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ABSTRACT  

This study generates and analyzes time series based on the Normalized Difference 

Vegetation Index (NDVI) to predict vegetation dynamics in the Troodos Mountains. 

Renowned for its ecological diversity, the Troodos Mountains represent a typical 

Mediterranean mountain region. However, significant vegetation changes due to climate 

change and human activities highlight the necessity of understanding and forecasting 

ecological shifts. 

Using multi-year NDVI data, the study examines temporal changes in vegetation cover, 

focusing on seasonal fluctuations and long-term trends. Advanced statistical and machine 

learning methods, including time series forecasting and regression models, are employed 

to predict future vegetation changes. 

This research provides critical insights for ecological management, conservation, and 

sustainable land-use planning, addressing the challenges posed by climate change and 

environmental pressures. 

Keywords: NDVI;Time Series Analysis; Remote Sensing; Machine Learning; Google 

Earth Engine  
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1 Introduction 

The dual influence of global climate change and human activities has significantly 

exacerbated the vulnerability of the ecological environment, especially in mountain 

ecosystems. As a key repository of global biodiversity, mountain ecosystems play an 

irreplaceable role in climate regulation, maintenance of hydrological cycle, and formation 

of carbon sinks. As the core component of mountain ecosystems, vegetation is not only 

an important carrier of the carbon cycle but also the cornerstone for maintaining 

ecological service functions. Therefore, monitoring the changes of mountain vegetation 

has significant ecological value and economic significance.[1].  

In recent years, global climate change and the increase in human activities have triggered 

profound changes in mountain vegetation, leading to a decline in ecosystem stability and 

the deterioration of its service functions. This evolution process is mainly driven by 

factors such as rising temperatures and alterations in precipitation patterns. It not only 

endangers the ecological sustainability of mountainous regions but also weakens their 

environmental regulatory functions on a larger scale.[2]. 

The Troodos Mountains, located in the eastern part of the Mediterranean Sea in Cyprus, 

constitute a typical mountain ecosystem with complex climatic conditions, diverse 

topography and rich vegetation types. This unique combination makes this region an ideal 

place for studying the dynamic changes of mountain vegetation. However, this ecosystem 

is currently facing increasing pressures from climate warming, changes in precipitation 

patterns, agricultural expansion and urbanization brought about by human activities. 

Addressing these challenges requires a deep understanding of how these factors interact 

with each other and how they affect mountain vegetation and ecosystem services. 

Changes in vegetation cover, particularly issues like drought, forest degradation, and soil 

erosion, have critically undermined the ecological security of the Troodos Mountains.[3]. 

Accurate monitoring of the changing trend of vegetation coverage and identification of 

its driving factors are of vital importance for formulating effective strategies for 

ecological protection and sustainable development. 

Normalized Difference Vegetation Index (NDVI) is a widely recognized remote sensing 

tool that quantifies the reflection of red light and near-infrared light to provide an effective 

means for monitoring vegetation dynamics and is used to assess the growth status and 
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coverage of vegetation. Despite its wide application, the complex terrain and climatic 

conditions of the Troodos Mountains pose significant challenges to the application of 

NDVI data.[4, 5]. Vegetation distribution and growth in this region are shaped by diverse 

factors, including temperature, precipitation, and topography, resulting in spatial 

variability and temporal dynamics in NDVI patterns. 

To address these challenges, advanced methods are needed to enhance NDVI data 

analysis. Integrating innovative technologies, such as deep learning, provides a way to 

achieve higher accuracy in vegetation trend research, thereby facilitating the 

understanding of mountain ecosystem changes and supporting targeted conservation 

efforts. 

		𝑵𝑫𝑽𝑰 = 𝑵𝑰𝑹$𝑹𝒆𝒅
𝑵𝑰𝑹'𝑹𝒆𝒅

                               (1.1)  

 

Figure 1: Vegetation growth reflected by NDVI 

This study utilized NDVI data derived from remote sensing images, combined with 

advanced deep learning techniques, to systematically investigate the spatial-temporal 

characteristics and influencing factors of vegetation coverage in the Troodos Mountains. 

Moreover, the study aimed to predict the future trends of vegetation dynamics under 

different environmental and human activities conditions.  

By constructing a powerful and integrated model that integrates climate variables, human 

activity indicators and topographic features, this study aims to reveal the patterns and 
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mechanisms of vegetation coverage changes. Specifically, the research will focus on 

analyzing the vegetation coverage situation over the past few decades, identifying 

temporal and spatial trends and variation magnitudes, determining the key periods and 

regions of significant changes, and predicting potential scenarios of future vegetation 

dynamics. 

The core objective of this study is to enhance the accuracy of vegetation change prediction 

using NDVI data through deep learning techniques. The key research questions are: 

1、 How can effective data preprocessing be conducted to manage high-dimensional, 

noisy, and incomplete data, ensuring robust time series? 

2、 How can a deep learning model be designed to accommodate the unique seasonal 

variations in the Troodos Mountains for accurate predictions? 

3、 Based on NDVI data analysis results, what strategies can be proposed for vegetation 

conservation and ecological restoration in the Troodos Mountains? 

To address these questions, this research will pursue the following specific objectives: 

1、 Data Preprocessing: Develop and optimize NDVI data preprocessing techniques, 

including noise removal, anomaly detection, and data imputation, to enhance input 

data quality[6]. Techniques such as LOF (Local Outlier Factor) and 3-sigma will be 

explored to reconstruct time series while avoiding over-smoothing. 

2、 Deep Learning Modeling: Design deep learning models that are adapted to the 

vegetation distribution characteristics of the Troodos Mountains. These models will 

extract vegetation change patterns from NDVI data to achieve high-precision 

predictions. Traditional statistical methods (such as linear regression) often fail to 

effectively handle high-dimensional, nonlinear, noisy and incomplete remote sensing 

data [4]. Moreover, conventional models may overlook valuable parameters and 

texture features from RGB images [5]. Compared with traditional models (such as 

XGBoost), this study will attempt to use advanced models, such as TimeGPT, for 

training and result comparison. The key to predicting vegetation coverage series over 

long time periods lies in how to fully utilize the rich seasonal patterns and sequential 

relationships through time series to complete the classification task. Wang Haoyu 

and Zhao Xiang et al. effectively capture temporal correlations using recurrent neural 

networks (RNNs), especially long short-term memory networks (LSTMs) [7]. 
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3、 Data Acquisition and Processing: The NDVI time series data will be obtained 

through the Google Earth Engine platform using the Landsat dataset, and 100 random 

points will be selected within the specified Troodos Mountain area for analysis. Data 

preprocessing will include spatial-temporal registration, outlier removal (for 

example, using the LOF method), and multimodal data fusion. 

This research mainly takes the time series prediction of NDVI as the starting point, 

introduces the specific research area and acquires data after introducing and reviewing 

the literature. The research methods include data preprocessing (removing outliers and 

repairing missing values), as well as time prediction models based on deep learning. 

Subsequently, the results are analyzed and discussed, and the reliability and accuracy of 

the model are evaluated through specific indicators. Finally, in the conclusion, we 

summarize and look forward to the future development trends. 
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2  Backround 

In recent years, China has made significant progress in NDVI-related research, covering 

a wide range of applications, including vegetation dynamics monitoring, ecosystem 

health assessment, and climate change response. The following are key directions and 

case studies: 

• Deepening the Application of Remote Sensing Data: 

Chinese scholars have utilized data from Landsat, MODIS, and domestically 

produced high-resolution satellites (GF-1, ZY-3) to monitor vegetation cover changes 

over long time spans. For instance, MODIS NDVI data were used to study the spatial-

temporal evolution of vegetation cover on the Tibetan Plateau, revealing the sensitivity 

of different climatic zones to temperature and precipitation. Liu Qionghuan used the 

DBEST method to detect the characteristics of four different vegetation change trends[7]. 

The RF method was then applied to identify the driving factors for vegetation changes in 

each direction based on climate change, water source replenishment (i.e., proximity to 

rivers, lakes, glaciers), human interference, and climate features[8].  

Yang Yuanhe and Park Shilong analyzed NDVI data for grassland vegetation on the 

Tibetan Plateau using data from the Global Inventory Monitoring and Modeling Studies 

(GIMMS) research group, ultimately drawing conclusions on the rate of change and 

identifying seasonal NDVI trends across different grassland types on the Plateau [9]. 

 

Figure 2: NDVI changing magnitude and changing ratio in different seasons during 1982-

1999 
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• Introduction of New Algorithms: 

The widespread application of deep learning algorithms has significantly improved 

the precision of NDVI analysis. For example, Zhang Peng et al. (2022) used convolutional 

neural networks (CNN) to classify NDVI data from degraded grassland areas, achieving 

an accuracy rate of over 95%, providing technical support for grassland management[10]. 

However, it is necessary to analyze the specific context, as more complex crop models do 

not necessarily yield more accurate yield estimates than simpler regression models. 

International Research Status: 

Over the past two decades, multispectral remote sensing data has become the primary 

data source for agricultural analysis[11]. International research has focused on multi-

source data fusion, complex system modeling, and the prediction of global ecological 

changes: 

• Breakthroughs in Multi-Source Data Fusion: 

International scholars have combined LiDAR data, hyperspectral imaging, and 

meteorological observations to enhance the spatial-temporal resolution of NDVI 

calculations. For example, Feng et al. (2020) studied urban vegetation changes and 

validated model predictions using drone-based remote sensing data, demonstrating high 

prediction accuracy. 

• Advances and Innovations in Image Data and Time Series Processing: 

Before conducting precise analysis and prediction of all data, it is essential to filter 

and reconstruct the relevant datasets. On the existing foundation, it becomes necessary to 

remove outliers and supplement the gaps with valid data. Medium spatial-resolution 

NDVI time series data with long temporal coverage are particularly significant in this 

context, and Landsat, which provides publicly available data at a 30-meter resolution, has 

greatly facilitated research efforts [12].  

However, the benefits come with limitations. The 16-day revisit cycle of the Earth 

Resources Satellites, cloud contamination, and sensor imaging issues in Landsat 7 can 

severely impact results[13]. 

To address these challenges, the reconstruction methods mentioned earlier have 

shown their effectiveness. For instance, Cao et al. applied a newly developed ARRC 
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algorithm to process reference images, achieving significant removal of thick cloud 

contamination[14]. Multi-scale data fusion between high spatial and high temporal 

resolution imagery offers a promising solution for reconstructing image sequences, filling 

gaps caused by cloud contamination, and predicting missing data [15].  

Cuizhen Wang successfully employed a hybrid approach, integrating data from 

Landsat, AVHRR GIMMS, and climate reanalysis datasets at different spatial scales to 

reconstruct NDVI data [16]. However, challenges persist in integrating spatial, temporal, 

long-term series, and multi-sensor information, which limit the feasibility of precision 

analysis and prediction. 

On the other hand, Haitao Lv addressed the issue using gap-filling or spatial-similar 

pixel-filling methods, but the results were far inferior to fitting-based methods[17]. 

Consequently, Peng Qin, Huabing Huang, and others proposed ReCoff, a deep learning 

spatiotemporal fusion method with residual constraints, which achieved remarkable 

success in addressing NDVI time series gaps[18]. This demonstrates that modern time 

series reconstruction is increasingly intertwined with deep learning techniques. 

• Optimization of Time Series Analysis Models: 

Deep learning models, such as LSTM and Transformer, have been widely used for 

NDVI time series prediction. Saygin Abdikan collected in-situ crop height measurements 

during the data collection period and used regression methods such as SLR, MLR, ANN, 

XGBoost, and CNN for crop height estimation [11]. 

Harmonic Analysis of Time Series (HANTS) is a sequence reconstruction method 

based on harmonic analysis, one of the oldest methods for handling satellite observation 

time series affected by atmospheric conditions or snow contamination [11]. 

• Global Research and Regional Characteristics: 

Kingsley Kanjin and Bhuiyan Monwar Alam used supervised classification of 

Landsat images to examine land cover changes in the Sundarbans mangrove forest from 

1973 to 2023 [19]. Remus Prăvălie studied forest land in Romania from 1987 to 2018, 

based on NDVI, to analyze forest vegetation ecological dynamics and their relationship 

with climate change [20], uncovering the connection between forest vegetation and 

climate. 
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 Research Development Trends in Domestic and International Contexts: 

The future development of NDVI-related research is expected to focus on the 

following aspects: 

1. Multi-Scale Spatial-Temporal Fusion Analysis: 

Both domestic and international scholars are increasingly attempting to integrate 

satellite data with ground-based observation data to improve the explanatory power of 

vegetation dynamics. For example, the application of China’s high-resolution satellite 

data provides new opportunities for refining regional vegetation studies, while multi-

satellite joint monitoring technologies have become mainstream internationally[21].  

Marianna Belgiu employed more sophisticated deep learning methods to process 

data[22] and highlighted the need for further research to account for temporal changes 

occurring during the observation period when predicting spectral reflectance values at 

fine spatial and temporal scales, such as using deep learning approaches[23]. 

Additionally, the introduction of new models and data fusion techniques can reduce 

interference from unknown factors such as cloud cover in the results. 

3. Model Optimization and Intelligence: 

Building on deep learning, reinforcement learning (RL) and transfer learning (TL) 

are gradually being introduced into ecological models to enhance their adaptability and 

generalization capabilities[24]. Deep learning (DL) techniques have received attention 

due to their scalability and active learning capability. In comparison to traditional ML 

techniques[25], DL models can self-learn salient features from raw data to recognize 

object types. Optimizing the model's predictive ability, while reinforcement learning, 

through a reward-punishment mechanism, improves decision-making processes, thus 

optimizing ecological environmental prediction models based on remote sensing data[26].         

For instance, in ecological restoration, reinforcement learning can continuously 

optimize land management plans by simulating the effects of different restoration 

strategies[27]. Moreover, transfer learning techniques can effectively transfer knowledge 

from well-studied regions to areas with sparse or highly variable data, improving the 

prediction accuracy and efficiency of models in new environments[28]. Combining these 
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two learning methods with traditional deep learning models presents new opportunities 

for intelligent ecological monitoring and prediction. 

4.Cross-Domain Data Integration: 

Integrating socio-economic data, land use data, and climate prediction information 

to construct a multi-dimensional ecological evaluation system has become an important 

direction in recent ecological research[29].  

With the development of remote sensing technologies, researchers are increasingly 

integrating additional cross-domain data sources, such as climate model predictions[30] 

and socio-economic activity data, into comprehensive assessments. For example, 

Jakeman et al. (2017) combined climate models with NDVI predictions[31],using data 

fusion to reveal the joint impact of human activities and climate change on African 

savanna ecosystems, and proposed more comprehensive ecological restoration and 

conservation strategies. 

By integrating multiple data sources[32], a better understanding of the complexity of 

ecosystems and the impact of human activities and climate change on ecological services 

can be achieved. 

 Evaluation of Regional Ecosystem Services: 

In ecological research, there has been an increasing focus on how to quantitatively 

evaluate ecosystem services[33], with NDVI being widely used as a quantitative indicator 

for ecosystem services. Carbon gain dynamics can be readily characterized from 

vegetation spectral indices strongly associated with the (spatio-temporal) patterns of 

primary production, such as the Normalized Difference Vegetation Index (NDVI)[34].  

NDVI not only reflects vegetation cover but also reveals changes in vegetation health 

and productivity[35]. Enrica Nestola, Carlo Calfapietra and colleagues[36]investigated 

the seasonal productivity of grasslands at Mattheis Ranch in Alberta, Canada, by utilizing 

various NDVI derivatives.  

Furthermore, NDVI plays a significant role in assessing biodiversity conservation 

and soil conservation effects [37], providing data support for ecosystem managers to 

optimize regional ecosystem service protection strategies. 

  



10 

 

3 Research Methodology 

3.1 Study Area 

The study area is located at the Troodos Mountains of Cyprus (Figure 3). The Troodos 

Mountains are situated in the eastern Mediterranean, spanning the southern part of Cyprus, 

with geographic coordinates approximately between 34°40′N to 35°20′N and 32°40′E to 

33°10′E.  

 

Figure 3: The range of areas to be studied 

This area features complex topography and diverse vegetation types, making it a typical 

mountainous ecosystem. The main vegetation types in the Troodos Mountains are highly 

diverse and include the following: 

1. Low-altitude areas are dominated by the Cyprus pine (Pinus brutia), reaching up to 

1200 meters, with forests extending as high as 1500 meters in the southern parts. 

2. Near rivers, dense vegetation of oriental plane trees (Platanus orientalis), alder trees 

(Alnus orientalis), and myrtle trees (Myrtus communis) is found, adding to the 

region’s diversity and providing ideal refuges for wildlife. 
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3. In lower altitude areas, wild olive trees (Olea europaea) are found up to 1000 meters, 

while arbutus trees (Arbutus andrachne), with their striking color changes, extend 

from 600 meters to 1500 meters. Additionally, the sumac (Rhus coriaria) and the 

endemic Lagoia oak (Quercus alnifolia) are present from 600 meters up to 1650 

meters. 

4. In the higher altitude areas of the forest, the black pine tree forest (Pinus nigra) extends 

up to the Chionistra area, coexisting with psychotropic shrubs such as junipers 

(Juniperus foetidissima), wild apple trees (Sorbus aria), wild quince trees 

(Cotoneaster racemiflorus), barberry (Berberis cretica), the endemic raisin bush 

(Genista sphacelata ssp. crudelis), and others. 

Vegetation cover in the Troodos Mountains is influenced by various factors, such as 

temperature, precipitation, soil types, and elevation. The mountain ecosystem in this 

region is highly vulnerable[38], especially under the dual pressures of climate change and 

human activities, which have led to significant vegetation changes.  

In recent decades, the vegetation cover of the Troodos Mountains has undergone varying 

degrees of change, primarily manifested in forest degradation, grassland desertification, 

and soil erosion. The remote sensing characteristics of different vegetation types exhibit 

notable spatial and temporal heterogeneity, complicating vegetation monitoring and 

change analysis. 
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3.2 Data Processing 

In this study, to construct a time-series dataset spanning from 1985 to 2020, we 

systematically selected and processed Landsat series satellite imagery using the Google 

Earth Engine (GEE) platform combined with Python scripts. The core objective of this 

step was to extract remote sensing imagery that met the research criteria for the Troodos 

Mountains region, conduct necessary preprocessing and filtering, and ultimately generate 

a time-series dataset stored as a CSV file. This provides foundational data for subsequent 

analyses. All the steps of this study are shown in the Figure 4 below. 

 

Figure 4: All processes 
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3.2.1 Data source and image screening 

In this study, in order to construct a time series dataset covering the period from 1985 to 

2020, we systematically selected and processed Landsat series satellite images by 

integrating the Google Earth Engine (GEE) platform and Python scripts. The core 

objective of this step was to extract remote sensing images that met the research standards 

for the Troodos Mountain region, conduct necessary preprocessing and filtering, and 

ultimately generate a time series data set stored as a CSV file. This provided the basic 

data for subsequent analyses. 

We utilized three primary Landsat data sources: 

1. Landsat 5 (LANDSAT/LT05/C02/T1_L2): Medium-resolution remote sensing 

data covering the period from 1984 to 2012. 

2. Landsat 7 (LANDSAT/LE07/C02/T1_L2): Available from 1999 onwards, 

although data collected after 2003 suffer from partial striping issues due to the 

failure of the Scan Line Corrector (SLC). 

3. Landsat 8 (LANDSAT/LC08/C02/T1_L2): Provides higher-quality imagery, 

available from 2013 to the present. 

By using the image set interface of GEE, we filtered the images in these three datasets by 

specifying the time range (from January 1, 1985 to December 31, 2020), and spatially 

limited the image area to ensure that only the Troodos Mountain region was covered.  

To further enhance the data quality, we have implemented the cloud masking function 

(mask Clouds), which can remove the pixels contaminated by clouds. This function reads 

the Quality Assessment (QA_PIXEL) band and applies logical operations to mask the 

cloud pixels. This step significantly improves the clarity and usability of the images and 

ensures higher accuracy of the analysis results. 

3.2.2   Image collection merging and timestamp extraction 

After screening and preprocessing, we merged the image collections from three Landsat 

sources to form a comprehensive dataset covering the entire time period. We used the 

GEE interface to extract the timestamps of each image and converted them into a readable 

date format (YYYY-MM-DD) for visualization and verification of the time distribution.  
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Finally, we recorded the total number of all available images during the research period 

and stored the date information of each image in a time series CSV file. This file includes 

all available image dates and is organized in a clear structure for subsequent time series 

analysis and cross-validation. The key steps are as follows: 

l Generate time-series data: Store the dates of all eligible images in a list. 

l Export to CSV: Using Python's csv module, export the data to a CSV file named 

available_image_dates.csv, including a header labeled "Date" for clarity. 

This process established a comprehensive dataset of Landsat imagery for the Troodos 

Mountains from 1985 to 2020. It provided a solid foundation for NDVI (Normalized 

Difference Vegetation Index) calculations and time-series modeling. The cloud masking 

and standardized data formatting significantly enhanced data quality and usability. The 

resulting time-series file not only supports this research but also serves as a reusable 

dataset for other ecological and environmental studies based on Landsat data. 

3.2.3   NDVI calculation at random study sites 

Based on the preprocessed data and Troodos Mountain region information available 

through GEE, we randomly generated 100 study points (Figure 5). Using these points, we 

extracted remote sensing image data at each time step and calculated the corresponding 

NDVI values. For each study point, we computed NDVI values based on data from each 

time step, ultimately creating a dataset of NDVI time-series data for 100 study points. 

The goal was to generate sufficient time-series data to support subsequent vegetation 

dynamics analysis and model validation. 
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Figure 5: The distribution of random points generated in the study area 
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3.2.4 Analysis and selection of outlier processing results 

In the outlier detection phase, we applied several methods, including 3Sigma, DBSCAN, 

IQR, LOF, and LOF_Withoutmissingpoint, to analyze the processed time-series data. The 

performance of these methods varied, as detailed below: 

1. 3Sigma  

The 3Sigma cluster scheduling system uses job runtime histories in a new way[39]. 

The core idea of this method assumes that the data follows a normal distribution, using 

the mean (μ) and standard deviation (σ) to identify outliers that deviate significantly 

from the normal range. The acceptable value range is defined as: [μ − 3σ, μ + 3σ], as 

shown in Formula 2. Data points falling outside this interval are classified as 

anomalies. 

The primary advantage of this method is its computational simplicity, making it 

highly effective for processing approximately normally distributed data. However, it 

is prone to misclassification and should be applied with caution. 

The judgment criteria for outliers: 

𝒙𝒊 is	an	outlier ⟺ 𝒙𝒊 ∉ [𝝁 − 𝟑𝝈, 𝝁 + 𝟑𝝈]                  (3.1) 

2. DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) identifies 

outliers based on density parameters. DBSCAN algorithm has good clustering results 

in the application, which is a typical representative of density algorithm[40]. The core 

idea is: "Clusters are high-density regions, while anomalies are isolated points in low-

density areas." However, this method performs poorly in data with significant density 

variations, such as highly dynamic time series. If the data contains substantial 

fluctuations, it may fail to reliably detect anomalies. 

3. IQR 

The IQR (Interquartile Range) method detects outliers by identifying extreme values 

outside the interquartile range. While it effectively removes clear outliers, it also tends 

to remove many data points during periods of high variability, potentially reducing 

representativeness. Careful threshold setting is essential to avoid excessive data loss. 
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4. LOF  

LOF (Local Outliers Factor) algorithm is a very classic anomaly detection algorithm. 

In order to detect the outliers more accurately, avoid too much testing error[41]. In 

this paper, we elaborate on this method, which begins by defining a local 

neighborhood for each point based on its k-nearest neighbors (k-NN) using distance 

metrics such as Euclidean distance. 

k-distance(𝒑) = distance to its 𝒌𝒕𝒉nearest neighbor                      (3.2)   

Reachability distance between and: 

reach-dist𝒌(𝒑, 𝒐) = 𝒎𝒂𝒙{k-distance(𝒐), 𝒅(𝒑, 𝒐)}                      (3.3) 

where d(p,o) is the Euclidean distance. 

Local reachability density (LRD) of p: 

𝐋𝐑𝐃𝒌(𝒑) =
|𝑵𝒌(𝒑)|

∑  𝒐∈𝑵𝒌(𝒑) reach-dist𝒌(𝒑,𝒐)
                                       (3.4) 

Nk(p) denotes the set of k-nearest neighbors of p. 

LOF score: 

𝐋𝐎𝐅𝒌(𝒑) =
𝟏

|𝑵𝒌(𝒑)|
∑  𝒐∈𝑵𝒌(𝒑)

𝐋𝐑𝐃𝒌(𝒐)
𝐋𝐑𝐃𝒌(𝒑)

                                   (3.5) 

• LOF ≈ 1: Similar density to neighbors (inlier) 

• LOF ≫ 1: Lower density than neighbors (outlier) 

5. LOF_Withoutmissingpoint  

This is a variation of the LOF algorithm where we specifically remove missing values 

and then filter outliers, this variation of LOF specifically addresses missing values 

and exhibited the best performance in balancing anomaly removal and data integrity. 

It accurately detected noise while preserving data trends, making it the most effective 

method in this study. 

6. Quantiles  

Quantiles divide a dataset into equal-sized intervals, helping to identify and analyze 

the distribution of data by pinpointing its spread and potential outliers. The quantiles 
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method identifies outliers using data quartile information. This method is particularly 

effective for non-normally distributed data and performs better than the 3Sigma 

method under diverse distributions. However, the situations of different distributions 

are often difficult to be properly controlled in time series. 

3.2.5 NDVI Time Series Interpolation Methods 

After addressing outliers and missing values, the next step is to interpolate the time series 

data to fill the missing NDVI values. Since remote sensing data often exhibits complex 

spatiotemporal variations, selecting an appropriate interpolation method is crucial. 

Despite our attempts to adopt many different approaches, in this study we merely 

introduce the two methods that have shown relatively better results: 

1. Kalman Interpolation 

The filling process of the Kalman method mainly consists of two steps. The first is 

the prediction step: based on the control input and the state of the previous moment, 

calculations are made. Then, data prediction for the next time point is carried out. 

The second is the update step: the current measurement value is obtained, and the 

error (residual) is calculated with the predicted value. According to the residual, the 

current state estimation is adjusted. At the same time, the weighted average (Kalman 

gain) is calculated based on the calculation to combine the predicted and 

measurement results, obtaining a more accurate state estimation. In summary, the 

key of Kalman filtering lies in the continuous iterative optimization to minimize the 

error (covariance), thereby effectively suppressing the noise influence in the dynamic 

changing environment and providing accurate system state estimation[42]. 

 

2. Spline Interpolation 

Spline Interpolation fits smooth polynomial functions between data points for 

interpolation. It provides excellent fitting results for time series data with smooth 

variations and is particularly suitable for regions were vegetation cover changes 

gradually. 
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3.2.6 NDVI Time Series Fitting Methods 

We used multiple fitting methodology, mainly including Savitzky-Golay (SG), Whittaker, 

Median Vegetation Index (MVI) filter, and Double Logistic[43] Different methodology 

perform best for different time series, with each method's advantages depending on the 

data's specific characteristics. 

1. Savitzky-Golay Smoothing 

The Savitzky-Golay method is a polynomial smoothing technique that reduces noise 

while preserving underlying data trends[44].The core principle uses a moving 

window with least-squares fitting of 2nd/3rd-order polynomials, continuously 

smoothing the central data points throughout the time series[45].This experiment 

applied double SG filtering to reduce high-frequency noise and refine data, 

significantly improving fitting results[46]. 

2. Whittaker Smoothing 

Whittaker smoothing minimizes the roughness of the fitted curve by applying 

penalized least squares. It balances the fit by penalizing large changes in slope or 

curvature, ensuring a smooth curve that retains the underlying trend[47] This method 

is particularly useful for dealing with noisy, spatiotemporal data like NDVI time 

series[48]where irregular fluctuations or outliers may exist. 

3. Median Vegetation Index (MVI)  

The Multi-temporal Vegetation Index (MVI) mitigates seasonal fluctuations and 

short-term noise by computing the median vegetation index (e.g., NDVI) from multi-

temporal remote sensing data (captured at different time points)[49]. This approach 

provides more stable vegetation health monitoring results, effectively smoothing out 

seasonal variations. 

4. Double Logistic 

The double logistic function consists of two distinct sigmoidal growth curves, each 

representing a different phase. The first curve typically depicts a rapid growth stage, 

while the second reflects a gradual slowdown in growth rate, eventually approaching 

saturation[50]. By adjusting its parameters (e.g., maximum value, growth rate, 

inflection points), the double logistic function can flexibly fit time-series data. 

Through this two-phase modeling, it effectively captures the S-shaped 

growth patterns observed in many real-world processes. 
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3.2.7 Time Series Prediction Methods 

The five types of time series prediction methods to be introduced next cover both 

traditional statistical models and cutting-edge machine learning, large time series 

models, etc. 

1. XGBoost (eXtreme Gradient Boosting) 

XGBoost is an ensemble learning method that enhances model accuracy by 

iteratively constructing multiple decision trees to progressively minimize prediction 

errors. As a boosting algorithm, XGBoost combines the strengths of various base 

learners to achieve superior predictive performance compared to any individual 

constituent algorithm, demonstrating exceptional results across numerous 

domains[51]. 

Moreover, XGBoost incorporates a regularization term into its objective function, 

which enhances the generalization capability of individual trees and reduces model 

complexity. In essence, XGBoost has garnered significant attention from researchers 

due to its computational efficiency[52]exceptional classification performance, and 

flexibility in supporting user-defined loss functions. 

2. LightGBM (Light Gradient Boosting Machine) 

LightGBM, proposed by Microsoft in 2017, is a gradient boosting framework based 

on GBDT (Gradient Boosting Decision Trees). Like other boosting 

algorithms, GBDT combines multiple weak learners to form a strong learner[53]. 

LightGBM is a lightweight gradient boosting framework. Traditional GBDT 

algorithms often spend a significant amount of computation time on decision tree 

construction, which requires finding the optimal split points. The common approach 

involves sorting feature values and enumerating all possible split points, which is 

time-consuming and memory intensive.  

LightGBM uses an improved histogram-based algorithm, which discretizes 

continuous feature values into k bins and selects split points from these k values[54]. 

This not only reduces computation but also has a regularization effect, helping to 

prevent overfitting. Compared to traditional GBDT algorithms, LightGBM performs 

better in terms of training efficiency, memory usage, and handling large-scale 

data[55]. It also supports direct input of categorical features, avoiding the overhead 
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of one-hot encoding. In time series forecasting, it often relies on feature engineering 

techniques such as sliding windows. 

 

Figure 6: The working mode of LGBM 

3. N-HiTS (Neural Hierarchical Interpolation for Time Series) 

N-HiTS is a deep learning model specifically designed for time series forecasting. It 

models sequence features at different temporal scales through a hierarchical structure 

and uses an interpolation mechanism to generate predictions[56]. The model can 

automatically identify patterns such as trends and seasonality, making it particularly 

suitable for multi-scale and non-stationary time series, such as NDVI data, which 

exhibit long-term changes and seasonal fluctuations. 

4. TimeGPT (Time Series Generative Pre-Trained Transformer) 

TimeGPT is a Transformer-based pre-trained time series generation model, inspired 

by the pretraining paradigm of language models. It is trained on large-scale time 

series data, giving it strong generalization and transfer capabilities. Operating in a 

univariate channel setup, it is specifically designed for detection and forecasting tasks. 

As the largest foundation model in the time series domain based on Transformer 

architecture, TimeGPT has been pre-trained on over 100 billion data points. 
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Although it claims to have collected the largest time series repository from public 

sources, TimeGPT has not publicly disclosed the details of its repository or the data 

used in training[57]. 

 

Figure 7: The prediction method of TimeGPT 

5. LongTimeGPT (Long Time Series Generative Pre-Trained Transformer) 

LongTimeGPT is an upgraded version of TimeGPT, designed to handle ultra-long 

time series data. By optimizing attention mechanisms and related techniques, it 

addresses the efficiency and memory bottlenecks commonly encountered in long-

sequence modeling. This enables it to capture long-term trends and structural 

changes, making it well-suited for modeling and forecasting tasks involving long-

term data, such as climate change and environmental monitoring. 

3.2.8 Metrics for  evaluating the results 

This section evaluates system stability using the following metrics: Mean Absolute 

Percentage Error (MAPE), Root Mean Square Deviation (RMSE), Nash-Sutcliffe 

Efficiency (NSE), and Mean Absolute Error (MAE). 

𝐌𝐀𝐏𝐄 = 𝟏𝟎𝟎%
𝒏

∑ Q𝒚𝒊$𝒚=𝒊
𝒚𝒊
Q𝒏

𝒊>𝟏                                                           (3.6) 

𝐑𝐌𝐒𝐄 = S𝟏
𝒏
∑ (𝒚𝒊 − 𝒚U𝒊)𝟐𝒏
𝒊>𝟏                                                        (3.7) 

𝐍𝐒𝐄 = 𝟏 − ∑ (𝒚𝒊$𝒚=𝒊)𝟐𝒏
𝒊+𝟏
∑ (𝒚𝒊$𝒚‾)𝟐𝒏
𝒊+𝟏

                                                            (3.8) 

𝐌𝐀𝐄 = 𝟏
𝒏
∑ |𝒚𝒊 − 𝒚U𝒊|𝒏
𝒊>𝟏                                                             (3.9)  
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MAPE represents the percentage of prediction error relative to the actual value and 

penalizes both underestimation and overestimation. RMSE emphasizes larger errors by 

squaring the deviations, which amplifies the impact of outliers. NSE measures the 

goodness of fit relative to the mean of the observed data, but it is highly sensitive to 

extreme values. MAE, on the other hand, is more intuitive, as it calculates the average 

magnitude of errors using absolute values, providing a straightforward measure of how 

much the predictions deviate from the observations on average. 
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4    Results and Discussion 

In this chapter, the study further clarifies its research objectives by specifically analyzing 

the effects of outlier handling and time series fitting. First, it compares different outlier 

filtering methods and evaluates their performance in reconstructing NDVI data. 

Subsequently, the imputed and fitted results from each method are systematically 

compared to determine the optimal data processing strategy, thereby providing a solid 

data foundation for the development of subsequent forecasting models. 

In the time series analysis section, this study develops several forecasting and estimation 

models based on NDVI data derived from satellite remote sensing. Considering that the 

mean is easily influenced by outliers, the median is uniformly adopted for NDVI 

processing to obtain a more robust time series. During the data preprocessing stage, 

observations affected by cloud cover were rigorously removed—for example, by filtering 

out cloud-masked pixels—to minimize the impact of atmospheric and remote sensing 

conditions on NDVI values and to ensure the reliability of data quality. 

Finally, based on the cleaned, high-quality NDVI time series, an ensemble forecasting 

model is designed to estimate vegetation dynamics for the coming years. It is important 

to note that this model uses only the NDVI sequence itself as the input variable, without 

incorporating any exogenous factors. Therefore, its predictive capability relies entirely on 

the temporal characteristics of NDVI. This also means the study focuses on evaluating 

how well different models can capture and fit the temporal patterns of NDVI, rather than 

analyzing external driving factors. 

4.1 Analysis and selection of outlier processing results  

As shown in Figure 9, DBSCAN demonstrates limited effectiveness in filtering outliers; 

in this study, it failed to remove many abnormal data points, indicating that it performs 

poorly in low-density or uniformly distributed datasets. Therefore, DBSCAN may not be 

suitable for the characteristics of this dataset. In contrast, the IQR method (Figure 10) 

applies overly aggressive filtering, removing a substantial portion of the data. 

Using LOF directly without removing missing values results in the incorrect elimination 

of some important data points, revealing clear shortcomings in this approach. The 3Sigma 

method identifies outliers as those falling beyond three standard deviations from the 
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historical mean. While this method has low sensitivity to small fluctuations, it can 

preserve subtle anomalies (Figure 8). Under stable data conditions, it is acceptable for 

retaining non-significant variations. 

The LOF method performs as expected. As seen in Figure 11, its high sensitivity to noise 

can lead to the misclassification of normal fluctuations as outliers. However, after 

removing missing values, the LOF_Withoutmissingpoint approach (Figure 12) clearly 

demonstrates strong filtering performance, offering a more accurate representation of the 

underlying NDVI patterns. 

 

Figure 8: The effect of outlier removal using the 3Sigma method 

 

Figure 9: The effect of outlier removal using the DBSCAN method. 
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Figure 10: The effect of outlier removal using the IQR method. 

 

Figure 11: The effect of outlier removal using the LOF method. 

 

Figure 12: The effect of outlier removal using the LOF_Withoutmissingpoint method 

In summary, while the LOF_Withoutmissingpoint method demonstrated the best overall 

performance, other methodology, such as 3Sigma and the quantile method, also produced 

acceptable results. Specifically, detailed results and summaries can be seen in Table 1.  
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Table 1. Method introduction 

Method Result Description Detect the number of outliers 

3Sigma Suitable for scenarios with small data 

fluctuations and where outliers are 

not particularly severe 

 

402 (0.61%) 

DBSCAN best suited for data with large density 

differences 

                    102(0.15%) 

IQR Suitable for cases where outliers are 

extremely obvious, but caution is 

needed to avoid excessive data 

removal 

 

4433(6.71%) 

LOF Data sets that fit with few missing 

values are affected by null values 

6636(10.51%) 

 

LOF_Withoutmissingpoint Best-performing method 2023(3.06%) 

Quantiles Overprocessing data                     2738(4.15%) 

In summary, while the LOF_Withoutmissingpoint method demonstrated the best overall 

performance, other methods, such as 3Sigma and the quantile method, also produced 

acceptable results. Specifically detailed results and summaries can be seen in Table 1. 

Based on this analysis, we selected the LOF_Withoutmissingpoint method as the primary 

outlier detection strategy, retaining the results of the 3Sigma and quantile methodology 

for flexible use in different scenarios to ensure dataset quality and integrity. 

4.2 Time Series Reconstruction and Smoothing 

In the following section, the final processing results are presented. To demonstrate the 

effectiveness of the fitting methodology used, a random point from the study area was 

selected, and various processing techniques were applied to its NDVI time series. The 

images (Figure 13) after fitting the random point are displayed, highlighting the results 

of different smoothing and fitting methodology. Comparing different smoothing and 

fitting methodology, the following conclusions can be drawn: 
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1. MVI Spline and Quadratic SG Filtering with Parameter 5 

Both methodologies have obvious flaws in practical applications, with minimal 

smoothing effect. The data still shows significant fluctuations and does not 

effectively mitigate short-term fluctuations. These methodologies have weak fitting 

performance and are not suitable for smoothing current data. 

2. ARMD3 and Single-pass SG Filtering (Underfitting) 

Both methodologies suffer from underfitting, failing to capture the overall trend of 

the data adequately. The single-pass SG filtering method shows many peaks in the 

fitting curve, indicating that this methodology may be too simplistic and fail to 

account for the complexity of the time series. 

3. Quadratic SG Filtering with Parameter 30 (Overfitting) 

Although this method follows the data well, it clearly suffers from overfitting, fitting 

too much of the data, including information that should not be fitted, leading to the 

removal of too much data. Overfitting reduces the model's ability to generalize to 

new data, so parameter selection needs to be more cautious. 

4. Best Method: Whittaker and Quadratic SG Filtering with Parameter 15 

This methodology performs well in both smoothing and trend fitting. They 

effectively reduce short-term anomalies while preserving the long-term trend. The 

Whittaker method performs well in noise suppression, while the quadratic SG 

filtering method with parameter 15 achieves good smoothing without overfitting. 

Therefore, these two methodologies are optimal for the current dataset. 

In conclusion, MVI Spline and SG filtering with parameter 5 failed to effectively 

filter noise, ARMD3 and single-pass SG filtering suffered from underfitting, and SG 

filtering with parameter 30 had overfitting issues. Overall, Whittaker filtering and 

SG filtering with parameter 15 strike the best balance between signal retention and 

smoothing, making them the most suitable for current NDVI data processing. 
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Figure 13. The effect of all fitting methodology 

To quantitatively evaluate the performance of different smoothing methodology, we 

calculated key metrics such as Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE). These metrics are used to assess the 

fitting performance of each method on the time series data and evaluate their 

effectiveness in noise reduction and trend preservation. Table 2 summarizes the 

results of applying these methodologies to a randomly selected data point. 
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Table 2. Data Results Summary 

Method MSE RMSE MAE 

Double SG_5 0.000819895 0.028633562 0.019775822 

Double SG_30 0.000748731 0.027362938 0.018563044 

ARMD3 0.000539939 0.023234644 0.015212056 

Savitzky-Golay  0.000466357 0.021595299 0.014017021 

Whittaker 0.000605135 0.024599485 0.01602796 

 

The Savitzky-Golay method performs best in terms of smoothing effects, with the lowest 

MSE, RMSE, and MAE. It effectively reduces noise while preserving data trends, making 

it the optimal smoothing method in this study. The ARMD3 method performs well, with 

slightly higher MSE and RMSE than Savitzky-Golay, but it still strikes a good balance 

between noise reduction and trend preservation. However, its error control is slightly less 

effective. The Whittaker method performs well in smoothing and trend preservation, but 

with slightly higher RMSE and MAE compared to ARMD3. While it is suitable for time 

series with clear trends, it shows some limitations in noise reduction. The Double SG_5 

method performs poorly, with higher MSE, RMSE, and MAE, weaker smoothing effects, 

and a risk of overfitting. Even with parameter adjustments, its performance does not 

surpass other methodology and remains unsatisfactory. 

Considering all error metrics, the Savitzky-Golay filtering method performs the best in 

this study, effectively reducing noise while preserving data trends. The ARMD3 method 

ranks second, followed by the Whittaker method with moderate performance. The Double 

SG method performs poorly, with insufficient noise reduction at a window size of 5 and 

a risk of overfitting at a window size of 30. It is recommended to select the appropriate 

method based on actual needs. 
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4.3   Prediction results comparison 

NDVI (Normalized Difference Vegetation Index) is closely related to the physical 

properties of vegetation. Research has shown that long-term changes and fluctuations in 

vegetation can be effectively monitored by detecting NDVI values.[58].After a rigorous 

data reconstruction process—including outlier removal, spatiotemporal interpolation, and 

smoothing—we obtained a high-quality NDVI time series spanning from January 10, 

1985, to November 11, 2024. Considering global climate change and the accelerated 

updates of radar satellite data, we divided the dataset into three time periods: 1985-2011 

as the training set (covering the complete vegetation growth cycle and typical climate 

fluctuations), 2012-2020 as the validation set (characterized by frequent extreme climate 

events), and 2021-2024 as the test set (used to evaluate the model’s predictive ability for 

recent vegetation changes). 

In terms of model selection, we considered both traditional machine learning methods 

and cutting-edge time series forecasting techniques. We used XGBoost and LightGBM 

as representatives of gradient boosting frameworks, which excel at capturing feature 

interactions. N-HiTS processes long-term dependencies through multi-scale 

decomposition, while TimeGPT and our self-developed LongTimeGPT (which employs 

an improved attention mechanism and long-term memory module) explore the 

transferability of large language models in time series forecasting. This combination 

allows for a systematic evaluation of the applicability boundaries of different algorithms 

in predicting vegetation dynamics. 

The evaluation system uses multiple metrics: RMSE (to measure absolute error), MAPE 

(to reflect relative error proportions), NSE (to assess the overall goodness of fit of the 

model), and MAE (to provide a robust estimate of prediction bias). Specifically, for the 

NDVI values ranging from [0,1], we set an outlier filtering threshold for MAPE 

calculation to avoid percentage distortion in the lower value range. 
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Figure 14: Various methods for predicting the result of point 59 

As shown in Figure 14, using the randomly selected Point 59 as an example, the actual 

NDVI observations for this point are compared with the results of five different prediction 

methods. In the figure, the red solid line represents the true values, and the blue dashed 

line indicates the predicted values. The gap between the two is shaded in yellow to 

visually highlight the prediction error. This figure effectively compares the performance 

of the models from 2020 to 2024. 

From the Figure 15 and Figure 16 LGBM and XGBoost models have significantly smaller 

yellow error regions, demonstrating excellent performance in NDVI time series 

forecasting. Among them, LGBM not only better aligns with the overall trend of the true 

data but also provides a smoother output curve, reflecting stronger time structure 

modeling ability and prediction stability. 

On the flip side, the other three methods have their own shortcomings. N-HiTS and 

LongTimeGPT struggle with stability when it comes to capturing trends in the time series, 

leading to a noticeable gap between their predicted curves and the actual ones. Meanwhile, 

TimeGPT tends to underestimate how much things will change, which makes it too 

cautious when trying to fit the dynamic changes in NDVI, so it misses out on capturing 

the real ups and downs. 

One possible reason for these problems could be that these models rely heavily on the 

amount of training data they get. Methods like LongTimeGPT and TimeGPT, which are 
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based on large model architectures, usually shine when they have access to big, diverse 

time series datasets. While our NDVI time series covers a long period, the number of 

samples we used for training in this study is still limited, which might not be enough for 

these models to learn effectively. 

 

Figure 15: : LGBM methods for predicting the result of point 59 

  

Figure 16: XGBoost methods for predicting the result of point 59 
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Figure 17:TimeGPT methods for predicting the result of point 59 

 

  

Figure 18: LongTimeGPT methods for predicting the result of point 59 
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Figure 19: NHITS methods for predicting the result of point 59 

To comprehensively assess the actual predictive capabilities of the five forecasting 

models (XGBoost, LightGBM, N-HiTS, TimeGPT, and LongTimeGPT), this study 

calculates five mainstream error metrics for all the points in the test set: MAE, RMSE, 

NSE, SMAPE, and MAPE. Each metric characterizes the deviation between predicted 

and true values from different perspectives: 

Table 3.  The predicted results of different methods 

Method MAE RMSE NSE SMAPE MAPE 

LGBM 0.00567  0.00741  0.79987  5.70154  4.64404  

NHITS 0.02559  0.03107  -2.10849  21.41465  19.23557  

XGBoost 0.00529  0.00688  0.83296  5.10141  4.18068  

LongTimeGPT 0.01881  0.02366  -0.35426  14.59826  18.87607  

TimeGPT 0.01876  0.02394  -0.28320  14.25929  18.67929  

Based on the overall evaluation metrics, the XGBoost model performs the best across all 

dimensions. Its MAE is 0.00529, RMSE is 0.00688, NSE is 0.83296, SMAPE is 5.10%, 

and MAPE is 4.18%, showing excellent performance in error control and trend fitting. 

Following closely is LightGBM, with an MAE of 0.00567, RMSE of 0.00741, and NSE 

of 0.79987, demonstrating stable overall performance. 
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On the other hand, the N-HiTS model performed the worst, with an MAE of 0.02559 and 

an NSE as low as -2.10849, failing to effectively capture the NDVI trend and showing 

poor predictive ability. LongTimeGPT and TimeGPT also performed significantly worse 

than XGBoost and LGBM in terms of MAE (0.01881 and 0.01876, respectively) and NSE 

(-0.35426 and -0.28320, respectively), indicating that large models did not show the 

expected advantages with the dataset used in this study. 

Overall, the other three models each have their own drawbacks. N-HiTS and 

LongTimeGPT are unstable in capturing time series trends, leading to a significant gap 

between their predicted curves and the actual ones. Meanwhile, TimeGPT tends to 

underestimate the magnitude of predictions, making it too conservative when fitting the 

dynamic changes in NDVI, which makes it hard to reflect the real fluctuations. 

One possible reason for these issues could be the models’ reliance on the scale of the 

training data. Models like LongTimeGPT and TimeGPT, which are based on large 

architectures, usually perform best when they have access to large, diverse time series 

datasets. While we constructed a long NDVI time series, the number of training samples 

is still relatively limited, which may not be enough to meet the data requirements for 

parameter learning in these models. 

In summary, it is recommended to prioritize using the XGBoost model for NDVI time 

series forecasting, with LightGBM as an alternative. The performance of N-HiTS, 

LongTimeGPT, and TimeGPT is poor, making them suitable only for experimental use 

in specific scenarios. 
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4.4 Discussion 

The main goal of this study is to see how different models perform when forecasting 

NDVI (Normalized Difference Vegetation Index) time series, and to find the best model 

for real-world applications. We analyzed NDVI data from 1985 to 2024 using several 

predictive models, including XGBoost, LightGBM, N-HiTS, TimeGPT, and 

LongTimeGPT. The results show that XGBoost stands out as the best performer across 

all evaluation metrics, with an MAE of 0.00529, RMSE of 0.00688, and an NSE of 

0.83296. This indicates that it’s highly accurate and stable in forecasting NDVI, even 

with a limited sample size. 

Previous studies, like those by H. Łoś and G. Sousa Mendes, have noted that XGBoost 

and LightGBM do well in predicting Sentinel-2 data[55]. Rahul Gupta and Anil Kumar 

Yadav[59]have pointed out that XGBoost performs well in time series forecasting, and 

this study confirms that observation. However, our research goes further to highlight the 

advantages of XGBoost and LightGBM in capturing NDVI changes, especially during 

periods of frequent extreme climate events. At the same time, Mohit Apte and Yashodhara 

Haribhakta[60]have noted that N-HiTS tends to make accurate predictions in financial 

time series forecasting. However, in this study, which focuses on NDVI time series, the 

results are quite the opposite, suggesting that N-HiTS may not be as effective in capturing 

the dynamics of NDVI changes compared to its performance in other domains such as 

finance. 

In summary, our results support our hypothesis that time series forecasting models can 

effectively capture the changing trends of NDVI. However, deep learning models like N-

HiTS, TimeGPT, and LongTimeGPT didn’t perform well in this study, indicating that 

they might not be suitable under certain data conditions. By comparing the performance 

of different models, we offer a fresh perspective for future research, recommending that 

XGBoost be prioritized for NDVI time series forecasting. This finding opens new avenues 

for future studies, especially in exploring how well these models work across different 

datasets and application scenarios. 

Our observations also revealed significant non-seasonal abnormal fluctuations in the 

NDVI time series of certain points, especially in some years where the phase overlaps 

with the Landsat 7 SLC-off failure period[61], causing sharp and sudden changes in 
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NDVI values. We reasonably speculate that these fluctuations may be related to satellite 

sensor malfunctions during specific periods, potentially caused by the failure of the 

sensor's line scan corrector, leading to striping noise. Moreover, natural conditions such 

as cloud cover and other interference factors cannot be ignored, as they may have 

impacted the accuracy of the observations to some extent[62]. Therefore, in practical 

applications, further consideration of these interference factors, combined with 

monitoring data on sensor failures, can enhance the robustness and accuracy of 

forecasting models. 

 

Figure 20: Extreme Case 1 

On the other hand, in some other locations, the NDVI values showed a significant abrupt 

change during a specific period, after which they gradually stabilized and fluctuated 

around a new level without further obvious anomalies. Such changes are likely not 

coincidental, but rather the result of irreversible vegetation changes triggered by human 

activities, such as shifts in land use, construction of buildings, or intense agricultural 

interventions. 
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Figure 21: Extreme Case 2 
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5  Conclusions 

This study is all about evaluating how different machine learning and time series 

forecasting models perform when predicting the NDVI (Normalized Difference 

Vegetation Index) time series, especially focusing on the vegetation distribution in the 

Troodos Mountains region. The Troodos Mountains are the main mountain range in 

Cyprus, known for their rich biodiversity and unique ecosystems. The vegetation here 

mainly consists of pine trees, oak trees, shrubs, and grasslands, and it shows significant 

changes over time due to climate change and human activities. 

We looked at NDVI data from 1985 to 2024 and used several models for forecasting, 

including XGBoost, LightGBM, N-HiTS, TimeGPT, and LongTimeGPT. The results 

showed that XGBoost outperformed all the other models across the board (in terms of 

MAE, RMSE, and NSE), giving us the most accurate and stable predictions. On the other 

hand, the N-HiTS and GPT-based models didn’t do so well, struggling to effectively 

capture the patterns of NDVI changes. 

These findings are in line with previous research highlighting the importance of NDVI in 

tracking vegetation changes. However, we noticed that some models, especially the larger 

language models, performed poorly when the data was limited. Because of this, we 

recommend prioritizing XGBoost for NDVI forecasting or considering a mix of models 

to take advantage of their strengths and boost prediction accuracy. 

Overall, this study offers new insights into NDVI time series forecasting in the Troodos 

Mountains and sets the stage for future research. There’s a lot of potential for exploring 

how well these models work with different datasets and in various application scenarios. 

Future studies could also focus on optimizing the models that didn’t perform as well or 

using ensemble learning methods to improve overall prediction capabilities. Plus, diving 

deeper into the changes in vegetation distribution in the Troodos Mountains will help us 

better understand how climate change impacts these ecosystems. 
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