
 

Master’s Thesis 

Hybrid neural network based multi-objective optimal design 

of hybrid pin-fin microchannel heatsink for integrated 

microsystems 

Cheng-Yi, Feng  

 

 

 

 

 

 

 

Limassol, Month and year of thesis submission 

 



CYPRUS UNIVERSITY OF TECHNOLOGY 

FACULTY OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER 

ENGINEERING AND INFORMATICS 

 

 

Master’s Thesis 

Hybrid neural network based multi-objective optimal design of 

hybrid pin-fin microchannel heatsink for integrated microsystems 

Cheng-Yi, Feng  

 

 

 

 

Paul Christodoulides 

Department of Electrical Engineering, Computer Engineering and Informatics, 

University of Technology, Cyprus  

 

 

 

 

 

 

 

Limassol, December 2024 



ii 

 

Approval Form 

 

Master’s Thesis 

Hybrid neural network based multi-objective optimal design of hybrid 

pin-fin microchannel heatsink for integrated microsystems 

Presented by 

Cheng-Yi, Feng  

 

 

 

Supervisor: Paul Christodoulides 

Member of the committee: [Name Surname and position] 

Member of the committee: [Name Surname and position] 

Cyprus University of Technology 

Limassol, May 2025 

  



iii 

 

Copyrights  

Copyright©  2025 Chengyi, Feng  

All rights reserved. 

The approval of the thesis by the Department of Electrical Engineering and Computer 

Engineering and Informatics does not necessarily imply the approval by the Department 

of the writer's views.   

  



iv 

 

Acknowledgments  

The success of this research is mainly due to the guidance of Professor Paul 

Christodoulides of Cyprus University of Technology and Professor Wen-Sheng Zhao of 

Hangzhou Dianzi University. Their profound knowledge not only guided this research 

through the critical conceptual stage, but also enhanced the academic rigor of this 

research through their insightful guidance. At the same time, I sincerely thank Dr. 

Lazaros Aresti for his technical guidance during the process. I pay my deepest respect 

and sincere gratitude to these respected scholars. 

In addition, special thanks to faculties and staffs of the Department of Electrical 

Engineering, Computer Engineering and Informatics for their support. They generously 

shared their professional methods and jointly built a comfortable research environment, 

which fully reflects their collective wisdom. 

Finally, and very importantly, I would like to thank my family, whose unwavering 

encouragement supported my continuous pursuit of academic pursuits and their silent 

dedication constituted the invisible cornerstone of this achievement. 

  



v 

 

ABSTRACT  

With the rapid advancement of 2.5D/3D heterogeneous integrated microsystems, the 

performance and fast intelligent design for thermal management are unprecedentedly 

required to address the electrical and mechanical reliability issues caused by thermal 

runaway.  

In this work, a hybrid neural network, featuring a small dataset requirement, is developed 

to accelerate the design of the hybrid pin-fin microchannel heatsink. Assisted by the 

trained machine learning surrogate model and the non-dominated sorting genetic 

algorithm, a powerful heatsink characterizing power-adaptive cooling capacity is 

designed. In this study, firstly, a hybrid pin-fin microchannel heatsink is modeled. Then 

the grid test and simulation validity are carried out. The critical structural parameters 

correlated with the heat transfer and hydraulic performance are analyzed and identified 

through numerical simulation. A hybrid neural network serving as a surrogate model, is 

then developed to map the relationship between key structural parameters and the targeted 

performance indexes.  

The hybrid neural network achieves a prediction accuracy of at least 94.33% and 

outperforms traditional networks, including DNN and CNN, in RMSE, MAE, and RE. It 

improves by 93.4%, 89.5%, and 87.8% over DNN, and by 91.7%, 93.0%, and 91.9% over 

CNN. The non-dominated sorting genetic algorithm is performed to explore the Pareto 

front where the intelligent design of power-adaptive pin-fin layout under uneven thermal 

profile is achieved. The performance indexes of the optimized heatsink are validated with 

that from the computational fluid dynamics. Compared with the original structure, it is 

found that enhancements of 5.58%, 10.76% and 45.73% are achieved in the maximum 

temperature of high-power heat source, low-power heat source and the pressure drop of 

microchannel.  

Keywords: Keywords: Microchannel Heatsink, Integrated microsystems, Machine 

learning, Genetic algorithm, Semi-supervised learning  
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1 Introduction 

As transistor sizes in integrated circuits (ICs) continue to shrink, Moore's Law is 

approaching its physical limits [1]. The first microprocessor developed by Intel in 1971 

had only 2,300 transistors. According to Gordon Moore’s projected roadmap, this number 

has now risen to 5.4 billion [2]. Increasing design complexity and dynamic power 

consumption in single-core processors have driven microprocessor architecture towards 

multi-core technology [3-4]. The heat flux generated in the core is significantly higher 

than in the remaining areas of the microprocessor, with these high heat flux areas referred 

to as hotspots. The substantial temperature gradient resulting from the difference in heat 

flux between the core and background regions can significantly reduce microprocessor 

lifespan [5-6]. However, multi-core technology alone is insufficient; the number of 

transistors, constrained by area and process limits, has nearly reached its maximum. To 

meet the growing computational demands of the era of artificial intelligence (AI) and 

large-scale data processing, three-dimensional stacked integrated circuits (3D-ICs) have 

emerged as a key technological innovation [7]. By vertically stacking multiple silicon 

chips, 3D-ICs integrate more transistors within limited space, thereby enhancing 

processing power. Although 3D-IC technology holds significant potential in overcoming 

the physical limitations of Moore's Law, harmful thermal issues, such as electrical failures 

and mechanical fatigue caused by high heat flux density, are becoming bottlenecks that 

hinder further improvements in overall system performance [8-10]. Localized 

overheating can lead to performance degradation or even device failure, with 

approximately 55% of electronic device failures attributed to inadequate heat dissipation 

[11-12].  

However, modern air cooling technologies have reached their limit [13] and are 

insufficient to meet the high thermal dissipation demands of today’s ultra-thin electronic 

devices. How to effectively manage the heat generated by these devices has become a key 

challenge in realizing efficient electronic systems. Various new electronic cooling 

technologies have emerged, such as liquid metal cooling, microchannel cooling, 

impingement jet cooling, and immersion liquid cooling [14-17]. Among them, 

microchannel heat sink (MCHS) has attracted widespread attention due to their high 

integration potential. Due to its small size and short heat transfer distance, this technology 
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has become a research hotspot in recent years. Therefore, this paper focuses on the 

microchannel heat sink designed for 3D-ICs.  

A large number of research results show that the heat transfer characteristics of single-

phase forced convection in microchannels are closely related to the geometric parameters 

of the channel. The hydraulic diameter and the depth-to-width ratio of the channel are 

used as parameters to measure the microchannel structure [18-19]. Considering that 

parallel and regular structures are relatively easy to manufacture, rectangular MCHS with 

high aspect ratios are often used in related studies. However, simply changing the shape 

of the microchannel is not enough. Due to the rapid increase in heat accumulation in 

microprocessors, research has gradually turned to complex microchannel internal 

structures [20]. Microfluids are important heat transfer media in microchannels. The way 

they flow affects the overall thermal performance of the heat sink. Ribs and pin-fins are 

widely used to enhance heat transfer in microchannels due to their high thermal 

conductivity and obvious effect on fluid disturbance [21]. Common rib and pin-fin shapes 

include circular, elliptical, rectangular, diamond, and triangular. In addition to changing 

the shapes of pin-fins and ribs, changing their arrangement such as rectangular oblique 

ribs, sidewall staggered ribs, staggered trapezoidal ribs and V-shaped ribs can also affect 

the performance of the heat sink to a certain extent. The effect of these structures on the 

performance shows that the hybrid structure heat sink has better heat dissipation 

efficiency than the traditional straight microchannel heat sink. Excellent MCHS should 

dissipate more heat at a lower pumping power. Thermal resistance, temperature 

distribution and pressure drop are all important criteria for evaluating the overall 

performance of MCHS [22]. This study proposes a modular microchannel heat dissipation 

design method, by extracting and optimizing the flow channel aspect ratio, hydraulic 

diameter, channel shape and enhanced structure of the microchannel, and finally 

evaluating the overall heat dissipation performance of the heat sink with thermal 

resistance, pressure drop or improved temperature uniformity as evaluation indicators.  

However, chips with different heat distributions require targeted design of different 

optimization situations. It is far from enough to design the heat sink based on 

experimental experience. In order to achieve rapid optimization of the heat sink 

combination, an efficient optimization algorithm needs to be selected. As a classic global 

optimization algorithm, the genetic algorithm (GA) has strong global optimization 
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capabilities, and the non-dominated sorting genetic algorithm (NSGA-II) is further 

improved on this basis [23]. NSGA-II significantly improves the optimization efficiency 

by hierarchically ranking individuals between dominated and non-dominated individuals 

and giving priority to retaining non-dominated solutions in the selection operation. 

Therefore, NSGA-II was selected as the main optimization algorithm for this study. 

Before applying the optimization algorithm, it is necessary to clarify the numerical 

expression of the optimization objective.  

Since the correlation between optimization objectives and design variables is often 

complex, constructing high-quality expressions relies on large data sets [24]. However, 

the acquisition of these data often requires the use of computational fluid dynamics (CFD) 

or experimental measurements, which is time-consuming and computationally expensive. 

Although NSGA-II has efficient optimization capabilities, the traditional CFD-

optimization coupling method still has low overall efficiency due to the high cost of CFD 

calculations. In order to overcome this bottleneck, this paper proposes a surrogate model 

method based on machine learning (ML) [25], which is designed to replace the CFD 

simulation output of key performance parameters (such as temperature, pressure drop, 

etc.), thereby accelerating the optimization process of NSGA-II. However, existing 

research shows that building accurate ML surrogate models often requires large-scale 

data sets, and the high computational cost of finite element simulation makes obtaining 

large data sets extremely challenging. Therefore, how to use small data sets to build high-

precision surrogate models has become one of the key issues in this research. To address 

this problem, this paper designs a semi-supervised hybrid neural network (HNN) to fully 

mine the potential information of small data sets to train an agent model with high 

prediction accuracy and strong generalization ability [26]. By introducing this surrogate 

model to replace CFD, the need for CFD iterative calculations can be greatly reduced 

during the optimization process. Compared with the traditional CFD and GA coupling 

optimization method, the combined method based on ML agent model and NSGA-II 

significantly improves the optimization efficiency and provides an innovative path for 

efficient optimization of complex multi-physics problems.  

In summary, the purpose of this study is to optimize the structure and layout of the chip 

heat sink to achieve maximum heat dissipation efficiency. The method to achieve this 

optimization is to continuously iterate and select the best parameter combination through 
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optimization algorithms such as NSGA-II. In order to speed up the iteration and avoid the 

tedious calculation process of CFD, HNN is used as a proxy model to replace CFD. The 

paper is divided into three chapters. The first chapter will comprehensively explain the 

literature related to this study in recent years, compare the advantages and disadvantages 

of the methods, and explain what content this study refers to in previous studies and how 

it has been improved compared with previous studies. The second chapter will explain 

the heat sink structure model proposed in this study, give the simulation formula and heat 

sink evaluation indicators, and verify the validity of the computational fluid dynamics 

(CFD) results and calculate the grid convergence. And the HNN and optimization 

algorithm used in the study will also be introduced in detail. The third chapter will 

perform CFD simulation on the heat sink, compare and analyze the various design 

parameters, and finally extract the parameters that have a greater impact on the 

comprehensive thermal performance of the heat sink. The structural data composed of 

these parameters are used for batch simulation in the software. After obtaining the 

complete data set, the HNN is trained. After obtaining the proxy model, its accuracy is 

tested. Finally, the proxy model is used to accelerate the optimization algorithm to find 

the optimal heatsink structure and layout. The optimal heat sink is simulated by CFD, and 

finally the evaluation and comparison of the corresponding parameters are given. 

2 Literature review 

In 1981, Tuckerman et al. first proposed the concept of microchannel heat sinks (MCHS), 

highlighting their significant advantages over traditional heat dissipation methods [27]. 

The fundamental design principle of MCHS involves integrating microscale fluid 

channels within a compact chip or substrate, allowing the rapid removal of heat generated 

by the chip via the flow of coolant through these channels. By incorporating 

microchannels directly into the packaging, heat can be dissipated directly from the heat 

source through the microchannel heat sink. Compared to other cooling methods, MCHS 

offers superior thermal performance and a smaller footprint, facilitating integration into 

micro systems. Additionally, the high surface area-to-volume ratio of microchannels 

allows efficient heat transfer along the shortest path, significantly enhancing heat 

dissipation. MCHS demonstrates a higher heat transfer coefficient and can reduce coolant 

consumption compared to conventional air or liquid cooling methods, making it 

promising for applications in modern high-power-density electronic devices [28-31]. In 
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recent years, many studies have focused on how to further improve the heat dissipation 

performance of MCHS, especially in the face of the continuous shrinking of electronic 

devices and the continuous increase in power density. Erp et al. [32] co-designed a 

microfluidic cooler and electronic devices on the same substrate, resulting in a monolithic 

integrated cooling structure with manifold microchannels. The study found that a heat 

flux of more than 1.7 kW/cm² could be dissipated with a pump power of 0.57 W/cm². 

However, due to the presence of a hydrothermal boundary layer in the heat sink with 

parallel straight microchannels, the cooling potential was not fully utilized. This view has 

been confirmed by many previous studies [33]. 

However, previous scholars often used experiments to verify the heat dissipation capacity 

of microchannels, but the complex structure and process requirements of microchannels 

increased the difficulty of experimental research. Therefore, numerical research methods 

can become an effective tool for dealing with complex problems. Feng et al. [34] applied 

CFD to simulate the laminar flow and heat transfer characteristics of rectangular nested 

coil microchannels and used the finite volume method to solve the control equations. 

Their research results showed that the coils in the microchannels can enhance fluid 

disturbance and improve temperature distribution. The maximum deviation between the 

experimental data and the numerical calculation results was 14.2%. Liu et al. [35] used 

the CFD method to study an annular inclined microchannel with multiple staggered inlets 

and outlets. The simulation results showed that the staggered arrangement had a more 

uniform temperature distribution than the sequential arrangement. Yang and Cao [36] 

proposed a new hybrid microchannel heat sink by changing the inlet length, secondary 

channel width and Reynolds number (Re) of the microchannel heat sink. They said that 

compared with the traditional MCHS, the new MCHS can effectively reduce pressure loss 

due to its flow characteristics. Lu and Zhai [37] applied computational fluid dynamics to 

study the heat transfer and flow characteristics of MCHS combined with dimples and 

vortex generators. The results show that the combination of vortex concavities and vortex 

generators can improve heat transfer performance and reduce pressure loss. Ling et al. 

[38] conducted a combined CFD simulation and experimental study to study the heat 

transfer and flow characteristics of a new type of staggered microchannel, and used 

conjugate heat transfer numerical simulation to optimize the structure. The analysis of 

experimental and simulation results showed that the Nusselt number of the staggered 
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microchannel was 65.4% higher than that of the parallel microchannel, and the surface 

temperature distribution was more uniform. In their study, the deviation between the 

experimental data and the simulation results was less than 18%. Ali et al. [39] proposed 

a four-quadrant microchannel heat sink (4 QMCHS) and established a three-dimensional 

conjugate heat transfer model to study its temperature distribution. The results show that 

the inlet and outlet directions have a great influence on the non-uniformity of the 

temperature distribution, and the temperature distribution of the heat sink using the 

counterflow method is relatively uniform. Peng et al. [40] used 3D CFD to simulate the 

flow and heat transfer process in a multi-jet microchannel (MJMC) heat sink, where the 

coolant flows through alternating inlet and outlet jets in a direction perpendicular to the 

heating surface. Compared with traditional microchannels, microjet microchannels 

combine the advantages of impinging jets and microchannel inlet effects. Lin et al. [41] 

proposed a new MCHS with variable wavelength and variable amplitude along the flow 

direction. They found that this variation can effectively mix the coolant and enhance heat 

transfer. Hasis et al. [42] conducted a CFD study to simulate laminar flow and heat 

transfer in a twisted sinusoidal microchannel. The results showed that the heat transfer 

performance of the twisted corrugated channel was better than that of the sinusoidal 

corrugated channel. Lei and Chen [43] numerically studied the heat transfer and pressure 

drop characteristics of supercritical carbon dioxide in a horizontal corrugated 

microchannel (WMCCT) with consistent crests and troughs and a corrugated 

microchannel (WMOCT) with opposite crests and troughs. The results showed that the 

heat transfer coefficient and pressure drop of WMCCT and WMOCT increased with 

increasing amplitude and decreased with decreasing wavelength. Sreehari and Sharma 

[44] combined computational fluid dynamics methods with experimental work to analyze 

the overall performance of three different rectangular cross-section serpentine 

microchannels at different Reynolds numbers and heat fluxes. They reported that the U-

shaped serpentine microchannel showed the best thermal performance compared to the 

other two serpentine microchannels. The experimental data were compared with the 

simulation results, and the pressure drop deviation was 10-11% and the average base 

temperature deviation was 1-3%. It can be seen that simulation through CFD has 

extremely high accuracy and can provide a good research method for MCHS numerical 

simulation. 
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An 3D-ICs system usually includes components of different processes, resulting in 

different power and heat generation of each part. Conventional cooling solutions with 

uniform heat transfer coefficient (HTC) distribution lead to supercooling of background 

areas and supercooling of hotspot areas, resulting in intensive energy consumption and 

significant temperature non-uniformity. Therefore, to deal with this situation, traditional 

microchannel heat sinks are obviously not suitable, and there is an urgent need to create 

non-uniform HTC distribution to adapt to the non-uniformity of heat flux on the chip heat 

source area. Hybrid pin-fin microchannel heat sink (HPFMCHS) is an innovative design 

create non-uniform HTC. HPFMCHS is selectively designed according to the different 

locations of multiple heat sources. In order to enhance the local convection effect between 

the coolant and the channel sidewalls to adapt to the situation where high-power and low-

power heat sources exist simultaneously, Ansari et al. [45] proposed a HPFMCHS that 

uses rectangular microchannels in low heat flux areas and a series of cylindrical pin fins 

in high heat flux areas. Thanks to the enlarged effective heat transfer area and the stronger 

eddy effect brought by the pin fin array, compared with the traditional smooth 

microchannel heat sink, only 11.7% of additional pump power is required to reduce the 

hot spot temperature rise by 30.6% under the condition of Reynolds number of 200. Tang 

et al. [46] designed a new type of manifold ultra-thin micro pin fin heat sink (MUMPFHS) 

and studied the thermal, energy and exergy performance of the system in cooling 

10×10mm² high-concentration photovoltaic (HCPV) cells through numerical simulation. 

Under the conditions of an inlet flow rate of 3 kg/h and a coolant temperature of 25°C, 

the temperature of the solar cell was reduced to 51°C, and the temperature non-uniformity 

was only 3.4°C. Compared with the designs of jet cooling, mixed jet/microchannel 

cooling, and stepped variable width microchannel, the new design showed higher 

temperature uniformity and cooling performance at 1000 times the solar concentration. 

In addition, the significant modularity of HPFMCHS facilitates the independent analysis 

and design of the microchannel section and the pin fin area, so that the structural parts 

can be optimized in a targeted manner to improve the heat dissipation performance. Many 

scholars have studied the effects of the shape and layout of the pin fins on the heat 

dissipation capacity, and proposed some suitable pin fin structures and layouts [47-60]. 

Research have shown that factors such as the shape, size, and arrangement of the 

microchannel will directly affect the flow characteristics and heat transfer efficiency of 

the fluid [47]. To increase convective heat transfer area, slanted fan shapes [48], droplet 
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shapes [49], trapezoidal [50], and triangular cavities [51-52] are commonly added within 

microchannels. However, cavity structures have limitations in improving hydrothermal 

performance, as fluid in these cavities can form stagnation zones, hindering flow and 

raising local temperatures, ultimately affecting overall heat transfer [52]. Adding straight 

ribs of various shapes within microchannels is another approach to enhance heat transfer. 

Inspired by studies on solar air heaters with semi-circular [53], triangular [54-55], and 

compound ribs [56], researchers have added different rib structures—triangular [57], 

elliptical [58], cylindrical sidewalls [59], and diamond-shaped [60] ribs to microchannel 

heat sinks. Despite improved heat transfer performance from rib-only designs, increased 

flow resistance often deteriorates flow characteristics [52]. Thus, studies have observed 

that neither ribs nor cavities alone can simultaneously optimize heat transfer and flow 

performance. Consequently, researchers are now exploring the combined use of these 

approaches to analyze the thermal performance of water-based systems.  

Xia et al. [61] investigated a novel heat sink featuring circular grooves and semi-circular 

sidewall ribs in microchannels, optimizing parameters such as relative groove height, rib 

height, and rib width. Datta et al. [62] combined four different rib shapes (rectangular, 

rear triangular, front triangular, and diamond) with trapezoidal cavities, examining how 

variations in cavity relative width and length, as well as rib relative width and spacing, 

influenced thermal performance. Yan et al. [63] proposed a pin-fin array with a graded 

distribution and narrow-step structure to enhance overall thermal performance by 

reducing pressure drop. This design slightly raised the overall heat sink temperature but 

significantly reduced pressure drop while maintaining uniform surface temperature 

distribution. Lawson et al. [64] demonstrated that the transverse and longitudinal pitch of 

pin-fins notably affected the thermal-hydraulic performance of the heat sink, with 

transverse pitch being more influential. Chiu et al. [65] observed that for small-diameter 

circular pin-fins, heat transfer performance declined, and porosity values above 0.7 had 

negligible impact on thermo-hydraulic behavior. Feng et al. [66] highlighted the 

effectiveness of interrupted microchannel heat sinks, which integrated microchambers 

and circular pin-fins. Their findings indicated that larger pin-fin diameters in individual 

microchambers enhanced thermal management, though with some compromise in fluid 

dynamics. Additionally, they noted a positive but limited effect of longitudinal spacing 

on thermal performance. In an analytical study, Khan et al. [67] reported that inline fin 
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arrangements exhibited lower friction coefficients but higher thermal resistance than 

staggered arrangements. Mohammadi et al. [68] studied staggered pin-fin configurations, 

attributing improved thermal performance to intensified boundary layer disruption behind 

the fins. John et al. [69] simulated microchannel flow through circular and square pin-

fins, concluding that smaller hydraulic diameters and higher aspect ratios of pin-fins 

yielded better thermal-hydraulic performance. Sertkaya et al. [70] conducted experiments 

on pin-fin and plate heat sinks, identifying a threshold in pin-fin count that impacted heat 

transfer efficiency. Pin-fin geometry is another critical aspect of heat sink thermal-

hydraulic performance. Boundary layer disruption, associated with backflow, was found 

to degrade fluid dynamics but enhance heat transfer. In this regard, sharp-edged pin-fins, 

due to strong downstream flow separation and vortices, offered better thermal 

performance, whereas streamlined pin-fins were advantageous for fluid dynamics. 

Vilarrubi et al. [71] compared pin-fin and elongated rectangular fin performance in 

microchannels, finding that pin-fins maintained lower peak temperatures at chip hotspots. 

Huang et al. [72] analyzed conjugate heat transfer in optimized pin-fin shapes, achieving 

a 34% enhancement in heat transfer performance. Ahmadian et al. [73] performed 

parametric simulations on thermal-hydraulic performance, demonstrating that conical 

circular pin-fins improved overall heat sink performance by 17%. In conclusion, 

parameter variations substantially influence heat sink performance.  

As integrated microsystems grow in complexity, precise heat sink design becomes crucial. 

Relying solely on empirical methods and experimental trials to design microchannel heat 

sink (MCHS) structures is both time-intensive and unlikely to yield optimal solutions. 

Therefore, efficient methods for rapid heat sink structural optimization are essential. 

Genetic algorithms (GA), a widely used optimization technique, are frequently applied 

for multi-objective MCHS optimization. By establishing relationships between variables 

and objectives based on an initial set of numerical or analytical results, GA enables 

comprehensive multi-objective analysis [74-76]. GA emulates natural selection and 

evolutionary processes, enabling efficient exploration of optimal solutions within 

complex design spaces. Building on the classic GA, the Non-Dominated Sorting Genetic 

Algorithm (NSGA) introduces the concept of crowding distance to search for the optimal 

Pareto frontier formed by non-dominated individuals [77]. Due to its effective 

optimization in trade-off designs with numerous variables, NSGA is widely applied in 



10 

 

multi-objective black-box problem optimization [78]. Yildizeli and Cadirci [79] applied 

NSGA-II to optimize the thermal and fluid-dynamic performance of rectangular MCHSs. 

By iteratively adjusting channel width, height, and inlet Reynolds number, they achieved 

MCHS designs with reduced pressure drop and temperature. Similarly, Foli et al. [80] 

employed computational fluid dynamics (CFD) simulations to optimize the aspect ratio 

of rectangular channels in micro heat exchangers, refining parameters using NSGA-II. 

This resulted in a 70% reduction in pressure drop on the thermal fluid side and a 73% 

improvement in heat transfer efficiency. Leng et al. [81] used a simplified NSGA to 

minimize thermal resistance in a dual-layer MCHS under varying thermal and fluid-

dynamic constraints. Results demonstrated that smaller microchannel cross-sectional 

areas enhance heat transfer, albeit with increased pumping power. Wang et al. [82] 

integrated a CFD solver with NSGA-II to optimize the design of a semi-porous ribbed 

dual-layer heat sink, simultaneously minimizing key performance indicators such as 

channel count, rectangular channel aspect ratio, channel spacing ratio, and flow 

characteristics, leading to optimized pump power and overall thermal resistance. 

Likewise, NSGA-II combined with response surface methodology enabled optimization 

of a hybrid MCHS design with embedded secondary channels and manifolds, resulting in 

an 18.8% reduction in thermal resistance at equivalent pump power [83]. Compared to 

iterative design trials, NSGA-II has demonstrated exceptional capability in identifying 

optimal configurations within high-dimensional design spaces.  

However, previous studies have primarily combined optimization algorithms with CFD, 

which demands substantial time and computational resources, reducing the efficiency of 

heat sink optimization. Recently, machine learning algorithms and modeling 

techniques—such as neural networks (NN), decision trees (DT), random forests (RF), 

gradient boosting (GB), adaptive neuro-fuzzy inference systems (ANFIS), and support 

vector machines (SVM)—have garnered increasing attention and are considered 

promising methods for analyzing thermal systems [84-85]. Neural networks (NN), which 

mimic brain-like processing to build various neural network models, can process 

extensive data to yield optimal results [86-89]. Compared to traditional CFD-based 

optimization approaches, NNs can rapidly predict heat dissipation performance under 

different design parameters by learning from large datasets, significantly reducing the 

need for CFD simulations and accelerating the optimization process. Almahmmadi et al. 
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[90] conducted a numerical study on the thermal performance of spiral coils, comparing 

artificial neural network (ANN) predictions with CFD results. Maximum differences in 

Nusselt number and friction values were only 9.6% and 0.1-9.7%, respectively, 

demonstrating ANN's high prediction reliability. Li et al. [91] used a backpropagation 

NN combined with multi-objective optimization to design microchannels with dual delta-

wing vortex generators, achieving optimal fluid-thermal performance at high 

temperatures. Results indicated that the NN optimized via GA exhibited superior 

generalization and prediction for Nusselt number and friction factor compared to 

traditional NN. Ma et al. [92] developed an improved workflow for MCHS optimization, 

integrating analytical expressions with surrogate models and objective optimization 

algorithms. Polat and Cadirci [93] trained a multi-layer ANN using inputs like angle, 

Reynolds number, and pitch-to-diameter ratios of longitudinal and transverse pin fins. 

The NSGA-II algorithm then used Nusselt and Poiseuille numbers from the trained 

surrogate model to obtain Pareto-optimal solutions. Recognizing hydraulic performance’s 

impact on thermal efficiency, Nusselt number and friction factor were incorporated as 

hydraulic performance metrics [94]. Furthermore, Wang et al. [95] proposed a composite 

microchannel design with various cavity shapes and straight ribs, analyzing its heat 

transfer and flow characteristics through numerical simulation. Optimization via ANN 

and NSGA-II, using Nusselt and friction factors as metrics, revealed that rounded 

rectangular ribs provided the best overall thermal performance, with average η 

approximately 9.7% higher than that of models without straight ribs.  

However, the neural network training process adopted in previous studies usually requires 

collecting a large number of labeled datasets from CFD [96-97], which inevitably 

increases the time cost [98]. Therefore, some special methods that balance the prediction 

accuracy and training dataset requirements have been explored [99-104]. Blum et al. [101] 

proposed a method to improve the performance of learning algorithms by using a large 

number of unlabeled samples when only a small number of labeled samples are available. 

Specifically, confident labeled data verified by two pre-trained classifiers are randomly 

selected and implemented into a pool, allowing cheap unlabeled data to expand a smaller 

labeled dataset. Chen et al. [102] also proposed a semi-supervised hybrid neural network 

(HNN) for signal integrity. This method feeds the unlabeled data after cross-validation of 

pre-trained deep neural network (DNN) and convolutional neural network (CNN) back to 
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HNN as input, thereby achieving dataset expansion based on limited labeled samples. 

Compared with the individual methods in the hybrid structure, the accuracy of DNN and 

co-trained semi-supervised regression methods increased by 32.29% and 20.73%, 

respectively, but the required pre-processed training data was reduced by 50%. Feng et 

al. [103] proposed a hybrid pin-fin microchannel heat sink (HPFMCHS) which is 

optimized by hybrid neural network and non-dominated sorting genetic algorithm 

(NSGA-II). 

3 Research Methodology 

3.1 Physical model 

Figure. 1 shows the hybrid pin-fin microchannel heat sink from various angles, which is 

developed from the structure proposed by Ansari et al [45]. It can be seen that the entire 

heatsink consists of microchannel segments and pin-fins area where pin-fins uniformly 

located. Note that the turbulator array producing vortices effect distinguishes the hybrid 

MCHS from conventional smooth architectures, and it brings about comprehensive 

improvement of thermal and hydraulic performance. In practice, multiple parallel 

channels are required in MCHS to cover all chips where heat dissipation is strongly 

required. To reduce time overhead caused by the full model, a unit of MCHS with dual 

channels, herein, is intentionally constructed. The coolant absorbs heat from the heat 

source placed beneath the heatsink when flowing from the inlet to the outlet, leading to a 

temperature rise. The overall length (𝐿) of the heatsink is set as 10 mm. As shown in 

Figure. 1(b), the outer height (𝐻ch) and the inner height (𝐻tot) of channel are designed as 

0.7 mm and 0.5 mm, respectively. The height of the pin-fin remains the same as the inner 

height of the heatsink. As depicted in Figure. 1(c), the width of a half microchannel unit 

(𝑊tot) is 0.6 mm and the lateral width of the channel (𝑊ch) is 0.25 mm. 𝐿ch denotes the 

length of segment of the rectangular microchannel, and its value is assigned as 4 mm. 

With regard to the pin-fin, the spacing between any two individuals with radius (𝑟) of 

0.06 mm is set as 0.2 mm. In this way, the array with fifty pin-fins shapes the region 

characterizing the outer length (𝑊ao) of 2.3 mm and the inner length (𝑊ai) of 2 mm. Since 

integrated microsystems usually package multiple cores on a silicon substrate, multiple 

heat sources were designed in this study. As shown in Figure. 1(d), two chips with 

different power densities are divided along the central axis of the microchannel unit, 
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defined as high power heat source (HPHS) and low power heat source (LPHS), 

respectively, to simulate the undesirable phenomenon of uneven temperature distribution 

caused by multiple heat sources in actual integrated microsystems.  

The described model of HPFMCHS is built on the platform of ANSYS Spaceclaim 

2023R2. Considering the compatibility of processing, the material of the heatsink is set 

as silicon and the deionized water is applied as the coolant. The related material properties 

are listed in Table 1. Note that the temperature dependency of these material parameters 

has slight influence on the simulated results but would dramatically increase the 

simulation time. Therefore, these properties of materials are set as constant.  

(c)

(b)(a)Inlet flow

Outlet flow
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𝒅𝐡𝐬 
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Figure. 1. Schematics of (a) the overall view, (b) cross section view, (c) top view and (d) bottom 

view of a microchannel unit. 

Table 1. Thermophysical properties of materials. 

 𝝆 (𝐤𝐠 ∙ 𝐦−𝟑) 𝒄𝒑 (𝐉 ∙ 𝐤𝐠−𝟏 ∙ 𝐊−𝟏) 𝒌 (𝐖 ∙ 𝐦−𝟏 ∙ 𝐊−𝟏) 𝝁 (𝐤𝐠 ∙ 𝐦−𝟏 ∙ 𝐬−𝟏) 

Solid 2329 712 148 - 

Fluid 996.6 4178 0.609 9.027 × 10−4 
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3.2 Governing equations and boundary conditions  

In order to perform accurate heat transfer and fluid flow simulation, reasonable 

assumptions of the numerical calculation conducted on ANSYS Fluent 2023R2 are made 

as follows:  

 The default unit of the temperature is K and the pressure unit is kPa. 

 The fluid is a three-dimensional stable laminar flow throughout the simulation. 

 No phase change occurs during the liquid heat exchange process. 

 The effects of gravity and thermal radiation conduction on the heat dissipation effect 

are ignored. The entire heatsink is set to be adiabatic. 

The steady-state governing equations for the mass, momentum and energy in the fluid 

domain are provided as follows:  

∇ ∙ (𝜌𝑓𝑉̅) = 0 (1) 

𝑉̅ ∙ ∇(𝜌𝑓𝑉̅) = −∇𝑝 + ∇ ∙ (𝜇∇𝑉̅) (2) 

𝑉̅ ∙ ∇(𝜌𝑓𝐶𝑝𝑇𝑓) = ∇ ∙ (𝑘𝑓𝛻𝑇𝑓) (3) 

The energy equation in the solid domain is mathematically defined as:  

∇(𝑘𝑠∇𝑇𝑠) = 0 (4) 

where 𝜌𝑓, 𝜇, 𝐶𝑝, and 𝑘𝑓 are the density, dynamic viscosity, specific heat capacity, and 

thermal conductivity of the fluid, respectively, 𝑉̅  and 𝑇𝑓  denotes the velocity and 

temperature of the fluid, 𝑝 is the pressure, and 𝑘𝑠 and 𝑇𝑠 are the thermal conductivity and 

temperature of the heatsink (solid).  
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(a)                                                                                 (b) 

Figure. 2. Configuration of boundary conditions on the proposed HPFMCHS model. (a) 

top view and (b) bottom view 

As shown in Figure. 2, to solve the equations, some necessary boundary conditions are 

configured as follows:  

Due to the symmetry of the heat sink microchannel array, both side surfaces of the 

constructed microchannel unit are invoked as the boundary conditions of symmetry and 

periodicity: 

𝜕𝑇𝑠

𝜕𝑥
= 0 (5) 

A cover plate in glass is placed on the top of microchannel. Thus, solid wall and fluid 

wall are considered as thermal insulation as well as no-slip condition at the top of heatsink:  

−𝑘𝑠

𝜕𝑇𝑠

𝜕𝑛
= −𝑘𝑓

𝜕𝑇𝑓

𝜕𝑛
= 0 (6) 

Adiabatic boundary conditions are adopted at the inlet and outlet of the microchannel: 

𝑘𝑠

𝜕𝑇𝑠

𝜕𝑛
= 0 (7) 

To ensure a fair comparison of the heatsink between different structures, the inlet is set 

as mass flow rate: 

𝑄𝑚 = 𝜌𝑓𝑄 = 𝜌𝑓𝑉̅𝐴ch (8) 

where 𝐴ch is the cross-sectional area of the microchannel unit and 𝑄 is the volume flow 

rate of coolant. In this work, the mass flow rate is fixed as 7.47 × 10−5 kg/h, and the 

initial temperature at the inlet is 𝑇in = 293K. 
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The outlet of the microchannel is regarded as the pressure boundary condition. Due to the 

direct contact with air, the static pressure at the outlet is set as 0:  

𝑃 = 𝑃𝑜𝑢𝑡 = 0 (9) 

The power densities of the intentionally placed HPHS and LPHS are assigned as 

8 × 102 W/mm2 and 4 × 102 W/mm2, respectively [86]. 

−
𝑘𝑠1𝜕𝑇𝑠1

 𝜕𝑧
= 𝑞1 = 8 × 102 W/mm2 (10) 

−
𝑘𝑠2𝜕𝑇𝑠2

𝜕z
= 𝑞2 = 4 × 102 W/mm2 (11) 

At the solid-fluid coupling interface, the no-slip boundary condition is adopted: 

𝑢 = 𝑣 = 𝑤 = 0 (12) 

𝑇𝑠 = 𝑇𝑓 (13) 

−
𝑘𝑠𝜕𝑇𝑠

𝜕𝑛
= −

𝑘𝑓𝜕𝑇𝑓

𝜕𝑛
(14) 

3.3 Grid independence analysis 

The numerical simulations require that the solid and fluid computational domains are 

discretized into volume elements, allowing the calculation process to be performed based 

on unstructured tetrahedral elements. Generally, in the fluid domain, multiple layers of 

high-precision hexagonal mesh elements are generated near the solid wall to ensure that 

the boundary layer of the flow can be resolved more accurately. In this work, a mesh 

independence analysis is discussed on the proposed HPFMCHS to eliminate the 

simulated error brought by the mesh quality. The number of meshes, dependent on the 

mesh size in the solid domain and the number of hexagonal mesh layers in the fluid 

domain, intentionally varies from 120,000 to 1.7 million. The focused critical indexes of 

the designed heatsink are shown in Figures. 3(a)-(b). It is evident that the accuracy of the 

simulation improves with the increased number of meshes and gradually converges when 

the number continually increases.  
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(a)                                                               (b) 

Figure. 3. Grid sensitivity tests of (a) the peak temperature and (b) pressure drop of the 

heatsink versus the number of mesh nodes. 

However, this undoubtedly results in more time overhead. In order to balance the time 

cost and the accuracy, the mesh with 1.12 million is determined to be the trade-off, which 

is supported by the observed phenomenon that the maximum temperature variations of 

the HPHS and LPHS are only 0.35 K and 0.2 K when the number of the denser mesh 

further increases from 1.12 million to 1.7 million, as shown in Figure. 3(a). Likewise, a 

similar phenomenon is observed in Figure. 3(b) where the pressure drop of the hybrid 

heatsink fluctuates by a maximum of 0.053 kPa when the mesh density varies from 

120,000 to 1.7 million. Therefore, the mesh with 1.12 million nodes is identified as the 

discretion method in the following simulations. Considering the efficiency in batch 

acquisition of temperature and pressure drop data sets, this study uses fluent mesh to mesh 

the entire heat sink instead of meshing each part separately. The computational mesh of 

the proposed HPFMCHS is illustrated in Figure. 4. 

Solid domain

Fluid domain

Local zoom

Global grid division

 

Figure. 4. Computational grid of proposed HPFMCHS. 
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3.4 Validation of numerical results 

Ensuring the feasibility of the designed MPFMCHS and the accuracy of the CFD 

simulation, the simulated results are compared with the experimental results obtained 

from a previous literature by Wei et al. [105]. The validation is conducted on multilayer 

MCHS where the heat flux of the bottom chip is set as 70 W/cm2 and the flow rate at the 

top and bottom layers are 0.5172 m/s and 0.4421 m/s, respectively. In this way, nine sets 

of temperature values at intervals of 0.1 m along the entrance are firstly collected and 

compared with the experimental data in Figure. 5(a). At the same time, the corresponding 

comparison of pressure drop extracted from the CFD simulation and experiment is 

depicted in Figure. 5(b) [106]. The pressure drop of the microchannel is collected when 

the Reynolds number ranges from 140 to 951. The average absolute error of the 

temperature and pressure drop between simulation and experiment are quantified as 0.43 

K and 0.75 kPa, respectively, demonstrating that the simulation in this work is confidently 

supported by the comparative result in both critical indexes.  
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(a)                                                         (b) 

Figure. 5. Comparative results of (a) temperature from CFD simulation and experiment 

conducted by Wei et al. [105] and (b) pressure drop from simulation and experiment 

conducted by Qu and Mu-dawar [106]. 

3.5 Hybrid neural network 

As aforementioned, the training process of NNs based on supervised learning requires a 

large amount of labeled data. However, the collected data, simulated from the 

computationally intensive CFD calculation, imposes limitations on the practicality and 

scalability of NNs. In contrast, semi-supervised learning offers a fashion to alleviate the 
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dependency on the known labeled datasets and facilitates the reduction of collection 

cycles. The concept of semi-supervised learning is between unsupervised learning 

featuring no labeled data and low accuracy and supervised learning featuring considerable 

labeled data and high accuracy. Usually, the verified unlabeled data is expanded into the 

labeled dataset, which greatly improves the data diversity and predicting accuracy of the 

trained NN prediction under small amount of the owned datasets. In this work, a HNN 

consisting of a DNN and a CNN is developed to map the underlying relationship between 

the identified structural parameters and critical performance indicators including 

maximum temperatures of two chips and overall pressure drop. Figure. 6 presents the 

working principle of the HNN, with the detailed implementation procedures illustrated as 

follows:  

(1) Pre-training of two NNs: the radius and height of the pin-fin, the lateral and 

longitudinal spacings between two pin-fins, and the width of microchannel are 

determined as the contributory parameters. The CFD simulation is performed to 

construct the labeled set 𝐿 = {(𝑋𝑖, 𝑌𝑖)} where two subsets 𝐿𝑑 and 𝐿𝑐 are sampled to 

pre-train two embedded NNs before the first iteration.  

(2) Generation of the unlabeled dataset: In the first iteration, the unlabeled input set 𝑈 =

{(𝑋𝑖)} is fed to the pre-trained DNN and CNN and the obtained outputs are labeled 

as 𝑌𝑖
𝑑 and 𝑌𝑖

𝑐, respectively. The Euclidean distance is applied as the cross-validation 

criterion of them and mathematically calculated as 𝐿𝑦ℎ = 𝑌𝑖
𝑑 − 𝑌𝑖

𝑐 , 𝑖 = 1, 2, . . . , 𝑁. 

In this work, the value of Euclidean distance is defined as 0.1. Following, the legal 

data 𝑈𝑠
𝑑 and 𝑈𝑠

𝑐 meeting the requirement of Euclidean distance is filtered from the 

predicted dataset 𝑈𝑑 and 𝑈𝑐 and randomly sampled with a sampling rate 𝛼 to build 

the supplementary data 𝑈𝑠
𝑑′ and 𝑈𝑠

𝑐′. Finally, these obtained data are poured into the 

pool of the original labeled dataset.  

(3) Secondary validation and improved training: Based on the expanded dataset, DNN 

and CNN are independently trained with the updated datasets 𝐿𝑑 and 𝐿𝑐. Note that 

the augmentation of the dataset does not necessarily guarantee an improvement in 

the accuracy of the NN training, while the dataset has been updated. Thus, the 

predicted performances of both NNs are examined to decide whether the added data 

should be saved or not.  
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The iterative process, comprising steps (2) and (3), always starts regardless of the 

effectiveness of the expanded dataset until the convergence threshold is reached. After 

obtaining the final iterative HNN model, 50 additional data points are used to test the 

regression ability of the model. In addition, root mean square error (RMSE), mean 

absolute error (MAE), and relative error (RE) are jointly used to measure the accuracy of 

the prediction.  

The RMSE, MAE, and RE are defined as: 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖

(15) 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

(16) 

RE =
|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖
× 100% (17) 

where 𝑛 is the number of the sample, 𝑦̂𝑖 denotes the predicted value, and 𝑦𝑖 is the actual 

value.  
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Figure. 6. (a) Flowchart of HNN and the structures of (b) CNN and (c) DNN. 

3.6 Labelled dataset construction 

The model of the pin-fin array is built and used to collect the original labelled dataset. 

The critical parameters to be designed are shown in Figure. 7(a). A total of 28 parameters 

are considered as the input variables of the collected dataset: four width variables of the 
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inlet and outlet canals (𝑊ch1, 𝑊ch2, 𝑊ch3, 𝑊ch4 ), two height (ℎ1, ℎ2 ) and two radius 

variables (𝑟1, 𝑟2) of pin-fins in group1 and group2, ten lateral spacings (𝑑𝑥) of pin-fins in 

each column, and ten longitudinal spacings (𝑑𝑦) of pin-fins in each row compared with 

the original structure in Figure. 1. The lateral distance between any pair of adjacent pin-

fins in a column of pin-fin array is identical. The outputs of the dataset, i.e., the 

comprehensive evaluation indexes of the microchannel, are defined as 𝑇1, 𝑇2, and ∆𝑝. 𝑇1 

and 𝑇2  denotes the maximal temperatures corresponding to HPHS and LPHS, 

respectively, and Δ𝑝 is the pressure drop across the HPFMCHS. Besides, it is remarked 

that the position of pin-fins should be planned in detail to avoid illegal physically 

overlapped cases when collecting the valid dataset. Figure. 7(b) gives the flowchart of the 

legal layout generation and the procedure is illustrated as follows.  

The spacings between pin-fins in each row is assumed as 0.2 + 𝑑𝑥𝑖(𝑖 ∈ (1,10), 𝑑𝑥𝑖 ∈

(−0.05, 0.05)  and the spacings between the adjacent rows is 0.2 + 𝑑𝑦𝑗  (𝑗 ∈ (1,10) , 

𝑑𝑦𝑗 ∈ (−0.05,0.05)). They are required to satisfy the following conditions: 

0.2 + 𝑑𝑥𝑖 > 2 × 𝑟 (𝑖 ∈ (1,10)) (18) 

0.2 + 𝑑𝑦𝑗+1 − 𝑑𝑦𝑗 > 2 × 𝑟 (𝑗 ∈ (1,10)) (19) 

Besides, in order to ensure that all pin-fins are within the design region of 1 mm × 2 mm, 

it is necessary to meet the following conditions: 

∑ 0.2 + 𝑑𝑥𝑖

5

𝑖=1

< 1 (20) 

∑ 0.2 + 𝑑𝑦𝑗+1 − 𝑑𝑦𝑗 < 2

10

𝑗=1

(21) 

According to the above constraints, the matrix 𝑑 related to the layout of pin-fin array is 

automatically generated using MATLAB. They are arranged for the CFD simulation to 

get the inputs of multiple structural parameters and the outputs including the peak 

temperatures of the LPHS and HPHS and the total pressure drop of the microchannel in 

steady state. 
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(a)                                                            (b) 

Figure. 7. (a) The variables to be optimized and (b) the flowchart of the legal layout 

generation of pin-fin array. 

3.7 Multi-objective non-dominated sorting genetic algorithm 

optimization 

To balance thermal and hydraulic performance of the designed HPFMCHS, NSGA-Ⅱ is 

utilized as the driven optimization algorithm. Increasing the flow rate with sophisticated 

microchannel design, generally, benefits the improvement of heat transfer performance 

and the thermal uniformity of the chip, but also produces a large pressure drop. In this 

way, the optimization of the multi-objective design work targeting the minimization of 

maximal temperature of HPHS (𝑇1), maximal temperature of LPHS (𝑇2) and ∆𝑝 at a 

constant flow rate and chip power can be formulated as:  

Minimize    𝐹(𝑥) = (𝑇1(𝑥), 𝑇2(𝑥), ∆𝑝(𝑥))
𝑇
 

Subject to   𝑑 ≤ 𝑑𝑚 

where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 is the 𝑛-dimensional vector of design variables in the decision 

space ℝ𝑛, and 𝐹(𝑥) is the 𝑚-dimensional objective vector such that 𝐹(𝑥) ∈ ℝ𝑚. Besides, 

constrained by the geometric features of 𝑑 ≤  𝑑𝑚 , all optimal solutions should be 

physically feasible, i.e., separated from each other. Minimizing 𝑇1 and 𝑇2 was chosen as 

the optimization target as the chip temperature is critical to its performance, stability, and 

life. High temperature can affect the chip's computing speed, causing data processing 

delays or errors, and may also cause physical damage and shorten the chip's life. In 

addition, excessively high temperatures can accelerate phenomena such as 

electromigration, increase the risk of failure, and even cause system crashes or damage. 

In order to ensure that the chip operates efficiently and reliably while reducing energy 

consumption, it is very necessary to maintain reasonable temperature control. The multi-
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objective optimization is performed subject to certain restrictions. As shown in Figure. 8, 

the flowchart of the developed NSGA-Ⅱ is implemented using Python. For the designed 

HPFMCHS, 28 design variables mentioned in subsection 2.7 are considered during the 

optimization process. The multi-objective GA used in this work consists of the following 

7 steps.  

⚫ Initialization: The arrangement algorithm depicted in Figure. 7 is used to generate 

the microchannels embedded with rectangular channels of different sizes and 

randomly distributed non-overlapping pin-fin array. According to the defined 

population size 𝑁, an equal number of the structural parameters set is used as the 

initial population of the iterative GA. Then, simulating the base pairs in biological 

genes, the corresponding value of the variables is binary-encoded.  

⚫ Fitness evaluation: In each iteration, three objective values are obtained to evaluate 

the quality of individuals. It is worth noting that the focused performance indexes are 

extracted from the trained HNN rather than conventional CFD simulations.  

⚫ Non-dominated sorting: The introduced crowding distance is computed based on the 

fitness values of all individuals, enabling the individuals in the population non-

dominated sorted quickly. This avoids relying solely on a single indicator for ranking, 

thereby promoting performance balance and diversity design of HPFMCHS.  

⚫ Selection: Based on the arranged crowding distance, the tournament strategy, among 

two randomly selected members, is implemented to filter the advantageous one who 

is permitted to enter the evolution operation.  

⚫ Evolution: As the core of NSGA-Ⅱ, this step allows the offspring to inherit partial 

genes from the arranged parent individuals through the operators of crossover and 

mutation. Wherein, the crossover between two individuals means that two gene 

segments between two randomly generated crossover points swap with each other. 

The mutation appears as the exploration of unknown areas in solution space, which 

is achieved by randomly changing at one or more certain gene loci. Then, the fitness 

value of each individual in the population is calculated again.  

⚫ Convergence: The process except the initialization step iterates until the termination 

condition of maximum iteration is met. Finally, the optimal Pareto front solution 

comprising non-dominated individuals is obtained. Note that the individuals in the 

Pareto front must possess two characteristics according to the non-dominated rule. 
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On one hand, three indicators 𝑇1, 𝑇2 and ∆𝑝 are all improved compared with those 

of the initial design. On the other hand, at least one indicator is superior to all the 

remaining individuals for any given individual, but the case where three indexes are 

superior is forbidden in the non-dominated sorting. 
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Figure. 8. Flowchart of the NSGA-II. 

4 Results 

Based on the aforementioned approaches and specific settings for the design of 

HPFMCHS, the relevant results are presented and discussed in this section. Firstly, the 

effects of five categories of parameters classified from the mentioned 28 variables, 

including the width of the microchannel, the radius, height and distance of the pin-fin 

array at different positions on the thermal and hydraulic performance, are analyzed based 

on the initial hybrid structure. When one parameter is changed, the other parameters 

remain unchanged. Besides, the regression accuracy of the trained HNN is examined and 

compared with that of the conventional NN. At last, the developed NSGA-Ⅱ provides the 

Pareto front solution where the optimal HPFMCHS with trade-off thermal and hydraulic 

performance is identified.  

4.1 Comparison of different design paraments 

4.1.1 Lateral spacing between pin-fins 

Based on the initial HPFMCHS shown in Figure. 1, the effect of the spacing perpendicular 

to the direction of flow on the temperature distribution and pressure drop is shown in 

Figures. 9(a)-(b). It is evident that the heat accumulation occurs in the pin-fin spacing 
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area when the pin-fin spacing decreases, but the overall accumulation phenomenon of the 

heatsink is lower than that in the case of large spacing. Observed from the temperature 

distribution diagram, the temperature of the coolant is lower after it flows out of the pin-

fin array area when the spacing is 0.17 mm because the full heat exchange mainly occurs 

at the large interface between the fluid and the microchannel wall. In contrast, the 

temperature is high when the interval is 0.23 mm, indicating that the heat exchange is not 

sufficient. The phenomenon observed in the temperature profile can also be reflected in 

the velocity streamlines in Fig 9(c). It is found that the streamlines passing through the 

middle of the pin-fin array are denser when the spacing is 0.23 mm, which means that the 

pin-fin array has a weaker influence on the fluid diversion, thereby resulting in the 

concentrated flow through the middle of the pin-fin array. In contrast, when the spacing 

is 0.17 mm, the fluid is diverted in all directions due to the diversion effect of the pin-

shaped fins, and the corresponding streamline distribution is more uniform. There is 

uniform heat exchange between the fluid and the microchannel wall when the fluid is 

evenly diverted and considerable heat is absorbed from the surface of the microchannel 

rather than the pin-fin. In terms of the pressure drop in Fig 9(b), it can be seen from the 

pressure distribution that there is a large pressure difference at the outlet of the pin-fin 

array when the lateral distance is 0.23 mm. This contributes to the large velocity 

difference formed between the middle of the pin-fin and the outlets caused by the large 

lateral distance. However, although the lateral interval is set as a small value of 0.17 mm, 

the above phenomenon of pressure drop is still observed. From the velocity cloud map, it 

is found that the fluid is blocked by the pin-fin with the decreased lateral interval, resulting 

in an increase of fluidic resistance from the inlet to the outlet. Besides, the pressure cloud 

map shows that the pressure drop in the pin-fin array gradually increases but still causes 

a relatively large pressure drop. Therefore, it is critical to find a balance point for the 

lateral distance between pin-fins that affects the thermal and hydraulic performance.  
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(a)                                                                (b) 

x = 0.17

x = 0.20

x = 0.23

 

(c) 

Figure. 9. Field distributions of (a) temperature, (b) pressure, and (c) velocity when 𝑹𝒆 

= 200 for different lateral spacing of pin-fins. 

Figures. 10(a) and 10(b) present the maximum temperatures along with the steady-state 

pressure drop of the channel of HPHS and LPHS when lateral spacings rang from 0.17 

mm to 0.23 mm. It is observed that at spacings of 0.17 mm and 0.20 mm, the maximum 

temperatures of HPHS and LPHS exhibit local minimum, while a spacing of 0.18 mm 

offers a local optimal solution for the overall pressure drop. Specifically, when the 

spacing is 0.17 mm, heat accumulation occurs in the temperature of the pin-fin array area, 

and the microfluid mainly exchanges heat with the channel wall in the array area. When 

the spacing is 0.20 mm, the heat accumulation in the pin-fin array area is reduced, and 

the fluid mainly exchanges heat with the pin-fin array area and the channel wall area. 

When the spacing is 0.23 mm, the temperature in the heat source area rises again. 

Combined with the velocity streamlines, when the spacing is 0.17 mm, the diversion 

effect of the pin-fin forces most of the fluid to flow through the channel wall and heat 

exchange occurs. When the spacing is 0.20 mm, the arrangement density of the pin-fin 

array decreases, and the shunting effect of the pin fins makes the fluid evenly distributed 

between the array and the channel wall, thereby increasing the heat exchange area 

between the fluid and the pin fins. However, due to the shunting of the pin fins, the bright 

blue area in the figure increases, indicating that the overall flow rate of the fluid is 

accelerated, making it impossible for the fluid to fully exchange heat with the channel 

wall and the pin fins, so the temperature is almost the same as the case of 0.17 mm spacing. 

When the spacing is 0.23 mm, the streamlines passing through the middle of the pin-fin 

array are denser, the guiding effect of the pin fins is weaker, the fluid flows quickly 

through the middle of the pin-fin array, and the fluid flowing through the microchannel 

wall is reduced, resulting in a decrease in the heat exchange area and an increase in the 
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hot spot temperature. Therefore, local minima will be generated at 0.17 mm and 0.20 mm. 

In conclusion, the lateral spacing of the pin-fin is a dominant parameter for the focused 

performance. The observed local trend of the chip temperature-lateral spacing distance 

curve motivates us to find the global optimal solution when the parametric range is 

expanded.  
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(a)                                                                 (b) 

Figure. 10. Effects of lateral spacing of pin-fins on (a) peak temperature of chips and (b) the 

pressure drop. 

4.1.2 Longitudinal spacing between pin-fins 

The temperature profile and pressure drop versus the longitudinal spacing of pin-fins are 

shown in Figure. 11(a) and 11(b). In Figure. 11(a), it can be seen that when the pin-fin 

longitudinal spacing decreases, heat accumulation occurs in the pin-fin spacing area. 

When the pin-fin spacing is 0.2 mm, the temperature of the chip and the heat sink reaches 

the lowest. Combined with the velocity streamlines in Figure. 11(c), compared with the 

case where the lateral spacing is 0.2 mm, the streamlines flow through the pin-fin array 

is delayed and the fluid is not divided until it contacts the pin-fin when the spacing is 0.17 

mm. Therefore, the distance that most of the fluid flows through the pin-fin array is 

shortened, which alleviates the contact distance and the heat exchange between the fluid 

and the microchannel wall. When the spacing is increased to 0.23 mm, the microfluid is 

separated in advance before flowing into the pin-fin array. However, it can be seen from 

the velocity cloud map that the microfluid speed at this time is faster than that of 0.2 mm-

distance pin-fin, which results in the inadequate heat exchange between the coolant and 

the pin-fin array. Thus, the cooling efficiency is significantly suppressed. As for the 
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pressure drop given in Figure. 11(b), there is a large pressure difference at the outlet of 

the pin-fin array when the lateral distance is 0.2 mm. This is attributed to the formed large 

speed difference between the middle outlets and both sides of the pin-fin. When the 

longitudinal spacing decreases to 0.17 mm, the reduced density of the pin-fin array leaves 

more room for the fluid flowing through the pin-fin array observed from the velocity 

cloud diagram.  

The focused maximum temperature of two heat sources and corresponding pressure drop 

is shown in Figure. 12 where six groups of different longitudinal spacing are studied. It 

is evident that the temperatures are decreased sharply by 2.54 K and 18.08 K for HPHS 

and LPHS when the longitudinal spacing increases from 0.19 mm to 0.20 mm. This 

indicates the temperature curve exhibits a local minimum only at 0.20 mm. Regarding the 

pressure drop, a local minimum occurs at the longitudinal spacing of 0.17 mm. However, 

the maximum variation in pressure drop is 27 Pa when the longitudinal spacing is set 

between 0.18 mm and 0.23 mm, which implies the parametric steady state has been 

reached. In summary, the inconsistent impact of the longitudinal spacing on temperature 

and pressure drop implies that there will also exist corresponding global optima within a 

larger range of variables.  
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(c) 

Figure. 11. Field distributions of (a) temperature, (b) pressure and (c) velocity when 𝑹𝒆 

= 200 for different pin-fin longitudinal spacing. 
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      (a)                                                            (b) 

Figure. 12. Effects of longitudinal spacing on (a) peak temperature of chips and (b) 

pressure drop. 

4.1.3 Radius of the pin-fin 

The temperature profile and pressure drop influenced by the radius of key turbulators, i.e., 

pin-fin array, is exhibited in Figures. 13(a) and 13(b). The temperature map gets more 

uniform as the pin-fin radius increases simultaneously while minimizing the temperature 

of the region of heat sources. This can be explained by the velocity streamline distribution 

in Figure. 13(c). When the radius gradually gets larger, the original concentration of liquid 

within the array is partially transferred to both sides around the microchannel wall, 

resulting in the involvement of more regions in heat exchange brought by a more uniform 

distribution of the liquid. Therefore, the cooling efficiency is enhanced. Besides, the 

enhancement of the convective area between the liquid and pin-fin surface resulting from 

the increase of radius is considered as another important factor contributing to the 

improvement of heat dissipation efficiency. For the pressure drop, it is conceivable that 

an increase in radius leads to an enhanced obstruction capability of the pin-fin array to 

fluid flow. On one hand, it increases the pressure drop within the channels, and on the 

other hand, it accelerates the liquid velocity due to the squeezing effect. 
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(c) 

Figure. 13. Field distributions of (a) temperature, (b) pressure and (c) velocity when 

𝑹𝒆 = 200 for different pin-fin radius. 
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         (a)                                                           (b) 

Figure. 14. Effect of pin-fin radius on temperature (a) and (b) pressure drop. 

Figures. 14(a) and 14(b) present the quantitative evaluation of maximum temperatures as 

well as overall pressure drop in the microchannel. The temperature curve nearly 

monotonically decreases as the radius increases. Specifically, the temperature changes for 

HPHS and LPHS are calculated as 31.07 K and 44.32 K, respectively, between radii of 

0.03 mm and 0.05 mm. Compared with 13.68 K and 9.34 K between 0.06 mm and 0.09 

mm, the decreasing temperature variation indicates that the cooling capacity is no longer 

further promoted although the radius consistently increases. The curve in Figure. 14(b) 

shows the monotonical correlation between the pressure drop and the radius, and the 

increase rate becomes more pronounced when the radius exceeds 0.06 mm. This can be 

supported by that the increase rate is calculated 4.2 times in this range greater than that 

from 0.03 mm to 0.06 mm. Therefore, as the radius continues to increase, the resultant 
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inconsistent effects necessitate careful consideration in the balanced design of cooling 

performance and pressure drop.  
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(c) 

Figure. 15. Field distributions of (a) temperature, (b) pressure and (c) velocity when 𝑹𝒆 = 200 

for different pin-fin height. 

4.1.4 Height of the pin-fin  

Figures. 15(a) and 15(b) present the distributions of maximum temperatures and pressure 

drop with different levels of pin-fin height. From the temperature distribution in Figure. 

15(a), it is evident that the temperatures in the region of the heat sources decrease 

gradually with increasing pin-fin height, but pressure drops are found to increase as the 

height increases in Figure. 15(b). Both phenomena can be illustrated as follows. When 

the height is lower, there is an unobstructed cavity above the pin-fin array and more 

coolant can flow through the space. Due to the significant distance between the hot spot 

region and the concentrating flowing space, the efficiency of direct heat exchange is 

reduced. As the pin-fin height increases, the space is squeezed, while forcing the coolant 

to flow through the pin-fin array and improving heat exchange. Therefore, the cooling 

capacity exhibits a highly consistent variation trend with that of the pin-fin height. In 

contrast, the pressure drop exhibits an opposite trend due to the increased occupation 

brought by the larger volume of pin-fin array, thereby enhancing its resistance to liquid 
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flow and consequently leading to a greater pressure drop. Besides, the velocity streamline 

distribution in Figure. 15(c) provides support for this explanation. As the height increases, 

the denser streamline between pin-fin arrays indicates a greater volume of liquid passing 

through, which is consistent with the above discussion. Simulations are conducted on 

seven sets concerning the maximum temperature and pressure drop with respect to pin-

fin height. The monotonic trends are more pronounced in Figure. 16, affirming the 

explanation provided above once again.  
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(a)                                                          (b) 

Figure. 16. Effect of pin-fin height on temperature (a) and (b) pressure drop. 
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(c) 

Figure. 17. Field distributions of (a) temperature, (b) pressure and (c) velocity at when 

𝑹𝒆 = 200 for different channel width. 

4.1.5 Width of the microchannel  

The temperature and pressure drop distributions with respect to the width of the 

microchannel are shown in Figures. 17(a) and 17(b) where the inlet boundary conditions 

are maintained at the same mass flow rate. The overall temperature distribution shows an 

increasing trend with increasing width. Combining this with the velocity distribution 

shown in Figure. 17(c), liquid concentrates in the middle of the array at the inlet where 

high liquid velocity promptly carries the heat out of the channel due to the narrowness, 

replenishing it with cooler coolant when the width is 0.1 mm. When the channel width is 

0.4 mm, the liquid velocity slows down and disperses into multiple areas, which hinders 

the timely removal of heat-absorbing liquid, thereby causing a temperature increase. 

However, when the channel width is 0.25 mm, a better balance is maintained between 

liquid velocity and distribution, resulting in sustained heat dissipation capabilities 

compared to narrower channel widths. The trend in pressure drop shown in Figure. 17(b) 

is relatively straightforward. As the channel width increases, the proportion of space 

occupied by the liquid distribution increases, leading to a smaller pressure drop. The 

phenomenon described above is more pronounced in the quantitative analysis depicted in 

Figure. 18. The peak temperatures of HPHS and LPHS exhibit an overall increasing trend 

with microchannel width. However, notably, a local minimum in maximum temperature 

occurs at 0.25 mm. This underscores the importance of intricate structural design, where 

certain specific dimensions can yield unexpected outcomes. The trend of pressure drop, 

as shown in Figure. 18(b), displays a strict monotonic relationship with channel width 

variation. Naturally, within this range, a local minimum in pressure drop occurs at the 

maximum channel width value.  
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     (a)                                                             (b) 

Figure. 18. Effect of channel width on temperature (a) and (b) pressure drop. 

4.2 Hybrid NN Method 

The deep learning model aims to learn patterns from training data that exhibit strong 

generalization capabilities, thereby improving its prediction or classification accuracy on 

unseen data. Generalization ability serves as an evaluation metric of the model's 

performance when handling unseen samples. Specifically, it reflects the extent to which 

the patterns learned from training data remain effective when applied to testing data or 

real-world applications. A model with good generalization ability is not only adept at 

handling training data but also adaptable to varying data distributions. In this study, the 

dataset is divided into a training set and a test set. First, 5000 design samples were 

generated within a specific parameter range, with duplicate samples removed to ensure 

the uniqueness of each set of parameters. Next, 1500 training samples and 100 test 

samples were obtained using Latin hypercube sampling. This approach not only ensures 

the independence of the training and test set samples, allowing for an effective evaluation 

of the model's generalization performance, but also guarantees a uniform and 

comprehensive distribution of the data. 

In this subsection, the established HNN method is trained based on the generated 1500 

groups of labelled datasets. During the training of the neural network, early stopping was 

employed. Training was halted when the model's performance on the validation set began 

to decline, preventing overfitting induced by continued training. The predictive accuracy 

calculated with 100 sets of non-repetitive test datasets is depicted in Figure. 19, which 

showcases the discrepancy between the actual and predicted data for the maximum 
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temperature of the heat sources and the pressure drop across the microchannel. The 

quantitative indexes of the performance evaluation are presented as follows: the 

prediction error range is −0.81% ~ 0.55% for the maximum temperature of HPHS, −0.82% 

~ 0.62% for the maximum temperature of LPHS, and −5.67% ~ 1.6% for pressure drop. 

To validate the advantages of HNN aforementioned, two conventional supervised 

learning models, namely DNN [102] and CNN [104], are constructed. To ensure a fair 

comparison, the evaluation criterion that compares the comprehensive predictive error 

trained on the same number of labeled datasets is applied and corresponding indicators 

are listed in Table 2. It can be seen that HNN behaves better by {93.4%, 89.5%, 87.8%} 

and {91.7%, 93.0%, 91.9%} in terms of RMSE, MAE, and RE, compared with DNN and 

CNN. The relatively good prediction accuracy shows that HNN has significantly 

improved both accuracy and generalization ability. 

Table 2: Comparison of predictive accuracy of the conventional CNN, DNN and the 

developed HNN 

 RMSE MAE RE 

DNN 10.15 3.53 0.02 

CNN 8.06 5.28 0.03 

HNN 0.67 0.37 0.0024 
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Figure. 19. Predictive error of HNN between predicted and actual values of (a) the 

maximal temperature of the HPHS, (b) the maximal temperature of LPHS and (c) the 

pressure drop in the microchannel. 

4.3 Optimization with NSGA-Ⅱ 

In order to balance the hydraulic and thermal characteristics of HPFMCHS, NSGA-Ⅱ is 

implemented to support the optimization work. In this study, due to the varying 

dimensions of the four rectangular channels in the heat sink, it is difficult to determine 

the hydraulic diameter, which complicates the calculation of Nu and f. Therefore, 

temperature and pressure drop are used as more direct and practical metrics. The 

identified 28 variables are treated as the input. The values of them, iteratively determined 

by the underlying rule of GA, are evaluated by the predictive performance indexes that 

HNN outputs. Based on the pre-optimization results, the population size and the number 

of the maximum iterations are designated as 100 and 170, respectively. The intermediate 

results of the Pareto front during the optimization are shown in Figure. 20. In the first 

generation, the distribution of the randomly generated population is relatively chaotic and 

the excellent individuals are mainly distributed at the moderate maximum level of the 

temperatures and pressure drop. After 5 generations of iteration, the target parameters of 

the population are found to converge to the lower left corner of the coordinate, which 

means that 𝑇1, 𝑇2, and ∆𝑝 gets smaller. By 15th generation, the feature of Pareto front 

curve is showcased, even if the distribution position is still not concentrated until 50th 

generation is reached. At this time, the target parameters are distributed more evenly, 

which is caused by the continuous enhancement of the crowding distance. The algorithm 

converges at 170th iteration where a curve of Pareto front is formed.  
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(a)                                                               (b) 

  

(c)                                                              (d) 

 

(e) 

Figure. 20. Variations in temperature and pressure drop of (a) the first generation, (b) 

the fifth generation, (c) the fifteenth generation, (d) the one hundred-generation and (e) 

optimal decision point of Pareto front in the final generation population. 

The Pareto front consists of multiple points, each sharing the common feature that none 

of their possessed performance parameters surpasses all those of any other point. This 

implies that an absolute optimal solution not exist in the provided Pareto front. Therefore, 

users are allowed to choose appropriate solution based on their design requirements. In 

this work, the optimization of a single performance aspect is not aggressively pursued, 
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but rather a well-balanced design solution that combines thermal performance and 

hydraulic performance is favored. To this end, a LINMAP-based method that searches 

the minimum Euclidean distance between the Pareto front and the ideal solution is 

selected to search for the final solution. According to the points C1 and C2 possessing the 

optimal value of single performance, the ideal solution denoted by the point A is 

determined, as shown in Figure. 20(e). However, it is not feasible to achieve three 

extremely optimal indicators marked as point A in the same structure. The received 

solution, obtained through the normalization ranking, is labeled as point B whose values 

are 336.02 K, 308.28 K, and 1.78 kPa, respectively. Additionally, considering that the 

structure is optimized based on the predictive performance parameters provided by HNN, 

CFD simulation is conducted to validate the optimization accuracy of the predictive 

model. The corresponding performance parameters are listed in Table 3, which indicates 

a high level of agreement between the HNN-based predictive parameters and the CFD 

simulated results. This further demonstrates the accuracy and effectiveness of the 

proposed HNN in accelerating the design process. Furthermore, a performance 

comparison is performed between the optimized structure and the initial one. The 

performance improvements of 4.27%, 7.68%, and 51.22%, brought by the NSGA 

algorithm are observed in terms of the peak temperatures of the HPHS and LPHS and the 

pressure drop, respectively. 

Table 3. Comparison of temperature and pressure drop results between the initial and 

optimal HPFMCHS. 

Value 

Method 

Maximal temperature 

of HPHS (K) 

Maximal 

temperature of 

LPHS (K) 

Pressure drop 

(kPa) 

Original Model 355.88 345.47 3.28 

CFD-NSGA-II-

Optimal 
334.27(4.27% ↑) 310.94(7.68% ↑) 1.74(51.22% ↑) 

HNN-NSGA-II-

Optimal 
336.02 (5.58% ↑) 308.28 (10.76% ↑) 1.78 (45.73% ↑) 

The variables of the optimized structure are presented in Table 4, and the corresponding 

physical structure is shown in Figure. 21. It is evident that the pin-fin group beneath the 
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high-power heat source, adjacent to the channel inlet, has a larger radius. This 

configuration is beneficial for increasing the convective surface area to enhance the 

cooling of high-power heat source. Conversely, in the low-power heat source region, the 

unnecessary pin-fin radius is reduced to prevent excessive pressure drop. This in turn 

highlights the effectiveness of the selected design parameters.  

HPHS

Flow 

direction

LPHS

 

Figure. 21. Optimal structure of HPFMCHS. 

Table 4. Optimal HPFMCH structure parameters 

Parameter group Value (mm) 

r(pin radius) (0.07,0.03) 

h(pin height) (0.50,0.49) 

𝑑𝑥𝑖 (Lateral spacing change) (-0.02,0.04,0.01,-0.01,0.01,-0.04,-

0.02,0.01,0.04,0.03) 

𝑑𝑦𝑗 (Longitudinal spacing change) (-0.01,-0.02,-0.03,0.04,-0.04,-0.04,-0.01,-

0.05,-0.04,-0.03) 

𝑊𝑐ℎ (Channel width) (0.36,0.30,0.36,0.34) 

5 Conclusion 

In this work, a fast and intelligent design method combining a HNN and multi-objective 

NSGA was proposed to optimize the hybrid pin-fin heatsink. The impacts of multiple 

involved complex parameters on both thermal and hydraulic pressure drop performance 

were investigated. The contributory parameters were identified and arranged for the 

optimization work. A HNN approach, employed as a semi-supervised learning method, 
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was developed. Benefiting from the fast predictive capability inherent in NNs, the 

evaluation process of structural parameters traditionally conducted through CFD 

simulations was accelerated with a prediction accuracy of at least 94.33%. The predictive 

accuracy of this approach was compared with those of traditional supervised learning 

methods, such as DNN and CNN models. Under the same number of training datasets, an 

improvement of 93.4%, 89.5%, 87.8% and 91.7%, 93.0%, 91.9% was realized in terms 

of RMSE, MAE, and RE. Subsequently, NSGA-Ⅱ was employed to optimize the critical 

parameters of the heatsink based on the performance indicators evaluated using the 

trained HNN. After optimization, the optimal values for the pin-fin's radius, height, lateral 

spacing, longitudinal spacing, and microchannel width were determined to be (0.07, 0.03), 

(0.50, 0.49), (-0.02, 0.04, 0.01, -0.01, 0.01, -0.04, -0.02, 0.01, 0.04, 0.03), (-0.01, -0.02, -

0.03, 0.04, -0.04, -0.04, -0.01, -0.05, -0.04, -0.03), and (0.36, 0.30, 0.36, 0.34), 

respectively.  

The final iteratively optimized structure was validated through CFD simulations, 

revealing a maximal temperature of 334.27K for HPHS, 310.94K for LPHS, and an 

overall heat sink pressure drop of 1.74kPa. Compared to the initial structure, the 

maximum temperatures of the HPHS and LPHS and pressure drop in the microchannel 

were improved by 5.58%, 10.76% and 45.73%. The successful application of HNN in the 

field of complex heat sink design, on the one hand, provides a reference for using NNs to 

replace repeated and complex CFD simulations in the heat sink optimization process. On 

the other hand, it solves the problem that using a single NN requires a large data set, while 

using CFD to obtain the data set is time-consuming. And with the continuous 

development of 3D-ICs and chiplet technology, multi-chip integration has made thermal 

management more challenging. The hybrid heat sink structure can cope with the situation 

of non-uniformly distributed heat sources, providing good thermal efficiency while 

improving the unevenness of heat distribution, which provides important guidance for the 

academic and engineering development in the field of integrated circuits. 
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