 

            self.draw_contours(res_img, gt, orig, savep) 

        if records: 

            pd.DataFrame(records).to_excel(os.path.join(out_dir, 

'metrics_summary.xlsx'), index=False) 

        messagebox.showinfo('Done', f'Batch saved to {out_dir}') 

 

if __name__ == '__main__': 

    root = Tk() 

    app = DoubleInputGUI(root) 

    root.mainloop() 


