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ABSTRACT

This thesis proposes a novel indoor air quality (IAQ) prediction model and management strategy based on
the ETSformer neural network. Unlike traditional methods that require prior data cleaning, the proposed
model directly processes raw IAQ sensor data, which may contain anomalies such as noise, missing
values, and outliers. The ETSformer model integrates exponential smoothing, seasonal decomposition,
and damping control mechanisms within a Transformer-based architecture, enabling accurate multi-step
forecasting of key IAQ parameters, including temperature, humidity, CO2, and PM2.5 concentrations.

Based on the predictions, this thesis further designs a scenario-specific IAQ management strategy com-
bining prediction-driven control and feedback regulation. Two distinct control objectives are defined:
comfort optimization during normal periods and infection prevention during epidemic periods. Experi-
mental results on real-world data collected from a university classroom demonstrate that the ETSformer
model outperforms traditional baselines in terms of prediction accuracy and robustness. The integration
of forecasting and intelligent control enables timely and efficient air quality regulation, offering practical
value for health-oriented and energy-efficient indoor environment management.

Keywords: indoor air quality, time-series forecasting, ETSformer, Transformer, prediction-based control
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1 Introduction

1.1 Aims and Objectives

In the field of indoor air quality (IAQ) improvement, this study proposes an advanced time series pre-
diction method based on a Transformer neural network architecture. The proposed model is specifically
designed to forecast key indoor air quality indicators—such as temperature, humidity, carbon dioxide
(CO2) concentration, and PM2.5 levels—with high temporal resolution and predictive accuracy. As
shown in Figure 1.1, by accurately modeling and predicting the future evolution of these environmen-
tal parameters, the system can effectively support the real-time and proactive operation of IoT-enabled
air purification and ventilation devices. This predictive capability addresses the inherent delays and in-
efficiencies of traditional reactive systems, enabling intelligent indoor air management through timely
control actions. Ultimately, the integration of Transformer-based forecasting with IoT-driven actuation
lays the foundation for a more responsive, energy-efficient, and health-oriented air quality management
strategy.

1.2 Research Questions

This study focuses on two core issues. First, the training of the ETSformer neural network is explored as
the foundation of the proposed prediction framework. The model inherently possesses the capability to
handle anomalies such as missing values, noise, and outliers through its internal smoothing and decom-
position mechanisms. This allows for direct modeling of raw indoor air quality data without the need
for explicit data cleaning procedures. The model is trained to capture both short-term fluctuations and
long-term trends in key indicators such as temperature, humidity, CO2 concentration, and PM2.5 lev-
els, enabling accurate multi-step forecasting. Second, based on the predicted results, a scenario-specific
indoor air quality management strategy is developed. Specifically, the strategy distinguishes between
two contexts: during normal periods, the system targets comfort optimization; during epidemic periods,
it prioritizes infection prevention. This dual-mode strategy allows IoT-enabled environmental control
devices to respond intelligently and proactively to varying health and comfort requirements.

1.3 Significance of The Subject

In modern society, indoor environment has become the main place for people’s activities. However, the
impact of indoor air quality (IAQ) on health and efficiency is often overlooked. Research has shown
that indoor air pollutants such as carbon dioxide (CO2), volatile organic compounds (VOCs), particulate
matter (PM2.5 and PM10), and microorganisms not only affect physical health, but also lead to fatigue,
decreased attention, and weakened cognitive abilities. Long term exposure to poor air quality may cause
respiratory diseases, allergies, and other health problems, while also weakening work efficiency and
learning outcomes.[1]

In the work environment, when the concentration of CO2exceeds 1000 ppm, human cognitive ability will
significantly decrease; Higher concentrations can seriously affect decision-making and problem-solving
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Figure 1.1: Framework of the proposed indoor air quality prediction and control strategy based on the
ETSformer neural network.

abilities. Air pollution also increases the likelihood of employees taking sick leave, weakening team
productivity and creativity.

In the learning environment, pollutants can reduce students’ attention and memory, affecting exam scores
and long-term learning outcomes. Excessive or insufficient humidity may also lead to virus transmission,
exacerbating the health risks for students.[2][3]

In addition, air quality has a profound impact on psychology and emotions. Air pollution can cause
fatigue and anxiety, reducing work motivation and learning focus. In contrast, fresh air can significantly
improve mental health and task completion efficiency.

Indoor air quality is not only related to health, but also an important factor affecting social and economic
benefits. Improving the air environment and enhancing IAQ through science and technology can signif-
icantly reduce health expenses, improve work and study efficiency, and create greater value for society.

To address the aforementioned issues, this article proposes a neural network-based indoor air quality
prediction method and an IoT controlled air improvement equipment strategy.

Aiming to improve the accuracy of air quality prediction and enhance the computing power of the system
to drive air quality improvement equipment and achieve air quality management. Clean past air quality
data, extract effective data, and use deep learning techniques such as Transformer to predict future air
quality. That is to say, it no longer relies solely on traditional sensor data, but uses machine learning
to predict future air quality data, compensate for the lag in strategy of traditional air quality improve-
ment systems, and make early predictions and improvements to indoor air. Specifically, the strategy
of this paper is to transmit and process data through the Internet distributed platform. In order to fur-
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ther optimize the real-time performance of the air quality management system, the Transformer model
is introduced. This model is superior in processing time allowed data, enabling the system to achieve
more precise management of air quality under the conditions of complex indoor environmental condi-
tions. Overall, compared to traditional system control methods, the proposed solution achieves better air
quality management.

Traditional indoor air quality management mainly relies on the combination of monitoring methods and
improvement strategies, aiming to create a healthier indoor environment. In terms of monitoring, tradi-
tional methods typically involve regular manual testing and laboratory analysis. These methods measure
the concentrations of common indoor pollutants, including carbon dioxide (CO2), PM2.5, PM10, and
volatile organic compounds (VOCs), using chemical reagents or professional instruments. This method
can provide more accurate detection results and is suitable for regular review or evaluation of indoor air
quality. However, due to its intermittent nature, traditional monitoring is difficult to achieve real-time
data collection and cannot dynamically reflect the rapid changes in indoor air quality. In addition, such
monitoring usually relies on professional technicians and equipment, with high costs and limited cover-
age, making it difficult to meet the needs of modern diversification and efficient management.[4][5][6]

In terms of improving air quality, ventilation is considered one of the core means of traditional manage-
ment methods. Natural ventilation allows for the exchange of indoor and outdoor air by opening windows
or ventilation openings, thereby diluting pollutant concentrations and enhancing air freshness. However,
in environments with high levels of urbanization and high concentrations of pollutants, the effectiveness
of natural ventilation is often limited. For example, in situations where outdoor air quality is poor or
building design ventilation conditions are poor, natural ventilation may not be effective. To address this
issue, mechanical ventilation systems such as ventilation fans and fresh air systems are widely used. This
type of system can to some extent compensate for the lack of natural ventilation by actively introducing
fresh air and discharging indoor polluted air.[7][8]

In addition, air purifiers, as important auxiliary equipment, have gradually become an important tool for
improving indoor air quality. These devices remove particulate matter (such as PM2.5 and PM10) from
the air through efficient filtration systems, and partially adsorb or decompose harmful gases (such as
formaldehyde and VOCs). The use of air purifiers is particularly important during high pollution seasons
or in special environments such as children’s rooms and medical facilities. It can not only improve air
quality, but also effectively reduce the threat of indoor pollutants to respiratory health. But without data
support, there will be no efficient improvement in air quality, and it may result in energy waste and
untimely air quality regulation.[9]

Although traditional methods have alleviated indoor air pollution to some extent, their effectiveness is
still limited by the intermittency of monitoring methods and the passivity of improvement strategies. The
changes in indoor air quality are complex and dynamic, and traditional methods are difficult to quickly
respond to sudden changes in pollutant concentrations.

In addition, modern people’s demand for air quality is becoming increasingly refined, and traditional
methods alone are no longer sufficient to meet efficient and comprehensive management requirements.
Therefore, modern indoor air management is developing towards intelligence and automation, by intro-
ducing IoT sensors and automatic control systems to achieve real-timemonitoring and dynamic regulation
of indoor air. This not only improves the efficiency of air quality management, but also creates a healthier
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and more comfortable indoor environment for people.[10]

In summary, this article proposes an indoor air quality prediction method based on Transformer neural
network and provides a prediction based air quality adjustment strategy for effectively improving current
indoor air quality improvement methods.

1.4 Contribution

1. Design and train an ETSformer-based indoor air quality forecasting model that integrates trend de-
composition, seasonality extraction, and damping control mechanisms. The model is capable of directly
modeling raw sensor data with inherent anomalies, and achieves accurate multi-step forecasting of key
environmental indicators—such as temperature, humidity, CO2 concentration, and PM2.5 levels—across
multiple temporal scales.

2. Propose a prediction-driven indoor air quality management strategy that distinguishes between normal
and epidemic scenarios. The strategy targets comfort optimization under normal conditions and infection
risk mitigation during epidemic periods. By integrating with IoT-enabled purification and ventilation
systems, it enables proactive, automated control across diverse indoor environments.

1.5 Structure of the Thesis

In the first chapter Introduction of this article, a rough overview of the research question and contri-
bution will be provided. In the second chapter Literature Review, the significance of The Subject will
be discussed, Provide a detailed description of the current research status, Analysis of the Advantages
of Transformer Networks, and analyze the current research status from the perspectives of traditional
methods and machine learning. In Chapter 3 Research Methodology, specific solutions will be proposed,
divided into three sections, which explain data preprocessing, model training, equipment control, and
their specific formulas. In Chapters 4 and 5, we will continue to analyze the effectiveness of the method
proposed in this paper, compare it with relevant algorithms in the same field, analyze the advantages and
disadvantages of our algorithm, and propose directions and possibilities for future improvement.
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2 Literature Review

2.1 Current research status

2.1.1 Traditional indoor air quality data processing methods

In indoor air quality (IAQ) management, data processing is an important step in monitoring, predicting,
and improving air pollution. Traditional data processing methods focus on monitoring, analyzing, and
predicting pollutant concentrations, relying on statistical models and classic machine learning techniques
to achieve quantitative assessment and trend prediction of air pollution through systematic data cleaning,
feature extraction, and modeling steps. These methods provide a scientific basis for improving indoor
air quality and are widely applied in practical scenarios.Y Rybarczyk et al. reviewed the application of
machine learning models in air quality modeling, emphasizing the combination of large-scale data pro-
cessing and modeling methods[11]. Subsequently, Ameer et al. compared and analyzed the performance
of different machine learning methods in air quality prediction, and explored their applications in data
processing and pollutant concentration prediction[12]. And TV Vu et al. also successfully used machine
learning methods to analyze the impact of Beijing’s Clean Air Action on air quality trends, and explored
the combination of statistical analysis and predictive models[13].

The first step in data processing is cleaning and preprocessing, which aims to improve data quality and
eliminate noise and missing values in sensor data. Common methods include moving average filtering,
which can smooth short-term data fluctuations and make the trend of pollutant concentration changes
clearer. In terms of handling missing data, linear interpolation and spline interpolation are widely used
to fill incomplete data and ensure data continuity and integrity. These fundamental treatments not only
enhance the reliability of analysis, but also lay a solid foundation for subsequent data modeling and
prediction. However, the limitation of traditional data cleaning methods is that they cannot distinguish
between useful information in signals and potential noise in complex pollutant patterns. For example, a
simple moving average may lead to excessive smoothing of key pollutant fluctuations and loss of impor-
tant abnormal change signals[14][15].

After data preprocessing, feature extraction and dimensionality reduction techniques become key steps
for efficiently processing complex indoor air quality data. Principal Component Analysis (PCA) is a
common dimensionality reduction technique that reduces data dimensions, highlights key features, and
effectively reduces computational complexity[16]. It is particularly suitable for high-dimensional and
multivariate air quality monitoring data. In addition, time series feature extraction technology can help
identify key patterns of pollutant changes, extract features such as mean, standard deviation, daily peak,
etc., thereby revealing the periodic changes in pollutant concentration and providing accurate input for
subsequent modeling. However, the application of PCA and other methods also has certain shortcomings,
mainly manifested in their insufficient ability to model the nonlinear relationships between data features,
and their inability to capture potential nonlinear interaction effects in complex dynamic environments.

Data modeling and prediction are the core components of traditional indoor air quality data processing.
At this stage, statistical models and classical machine learning algorithms played an important role. The
Autoregressive Integral Moving Average Model (ARIMA) is a classic time series analysis tool that can
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effectively capture trends and seasonal fluctuations in pollutant concentrations. This model performs par-
ticularly well for air pollutants with significant periodic changes, such as PM2.5 and VOCs. In addition,
support vector machine (SVM) regression performs outstandingly in handling complex and dynamic pol-
lutant concentration prediction tasks due to its powerful nonlinear modeling ability. However, the short-
comings of these traditional modeling methods lie in their poor adaptability to high-dimensional complex
environments. And after H Yao et al. found that, ARIMA models require strict assumptions about the
stationarity of data and have limited performance for long-term forecasting. Although support vector
machines can capture some nonlinear relationships, they require manual definition of kernel functions,
which increases the complexity of feature design[17][18][19].

In practical applications, although traditional methods perform well in specific scenarios, they face chal-
lenges in dealing with dynamic changes and processing heterogeneous data from multiple sources. For
example, in formaldehyde concentration prediction, simple moving averages and ARIMA models may
lack responsiveness to sudden events (such as sudden release from high pollution sources), resulting in
prediction delays or significant errors. In PM2.5 concentration prediction, the combination of princi-
pal component analysis and support vector regression can improve prediction accuracy, but its ability to
handle complex noise interference and potential feature interactions in sensor data is limited.

Traditional methods heavily rely on manually designed features in data cleaning, feature extraction, and
modeling, which limits their ability to recognize complex pollution patterns due to their passivity. In
addition, traditional methods are mostly static analysis methods that cannot dynamically respond to rapid
changes in indoor environments. This limitation is increasingly prominent in the modern, multivariate,
and highly dynamic indoor environment management needs[20][21].

To address these issues, the development of modern technology has provided new solutions to the short-
comings of traditional methods. For example, deep learning models can better capture the nonlinear
relationships between complex data through automated feature extraction techniques, improving the ro-
bustness and accuracy of predictions. In addition, by combining real-time sensors and IoT technology,
modern methods can achieve dynamic monitoring and rapid response, making indoor air quality manage-
ment more efficient and accurate. Although traditional methods have laid the theoretical and practical
foundation for IAQmanagement, the introduction of modern methods has opened up new possibilities for
further optimizing air quality management. By integrating traditional and modern technologies, indoor
air quality management will become more intelligent in the future, providing humans with a healthy and
safe living and working environment[22][23]

2.1.2 Research Status of Deep Learning in Indoor Air Quality Prediction

In the field of indoor air quality prediction, different models have played important roles in different
historical stages, from early statistical models to recent deep learning models. The continuous advance-
ment of these technologies has promoted the precision and intelligence of air quality management. The
following is an analysis of the contributions, advantages, and disadvantages of the main models in indoor
air quality prediction.

In the early days, the Seasonal Autoregressive Integral Moving Average (SARIMA) model was a classic
method for time series forecasting, widely used to model the periodic changes in indoor air quality. J.
Dutta proposed the use of SARIMA for predicting indoor air pollutant concentrations (such as PM2.5 and
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CO�) and analyzed its advantages and disadvantages in time series forecasting, indicating that SARIMA
can effectively capture the seasonal characteristics of pollutant concentrations (such as PM2.5 and CO
�), providing reliable results for short-term forecasting[24][25]. However, it requires high stability of
the data, complex differential processing, and difficulty in modeling nonlinear relationships, which limits
its performance in long-term forecasting.

With the increasing demand for dynamic system analysis, Markov models (MM) have been introduced
into the field of air quality prediction. NN Zakaria uses Markov models to analyze the transition prob-
abilities of pollution states (such as ”excellent”, ”good”, ”poor”), which is suitable for modeling the
dynamic evolution process of air quality[26][27]. It has high computational efficiency and can perform
long-term trend analysis, but due to the assumption that the future state depends only on the current state,
this model is difficult to capture complex temporal dependencies. In addition, MM lacks the ability to
model continuous values, which limits its application in concentration prediction.

Subsequently, support vector machine (SVM), as a classic machine learning method, has shown outstand-
ing performance in air quality prediction due to its powerful nonlinear modeling ability. Zhou and Lai
proposed using SVM for PM2.5 concentration prediction, emphasizing the applicability of the model in
complex environments and improving its time series adaptability[28][29]. SVM can effectively capture
the complex nonlinear relationship of pollutant concentration with the help of kernel functions, especially
suitable for small sample data environments. However, SVM is sensitive to the selection of parameters
and kernel functions, the tuning process is complex, and its performance is limited when dealing with
large-scale data.

At the same time, Gaussian Process (GP), as a Bayesian non parametric method, has also been studied
by Y Zhu et al. applied it to air quality prediction[30][31][32]. GP provides the ability to quantify model
uncertainty and is suitable for capturing the randomness and nonlinear features in pollutant concentra-
tions. Its advantage lies in providing a prediction interval, making it very valuable for risk assessment.
However, GP has a high computational complexity, making it difficult to scale to large-scale datasets,
and the model training time is relatively long.

In the process of gradually intelligentizing air quality prediction, rule-based tree models such as M5P tree
model have been used by Alsultanny and Esmaeilbeiki et al. to predict the trend of air pollutant concen-
tration due to their fast modeling ability[33][34]. M5P combines regression trees with linear regression
and performs well in capturing local trends in air pollutant concentrations. Its model structure is easy
to explain and suitable for real-time prediction, but its performance is slightly inadequate when dealing
with nonlinear complex relationships.

The rise of artificial neural networks (ANN) and backpropagation neural networks (BPNN) has intro-
duced more powerful nonlinear modeling capabilities for air quality prediction. ANN can simultaneously
process multidimensional features and is suitable for regression tasks with complex data. However, due
to the large number of model parameters, it requires a large amount of data and is prone to overfitting
problems. As an implementation of ANN, BPNN improves prediction accuracy by optimizing weights
through error backpropagation. Therefore, Li et al. proposed a BPNN model that combines adaptive
multi-objective optimization to simultaneously predict and control indoor CO � and PM2.5 concen-
trations, and analyzed the performance of BPNN in dynamic prediction[35][36]. However, BPNN has
limited performance in processing time series data as it fails to effectively model temporal dependencies.
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The emergence of Recurrent Neural Networks (RNNs) has made up for the above shortcomings, as they
capture short-term dependencies in time series through a cyclic mechanism and perform excellently in
time series modeling of indoor air quality. However, RNNs suffer from gradient vanishing problems in
long-term dependency modeling, which limits their performance. This problem has been well solved in
Long Short Term Memory (LSTM) networks, and Rahim studied the performance of a prediction model
combining LSTM and GRU in indoor air quality dynamic monitoring, especially in capturing time series
dependencies[37]. The gating mechanism of LSTM enables it to remember long-term dependencies
while making flexible responses to dynamic changes in pollutant concentrations. Gated Recurrent Unit
(GRU), as a simplified version of LSTM, achieves a good balance between computational efficiency and
modeling capability, and is another commonly used time series prediction model. Gurumoorthy explores
the combination of bidirectional GRU models and optimization algorithms for an efficient solution to air
quality prediction[38].

Random Forest (RF), as an ensemble learning algorithm, improves the robustness and accuracy of pre-
dictions by combining multiple decision trees. It has strong ability to process high-dimensional features
and can effectively capture nonlinear relationships. Tagliabue combines IoT networks and uses random
forests to predict indoor air quality in educational facilities, demonstrating its superior performance in
data-driven methods[39]. However, the interpretability of random forests is poor, and the application of
the model in real-time prediction scenarios is limited to some extent.

From traditional statistical models to modern deep learning techniques, each model has its unique ad-
vantages and application scenarios in predicting indoor air quality. However, these models also have
their own shortcomings, such as the limitations of SARIMA and MM in handling nonlinear data, the
computational bottlenecks of SVM and GP in large-scale data, and the high demand for data volume and
computing resources in deep learning models. Therefore, in future research, combining the advantages of
different models to formmulti model collaboration or hybrid methodsmay be an effective path to improve
the accuracy and efficiency of air quality prediction. Through continuous technological advancements,
indoor air quality management will be able to better meet the health and environmental needs of modern
society[40][41].

2.2 Analysis of the Advantages of Transformer Networks

The Transformer model initially achieved significant results in the field of natural language processing,
but in recent years, its application in time series prediction has gradually received attention. As one of the
important scenarios for time series modeling, indoor air quality prediction has brought many advantages
to this field with the introduction of Transformer. Through its unique self attention mechanism and effi-
cient parallel computing architecture, Transformer overcomes many limitations of traditional models and
provides a more accurate and flexible solution for predicting pollutant concentrations in complex indoor
environments[42][43][44][45].

The core advantage of Transformer lies in its self attention mechanism. Traditional time series models,
such as RNN and LSTM, gradually process time step information in a cyclic manner. Although they can
capture temporal dependencies in the sequence, they are easily limited by the vanishing gradient prob-
lem when modeling long-term dependencies. The self attention mechanism of Transformer allows the
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model to directly calculate the correlation between any time step in the sequence, thereby efficiently cap-
turing the long-term and short-term dependencies of pollutant concentration over time. Dong proposed
a short-term air quality prediction model that combines EMD and Transformer, and combined it with
bidirectional LSTM to improve modeling accuracy[46]. This characteristic is particularly important in
indoor air quality prediction, as pollutant concentrations are not only influenced by short-term indoor ac-
tivities such as cooking and cleaning, but also closely related to long-term trends such as seasonal changes
and ventilation patterns. The self attention mechanism can dynamically adjust the level of attention to
different time steps, providing a more comprehensive information basis for prediction[47].

Transformers also have significant advantages in handling multidimensional inputs and complex nonlin-
ear relationships. Indoor air quality data typically includes multiple sensor inputs, such as CO �, PM2.5,
humidity, and temperature. The relationship between these variables may exhibit highly nonlinear and
time-varying characteristics. Transformer can process information from different feature dimensions in
parallel through its multi head self attention mechanism, capturing complex interaction relationships be-
tween variables. Meanwhile, compared with traditional machine learning methods such as support vector
machines or Gaussian processes, Transformer does not rely on manually designed features, but automat-
ically extracts potential patterns from data through deep learning, thereby improving the accuracy of
predictions[48][49].

Parallel computing is another significant advantage of Transformer over recursive models. Traditional
RNN and LSTM models, due to their cyclic structure, make it difficult to fully parallelize the compu-
tation process of time series, resulting in low training efficiency. Especially when processing long time
series data, the computation time will significantly increase. Transformer abandons the cyclic structure
and adopts a fully parallel computing architecture, preserving the sequential information of time series
through positional encoding. This design greatly improves the computational efficiency of the model,
enabling it to process large-scale indoor air quality data and support real-time prediction.

In addition, the flexibility of Transformer is also reflected in its scalability and interpretability. By intro-
ducing multi-layer Transformer Encoder and Decoder structures, the model can adapt to prediction tasks
of different complexities, such as short-term forecasting and long-term trend modeling. At the same
time, the self attention weight matrix provides natural interpretability, which can intuitively display the
degree of attention the model pays to different time steps and features, providing important references
for studying the key influencing factors of indoor air pollution[50][51][52].

Overall, the Transformer model provides a new technological path for indoor air quality prediction
through its self attention mechanism, efficient parallel computing, and powerful feature extraction ca-
pabilities. It can not only handle multivariate data modeling in complex environments, but also meet
real-time prediction needs through efficient computing methods. In the future, with the expansion of in-
door air quality data scale and the maturity of model optimization technology, the application potential of
Transformer in this field will be further released, providing strong technical support for intelligent indoor
environment management[53].
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3 Research Methodology

In this chapter, I will provide a detailed introduction to the experimental methodology of this research.
The objective of the experiment is to accomplish indoor air quality prediction based on deep learning
models, with the core focus on the model training process. Specifically, the preprocessed data will be
divided into training and validation sets according to a certain ratio, and then fed into the constructed
Transformer-based neural network variant, ETSformer, for training. During the training process, key
factors such as model parameter adjustment, optimizer configuration, and loss function selection will
be carefully tuned, combined with validation set results for performance evaluation and optimization, in
order to prevent overfitting and other adverse effects. Ultimately, through multiple rounds of training and
validation, the goal is to obtain an indoor air quality prediction model with good generalization ability
for future time windows.

3.1 Training Framework Overview

The training process of the ETSformer model proposed in this study adopts a modular design, which
consists of five main stages: parameter configuration, data loading and preprocessing, model construc-
tion, training control, and model evaluation. The complete training framework is illustrated in Figure ??,
where each component collaborates to achieve effective modeling and prediction of time series data.

First, the training parameters are uniformly defined through the argparse interface, including the number
of encoder and decoder layers, model dimensionality, number of attention heads, input and prediction
sequence lengths, optimizer type, learning rate scheduling strategy, number of training epochs, and the
early stopping mechanism. These parameter settings are organized in the run.py file, providing a unified
entry point and control basis for the entire training workflow.

In the data processing stage, the framework calls the data_provider interface to construct a customized
Dataset_Custom dataset based on the specified featuresmode and prediction target. This dataset class
performs data loading, splits the data into training, validation, and testing sets with a ratio of 7:1:2, and
applies standardization using the StandardScaler to the input features. Moreover, frequency-aware
time feature encoding is enabled in the system, extracting periodic time information including hour, day
of the week, and month.

For model construction, the Exp_Main class calls the _build_model() method to initialize the ETS-
former architecture. The model consists of an input embedding layer, stacked encoders, and decoders.
The encoder integrates an exponential smoothing module for growth trend modeling and applies Fourier
transform for seasonal component extraction. Meanwhile, the decoder introduces a damping mechanism
to achieve extrapolation for future time steps.

The training process is executed by the exp.train() method. In each training epoch, the model per-
forms forward propagation and loss calculation on the training set, followed by parameter updates using
a customized Adam optimizer. During training, the validation set is periodically used to monitor model
performance. If the validation error shows no significant decrease over consecutive epochs, the early
stopping mechanism is triggered to prevent overfitting. Both training and validation losses are fully
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Figure 3.1: Training Process Flowchart

recorded for subsequent analysis and visualization.

After the model training is completed, evaluation is conducted on the test set. The predicted results are
output, and several error metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Squared Per-
centage Error (MSPE), are calculated to comprehensively reflect the model’s prediction accuracy and
generalization performance in practical tasks.

3.2 Dataset Description and Preprocessing

The air quality dataset used in this study was collected from a classroom (room001) located in the Drakos
building at Cyprus University of Technology. This classroom is equipped with high-precision environ-
mental sensors capable of real-time monitoring of several key indoor air quality parameters. The sensor
system has been continuously operating 24 hours a day from September 1, 2023, to February 11, 2025,
ensuring the completeness and continuity of the time series data. All collected data are recorded at fixed
time intervals and stored in CSV file format, which facilitates subsequent data loading and processing.

The monitored air quality parameters include temperature, humidity, CO2 concentration, and PM2.5 con-
centration (particulate matter). Each data record contains a timestamp field, which identifies the specific
sampling time. These parameters cover the major physical and chemical factors affecting indoor air qual-
ity and exhibit certain periodic variation patterns, reflecting the dynamic processes influenced by human
activities, ventilation conditions, and external environmental changes.

Considering the differences in physical significance and fluctuation patterns of various air quality indica-
tors, this study constructs four independent datasets for each monitored parameter. Specifically, separate
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training datasets are established for temperature, humidity, CO2 concentration, and PM2.5 concentra-
tion, with each dataset focusing on a single variable as the prediction target. This design forms univariate
time-series forecasting tasks, which not only facilitate an in-depth evaluation of the ETSformer model’s
predictive performance across different air quality features but also avoid potential interference between
variables, thereby improving the focus and generalization ability of the training process.

Through the above data collection strategy, this study obtained a high-resolution, multi-feature indoor air
quality time-series dataset, providing a reliable foundation for subsequent model training and evaluation.

In the design of the prediction tasks, univariate time-series forecasting is adopted for each air quality
indicator. The historical observations of a single target variable serve as the input to predict its future
values over several time steps. Four independent datasets are constructed with target variables including
temperature, humidity, CO2 concentration, and PM2.5 concentration, ensuring the mutual independence
of each forecasting task during data preparation and model training.

During the data loading and preprocessing stage, the forecasting task type is set as univariate prediction
(features = 'S'), where both the input features and the prediction target belong to the same variable.
Specifically, in each task, themodel takes the historical sequence of the target featurewithin a defined time
window as input and outputs the predicted values of the same feature for future time steps. The parameter
target = 'tem' is used to specify temperature as one of the prediction targets, while humidity, CO2

concentration, and PM2.5 concentration are designated by target = 'hum', target = 'CO2', and
target = 'pm2.5', respectively, for independent modeling.

This univariate prediction task design allows for a clear evaluation of the ETSformer model’s fitting
ability and forecasting performance across different air quality indicators. At the same time, it avoids
feature redundancy or variable coupling issues that may arise in multivariate tasks, making the results of
each task more controllable and the evaluation criteria more consistent.

In the preprocessing stage, the original time-series data are split into training, validation, and testing
sets using a fixed ratio of 70%, 10%, and 20%, respectively. The splitting boundaries are determined
based on chronological order to ensure that the validation and testing data strictly follow the training
data, preventing future information leakage and complying with the basic assumptions of time-series
forecasting tasks.

To improve the stability of model training and accelerate convergence, the input features of each dataset
are standardized. The standardization parameters, including the mean and standard deviation, are calcu-
lated based on the training set using the StandardScaler tool. The same transformation is then applied
to the validation and testing sets, ensuring the rationality of the data processing procedure and the gener-
alization ability of the model.

Through this data splitting and standardization approach, this study ensures sufficient utilization of the
training data while properly isolating the validation and testing data, providing a reliable foundation for
performance evaluation and generalization assessment during the model training process.

In time-series forecasting tasks, timestamp information often contains rich periodic patterns, such as
hourly, weekly, and monthly cycles, which may significantly influence the prediction target. To fully ex-
ploit the periodic features embedded in the time information, this study introduces a time feature embed-
ding mechanism during the data preprocessing stage to enhance the model’s ability to perceive temporal
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dynamics.

Specifically, a frequency-based time feature encoding method is adopted during data loading. This
method extracts multiple time-related features from each timestamp, including hour of the day, day of
the week, day of the month, and month of the year. These time features are embedded as continuous
numerical inputs and combined with the original observation data to serve as the input features for the
ETSformer model.

Given that the data collection scenario is situated in a university classroom, the indoor environmental
parameters (such as temperature, humidity, CO2 concentration, and PM2.5 concentration) are influenced
not only by daily diurnal cycles but also by factors such as academic schedules, seasonal variations, and
differences between weekdays and weekends. For example, fluctuations in occupancy levels at different
times, seasonal climate changes, and usage patterns between working days and weekends may lead to
complex periodic and non-stationary variations in air quality indicators. Therefore, the refined time
feature encoding design enables themodel to effectively capture these potential fluctuation patterns across
multiple time scales, enhancing the modeling capacity and prediction accuracy for air quality dynamics.

The introduction of time feature embeddings not only strengthens the model’s ability to characterize
temporal dependencies but also provides an improved input representation for the ETSformermodel when
handling indoor air quality prediction tasks with strong periodicity and multi-scale temporal features.

3.3 Model Architecture: ETSformer

This study adopts a time-series forecasting model based on the ETSformer architecture, which enhances
the traditional Transformer structure by introducing a time-series decomposition mechanism. The model
explicitly decomposes the input sequence into three components: trend (growth), seasonality, and level,
thereby improving its capability to model complex temporal data. The design of ETSformer is inspired
by the classical Exponential Smoothing (ETS) method and integrates the powerful representation ability
of deep learning, achieving a balance between forecasting stability and model interpretability.

In the field of time-series analysis, ETS decomposition models commonly use the following additive
formulation to represent time-series signals:

yt = lt + st + gt, (3.1)

where yt denotes the observed value, lt represents the level component, st denotes the seasonality com-
ponent, and gt is the trend (growth) component. Based on this formulation, ETSformer implements a
learnable decomposition process through deep learning and integrates it into the Transformer architec-
ture, combining strong representation power with physical interpretability.

The overall architecture of ETSformer consists of an input embedding layer, stacked encoders, decoders,
and a linear output layer. The encoder is responsible for decomposing the input historical sequence into
trend and seasonal components. During the prediction phase, the decoder introduces a damping control
mechanism to smooth the extrapolation of the trend component, preventing excessive amplification or
oscillation of the trend during forecasting.

In particular, ETSformer integrates a Fourier transform-based seasonality modeling module and an ex-
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Figure 3.2: ETSformer Model Architecture Diagram

ponential smoothing-based growth trend modeling module within each encoder layer. This design effec-
tively captures the periodic fluctuations and non-stationary changes present in time-series data.

Such an architecture not only enhances the model’s capability in modeling periodic and trending signals
but also improves its robustness against abnormal fluctuations and complex environmental disturbances.
By maintaining the strong learning capacity of the Transformer’s self-attention mechanism while incor-
porating principles from classical time-series analysis, ETSformer achieves a balance between model
performance and interpretability.

In the ETSformer model, the input embedding layer is responsible for mapping the raw time-series data
into a high-dimensional feature space, thereby enhancing the model’s capability to represent the input
sequence. The design of this embedding layer is based on one-dimensional convolution (Conv1D) op-
erations, followed by a Dropout layer to prevent overfitting and improve the generalization performance
of the model.

Specifically, the input embedding layer applies sliding convolutions along the temporal dimension of the
sequence using one-dimensional convolution kernels. This operation transforms the single-dimensional
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input features (such as temperature, humidity, CO2 concentration, or PM2.5 concentration) into high-
dimensional vectors with a feature dimension of dmodel. This process not only expands the expressive
capacity of the input features but also introduces local receptive fields, enabling the model to better
capture local variation patterns during the encoder stage. The convolution layer weights are initialized
using the Kaiming Normal distribution to ensure stable gradient propagation at the early stage of training.

After the convolution operation, a Dropout layer is connected to randomly deactivate a portion of neuron
activations, aiming to suppress overfitting. The dropout rate can be adjusted as a hyperparameter and
is set to 0.3 in this study. This design further enhances the robustness of the model during the training
process.

Through the embedding mechanism described above, the ETSformer model performs sufficient feature
mapping and regularization before the input sequence enters the encoder module, providing a solid feature
foundation for the subsequent trend decomposition and seasonality modeling.

The encoder, as a core component of the ETSformer model, is responsible for feature extraction and
trend decomposition of the input sequence. This part adopts a multi-layer stacked structure, where each
layer contains three functional modules: seasonality modeling, growth trend modeling with exponen-
tial smoothing, and level updating, which correspond to the FourierLayer, GrowthLayer (integrated with
Exponential Smoothing), and LevelLayer, respectively. This design not only preserves the powerful
learning capability of the multi-head attention mechanism in the traditional Transformer but also incor-
porates the idea of trend decomposition from time-series analysis, achieving an effective integration of
physical modeling and deep learning.

Within the encoder of the ETSformer model, the periodic components of the input sequence are first
extracted using the FourierLayer. This module is based on the Fast Fourier Transform (FFT) and selects
the principal frequency components for modeling, effectively capturing the seasonal variation patterns in
the time-series data. Specifically, the extraction of the seasonality component can be expressed as:

st =
K∑
k=1

Ak cos (2πfkt+ ϕk) , (3.2)

where Ak represents the amplitude, fk denotes the frequency, ϕk is the phase, and K is the number of
selected principal frequency components. This design allows the model to flexibly adapt to multi-scale
fluctuations in air quality data, such as daily cycles and seasonal changes.

The extracted seasonality component is subsequently used to correct the residual part of the original
input sequence. After this, the GrowthLayer, combined with the exponential smoothing mechanism,
models the growth trend of the residual component. The exponential smoothing layer applies a recursive
weighted averaging process to the historical growth changes, which captures long-term trend variations
while suppressing short-term fluctuations, thus enhancing themodel’s adaptability to non-stationary time-
series data. Additionally, this part incorporates a multi-head mechanism to improve the trend modeling
capability across different subspaces. The recursive formula for the trend component is defined as:

ĝt = α · rt + (1− α) · ĝt−1, (3.3)

where rt = yt−st represents the deseasonalized residual, and α is the smoothing factor, which is learned
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by the neural network and constrained within a reasonable range using the sigmoid activation function.

Finally, the LevelLayer serves as the level updating module in each encoder layer, dynamically adjusting
the level component based on the current outputs of the seasonality and trend components. This de-
sign ensures a proper balance among the seasonality, trend, and level components, preventing any single
component from dominating the overall prediction results.

Through the stacking of multiple encoder layers and the intra-layer trend decomposition mechanism,
ETSformer achieves joint modeling of periodicity, trend, and level components while extracting multi-
scale features from time-series data. This structural design provides a solid feature foundation for the
prediction extension performed by the decoder and significantly enhances the model’s predictive capa-
bility and generalization performance on complex air quality data.

In the ETSformermodel, the decoder is mainly responsible for extending the sequence prediction to future
time steps. The design of the decoder inherits the trend decomposition approach from the encoder and
introduces a damping mechanism during the extrapolation process to suppress the excessive growth of the
trend component in long-term forecasting, thereby ensuring the stability and rationality of the prediction
results. The damping mechanism controls the extrapolation of the trend component using the following
decay formula:

g̃t+h = ĝt · λh, (3.4)

where λ ∈ (0, 1) is the damping factor, which is learned adaptively during the training process, and h

denotes the prediction horizon. This design effectively prevents the uncontrolled amplification of the
trend component in long-term predictions and ensures the stability of the model output.

Meanwhile, the seasonality component in the decoder directly inherits the periodic modeling results from
the encoder and is truncated and extended according to the prediction horizon. The decoder processes
the growth trend component and the seasonality component separately and then maps them to the final
output space through linear projection. These outputs are combined with the level component generated
by the encoder to form the final prediction result. By jointly considering the trend, seasonality, and level
components, the final output of the ETSformer model can be expressed as:

ŷt+h = lt + g̃t+h + st+h, (3.5)

which preserves the original ETS decomposition idea while enhancing the structural interpretability of
the model.

Firstly, the encoder of ETSformer integrates the multi-head attention mechanism with the trend model-
ing module, enabling adaptive modeling of abnormal fluctuations. The multi-head attention mechanism
captures sequence features across different subspaces, and its attention weights are calculated as follows:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (3.6)

where Q, K, and V denote the query, key, and value matrices, respectively, and dk represents the di-
mensionality of the key. The multi-head mechanism applies this computation in parallel across multiple
subspaces, enhancing the learning capacity across different feature dimensions. At the same time, the
exponential smoothing mechanism suppresses short-term noise, improving the model’s performance on
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non-stationary time-series data. This design prevents excessive sensitivity to outliers and enhances the
robustness of the prediction results.

Secondly, the decoder introduces a damping factor in the extrapolation of the trend component to control
the growth process and prevent uncontrolled amplification of the trend during long-term forecasting. The
damping factor is a learnable parameter that is adaptively adjusted during training according to the data
characteristics, ensuring the stability and rationality of prediction extension. Specifically, the recursive
relationship for the multi-step extrapolation of the trend component is given by:

g̃t+h = g̃t+(h−1) · λ, (3.7)

where λ ∈ (0, 1) is the damping factor that controls the growth rate during extrapolation and ensures the
gradual attenuation of the trend component.

In addition, the seasonality modeling part employs the FourierLayer to extract periodic features directly in
the frequency domain. Comparedwith window-based periodicmodelingmethods, this approach provides
higher modeling flexibility and efficiency. This design enables the model to flexibly capture the periodic
fluctuations in air quality data caused by various factors such as diurnal cycles, seasonal changes, and
academic activity schedules. Specifically, the Fourier transform process is defined as:

X(f) =

T−1∑
t=0

xt e
−j2πft/T , (3.8)

where X(f) denotes the frequency domain representation, xt is the time-series input, and T is the se-
quence length. By selecting the principal frequency components for reconstruction, the model effectively
captures the seasonal characteristics of the sequence.

Finally, the overall architecture of ETSformer balances the flexibility of deep learning models with the
interpretability of time-series decomposition methods. The decomposition of the trend, seasonality, and
level components not only enhances the model’s predictive performance but also provides explicit physi-
cal meaning for subsequent result analysis and anomaly detection. These design advantages enable ETS-
former to achieve stable, accurate, and generalizable performance in air quality prediction tasks across
multiple time scales and complex environments.

In summary, ETSformer enhances its forecasting capability while ensuring structural interpretability and
training stability through the introduction of trend decomposition, seasonality modeling, and damping
mechanisms within the encoder-decoder framework. This architecture effectively adapts to the trend
variations, periodic fluctuations, and abnormal disturbances present in air quality prediction tasks, demon-
strating strong generalization ability and application flexibility. Based on this design, ETSformer pro-
vides a solid model foundation for the subsequent training configuration, experimental process, and per-
formance evaluation.

3.4 Training Configuration and Hyperparameters

In the model training process, reasonable hyperparameter configuration plays a crucial role in improving
prediction performance, accelerating convergence, and preventing overfitting. In this study, a set of

17



training hyperparameters is carefully designed and configured for the ETSformer model based on the task
requirements and structural characteristics of the model. These settings cover structural parameters of the
model, input and output sequence lengths, optimizer selection, learning rate scheduling strategies, training
control mechanisms, and data augmentation methods. This configuration scheme not only ensures the
adaptability and stability of the model across different air quality prediction tasks but also provides a
consistent training environment and comparison baseline for subsequent experimental evaluation.

This section introduces the configuration details of each component mentioned above, including model
structure parameters, input and output data formats, optimizer selection and learning rate adjustment
strategies, training process control mechanisms, and data augmentation designs. These elements together
support the effective training of the ETSformer model and the enhancement of its performance in multi-
target air quality forecasting tasks.

In terms of model architecture design, ETSformer adopts a multi-layer stacked encoder-decoder struc-
ture to improve its capability for feature extraction and representation in complex time-series modeling
scenarios. The core hyperparameters include the model hidden dimension (dmodel), the number of atten-
tion heads (nheads), the number of encoder layers (elayers), the number of decoder layers (dlayers), and the
number of selected frequency components in the Fourier transform module (K). In the experiments con-
ducted in this study, these parameters are set as follows: dmodel = 256, nheads = 4, elayers = dlayers = 3,
and the Top-K = 1 principal frequency component is selected in the Fourier layer.

Among these parameters, dmodel determines the representation capacity of each time step in the high-
dimensional feature space—the higher the dimension, the richer the features the model can learn, though
it also increases computational complexity. The parameter nheads specifies the number of parallel at-
tention heads in the multi-head attention mechanism, which allows the model to independently learn
sequence features in different subspaces, thereby enhancing its ability to capture complex dynamic vari-
ations. Specifically, ETSformer applies the following attention computation in each attention head to
perform feature weighting over the input sequence:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (3.9)

whereQ,K, and V represent the query, key, and value matrices, respectively, and dk denotes the dimen-
sionality of each attention head. The multi-head attention mechanism applies nheads parallel subspaces,
enabling the model to capture and fuse features across different dimensions effectively.

The parameters elayers and dlayers correspond to the number of encoder and decoder layers, respectively.
Increasing the number of layers helps the model extract multi-scale features from time-series data at
deeper levels. The parameter K controls the number of principal frequencies selected in the Fourier-
Layer for seasonal component modeling. A properly configured K value facilitates effective extraction
of seasonality while avoiding interference from high-frequency noise, thus improving the model’s per-
formance.

Specifically, the FourierLayer for seasonality modeling performs frequency-domain decomposition of
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the time-series input using the following expression:

X(f) =

T−1∑
t=0

xt e
−j2πft/T , (3.10)

whereX(f) denotes the frequency-domain representation, xt is the input time-series signal, and T is the
sequence length.

st =

K∑
k=1

Ak cos (2πfkt+ ϕk) , (3.11)

where Ak represents the amplitude, fk is the frequency, and ϕk is the phase. This design enables the
model to focus on the primary periodic components, thereby enhancing the effectiveness of seasonality
modeling.

The above configuration of structural parameters comprehensively considers the model complexity, fea-
ture dimensionality of the prediction tasks, and training efficiency, providing a stable modeling founda-
tion for ETSformer.

In time-series forecasting tasks, the configuration of the input sequence length and prediction sequence
length directly affects the model’s performance. If the input window is too short, it may fail to fully utilize
historical information; conversely, if it is too long, it may introduce irrelevant noise and increase the
learning burden of the model. Based on the time resolution and variation characteristics of the air quality
monitoring data, this study reasonably configures the input and output sequence lengths to balance the
utilization of historical information and the timeliness of forecasting. Specifically, the input and output
window design of ETSformer satisfies the following relationship:

X = {xt−seq_len+1, . . . , xt}, Y = {yt+1, . . . , yt+pred_len}, (3.12)

whereX represents the input historical window, andY denotes the prediction target window. In this study,
the input sequence length (seq_len = 60), label length (label_len = 0), and prediction sequence length
(pred_len = 12) are fixed for the multi-step forecasting tasks of air quality target variables.

During the model optimization process, this study employs a custom-designed Adam optimizer to update
the parameters of ETSformer. Unlike the standard single-parameter group configuration, the parameters
of ETSformer are divided into three groups according to their functional differences: main network pa-
rameters (nn), smoothing weights (smoothing), and damping factors (damping). Separate learning rates
are assigned to each parameter group. This multi-parameter-group optimization strategy enables flexible
step-size adjustments according to the learning requirements of each submodule, thereby enhancing the
overall training effectiveness.

Specifically, the main network parameters are updated using the base learning rate (learning_rate),
while the smoothing weights and damping factors are assigned learning rates set to 100 times the base
learning rate. This design considers the direct impact of smoothing weights and damping factors onmodel
stability, requiring faster convergence during the early stages of training to prevent excessive fluctuations
in the trend and seasonality components at initialization. The optimizer implementation is based on a
custom Adam class, retaining the classical momentum mechanism and second-moment estimation of the
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original Adam optimizer, ensuring smooth and stable parameter updates.

The parameter update process follows the standard Adam optimization formulas:

θ(t+1) = θ(t) − η · mt√
vt + ϵ

, (3.13)

where θ(t) denotes the model parameters at the current iteration, η is the learning rate,mt represents the
first-order moment (the mean of gradients), vt represents the second-order moment (the mean of squared
gradients), and ϵ is a small constant added to prevent division by zero.

For learning rate scheduling, this study adopts the exponential_with_warmup strategy. In this ap-
proach, a certain number of warm-up epochs are set at the early stage of training, during which the
learning rate increases linearly from a predefined minimum learning rate (min_lr) to the base learning
rate. This design helps mitigate the instability caused by gradient oscillations at the beginning of training.
After the warm-up phase, the learning rate decays exponentially, which enables fine-tuning of the model
parameters during the later training stages and promotes stable convergence while making full use of the
training data. The specific formula for learning rate adjustment is given as follows:

ηt =

ηmin +
t

Twarmup
(η0 − ηmin) , t ≤ Twarmup,

η0 · γ(t−Twarmup), t > Twarmup,
(3.14)

where ηt denotes the learning rate at the t-th iteration, η0 is the base learning rate, ηmin is the minimum
learning rate, γ is the exponential decay factor (typically set to 0.5), and Twarmup is the number of warm-up
iterations.

The combination of the multi-parameter-group optimizer design with the exponential decay learning rate
adjustment mechanism and warm-up scheduling ensures stable convergence and efficient learning dur-
ing the training of ETSformer. This approach effectively accommodates the differentiated update speed
requirements of various model components.

During the training process, to further enhance model stability and prevent overfitting, this study intro-
duces the EarlyStopping strategy along with a data augmentation mechanism. EarlyStopping, as a com-
monly used training control method, monitors the changes in validation loss over consecutive epochs to
determine whether the model has reached a performance saturation stage. If the validation loss does not
improve within a predefined number of patience epochs, the training process is terminated early to avoid
performance degradation caused by overfitting. In this study, the patience value for EarlyStopping is set
to 10, meaning that if the validation loss fails to decrease for 10 consecutive training epochs, training is
stopped and the best-performing model parameters are saved.

Specifically, the decision logic of EarlyStopping can be described as follows: let the validation loss at
the t-th epoch be L(t). Training is terminated early when the following condition is satisfied:

L(t) > L(t− p), for p = 1, 2, . . . , patience, (3.15)

whereL(t) represents the validation loss at the t-th epoch, and patience refers to the number of tolerated
waiting epochs (set to 10 in this study). This mechanism ensures training efficiency while effectively
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suppressing the risk of overfitting that may occur in the later stages of training.

Regarding data augmentation, considering that real-world air quality monitoring data may contain noise
disturbances and abnormal fluctuations, this study introduces standard deviation perturbation (Standard
Deviation Perturbation) during the training phase. Specifically, the Transform operation with sigma
= 0.2 is applied for random perturbation-based augmentation. This method enhances the diversity of
training samples by applying random jittering, scaling, and shifting to the input data, while maintaining
the overall data distribution. This design improves the model’s robustness to input noise and outliers.
The perturbation process can be expressed as:

x′t = (xt · (1 + ϵscale)) + ϵshift + ϵjitter, (3.16)

where xt is the original input sample, x′t is the augmented sample, and ϵscale, ϵshift, and ϵjitter represent the
scaling perturbation, shifting perturbation, and jittering perturbation, respectively. All these perturbation
factors follow a normal distribution with zero mean and variance σ2, expressed as:

ϵscale, ϵshift, ϵjitter ∼ N (0, σ2). (3.17)

In this study, the perturbation strength parameter σ is set to 0.2. This design enhances the diversity and
generalization ability of model training without disrupting the primary distribution characteristics of the
data.

The combined use of EarlyStopping and data augmentation ensures training efficiency while significantly
improving the generalization capability of ETSformer in air quality prediction tasks. This approach re-
duces the model’s sensitivity to outliers and noisy data, enhancing the stability and reliability of the
training process.

In summary, this study has systematically configured and designed the training process of ETSformer
across several key aspects, including model structural parameters, input-output sequence lengths, opti-
mizer selection, learning rate adjustment strategies, training process control mechanisms, and data aug-
mentation methods. These configurations ensure that the ETSformer model achieves efficient, stable
training with strong generalization performance in air quality forecasting tasks. Through the multi-
parameter-group optimization strategy and dynamic learning rate scheduling, coordinated training across
different modules of the model is realized. Additionally, the introduction of EarlyStopping and standard
deviation perturbation-based augmentation effectively suppresses the risk of overfitting and improves the
model’s adaptability to complex environmental data.

In the multi-parameter-group optimization strategy, differentiated learning rates are set for the main net-
work parameters, smoothing weights, and damping factors. This configuration allows each module to
flexibly adjust its update speed according to its own learning requirements, further ensuring the stability
and efficiency of the model training. The dynamic learning rate scheduling is implemented through the
exponential_with_warmup strategy, where the learning rate increases linearly during the warm-up
phase to mitigate gradient oscillations at the early stage, and then decays exponentially in the later phase
to precisely control the learning rate, enhancing the training effect during convergence.

Regarding training process control, this study applies the EarlyStopping strategy to dynamically deter-
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Figure 3.3: Training process flowchart of the ETSformer model

mine whether the training has reached performance saturation based on the validation loss. Training
is terminated promptly when the model shows no improvement, preventing overfitting. The patience
parameter is set to 10, ensuring that the model is sufficiently trained within a reasonable range while
avoiding performance degradation caused by overly prolonged training.

For data augmentation, this study introduces a standard deviation perturbation-based strategy, where ran-
dom perturbations are applied to the input data during training, including jittering, scaling, and shifting.
The perturbation strength σ is set to 0.2. This design increases the diversity of the training samples with-
out altering the overall data distribution, improving the model’s robustness to outliers and noise, and
enhancing its generalization capability under complex air quality conditions.

The above training configuration lays a solid foundation for the subsequent training process, experi-
mental analysis, and performance evaluation, ensuring the scientific validity and reproducibility of the
experimental results. Through reasonable parameter configuration and optimization design, ETSformer
achieves a good balance among accuracy, stability, and training efficiency in multi-target air quality pre-
diction tasks, providing strong support for efficient and intelligent air quality management. During the
training phase, this study selects theMean Squared Error (MSE) as the loss function to measure the devia-
tion between the predicted values and the ground truth. The MSE loss function imposes a higher penalty
on large prediction errors, making it well-suited for regression-based time-series forecasting tasks. It
effectively guides the model to optimize prediction accuracy throughout the training process. The calcu-
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lation formula for the MSE loss is defined as follows:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (3.18)

where N represents the total number of prediction samples, yi denotes the true value, and ŷi is the pre-
dicted value.

During the training process, both the training loss and validation loss are recorded simultaneously to
monitor the convergence status of the model. By observing the loss curves of these two groups, it is
possible to assess the fitting performance and identify potential overfitting issues, providing a reference
for subsequent training control and evaluation.

To comprehensively evaluate the prediction performance of the ETSformer model during the testing
phase, this study employsmultiple errormetrics for quantitative analysis of the forecasting results. Specif-
ically, the evaluation includes the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Squared Percentage Error
(MSPE). The calculation formulas for these metrics are defined as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi|, (3.19)

MSE =
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2, (3.20)
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√
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yi

∣∣∣∣× 100%, (3.22)

MSPE =
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(
yi − ŷi

yi

)2

, (3.23)

where N represents the total number of prediction samples, yi denotes the true value, and ŷi is the pre-
dicted value.

The MAE reflects the overall deviation level of the model in the prediction task, while the MSE and
RMSE emphasize penalizing larger errors. RMSE has the same dimensionality as the original data,
which facilitates the interpretation of the results. MAPE and MSPE measure prediction errors in relative
terms, making them suitable for evaluating forecasting performance across different numerical scales.
The combined use of multiple metrics provides a comprehensive evaluation of the model’s predictive
capability and stability from various perspectives.

To visually illustrate the convergence process and prediction performance of the model, this study adopts
two result visualization approaches during the training and testing stages. First, the training and validation
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loss curves, as shown in Figure 3.4(a), are plotted to observe the convergence trend and evaluate the effect
of early stopping. This process is automatically implemented using the plot_loss_curve() function in
the training script, which helps determine whether the model is experiencing overfitting or underfitting.

Second, during the testing phase, the predicted values are compared with the ground truth through visual
plots, as illustrated in Figure ??(b), to directly demonstrate the fitting performance of the predictions.
This visualization is achieved using the visual() function, which plots both the prediction curve and
the actual observation curve based on the test set samples, reflecting the model’s forecasting accuracy
across different time steps.

(a) Training and validation loss curves
(b) Comparison between predicted results and ground
truth on the test set

Figure 3.4: (a) Training and validation loss curves; (b) predicted results versus ground truth for the
CO2 concentration prediction task.

In summary, this study integrates a well-designed training process, appropriate loss function selection,
comprehensive evaluation metrics, and effective result visualization methods to ensure the validity of the
ETSformermodel training and the verifiability of its forecasting performance. Throughmulti-perspective
performance monitoring and result analysis, a solid foundation is established for the subsequent presen-
tation of experimental results and comparative analysis of model performance.

3.5 Advantage Analysis of the Training Strategy

In response to the characteristics of air quality prediction tasks, including trend variations, periodic fluc-
tuations, and abnormal disturbances, this study incorporates various optimizations and innovations in
both model architecture and training strategy design. ETSformer integrates trend decomposition, sea-
sonality modeling, and smoothing damping control, which not only enhances the model’s adaptability
to complex dynamic changes at the architectural level but also improves its stability and generalization
performance through multi-parameter-group optimization, learning rate scheduling, data augmentation,
and early stopping mechanisms in the training process.

This section analyzes and summarizes the advantages of the proposed training strategy from three per-
spectives: adaptive anomaly handling capability, model interpretability, and generalization ability.

In air quality monitoring data, abnormal fluctuations or noisy samples often occur due to unexpected
events, environmental changes, or sensor errors. Traditional time-series forecasting methods typically
rely on manual data preprocessing steps, such as anomaly removal or smoothing, to reduce the impact
of such disturbances on the prediction results. However, these approaches are often based on empirical
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judgment and may compromise the balance between anomaly detection accuracy and data utilization.
Moreover, important information might be lost during the preprocessing stage.

In contrast, ETSformer incorporates an internal anomaly adaptation mechanism through the integration
of the Exponential Smoothing mechanism and the Damping Control in its structural design. The Growth-
Layer within the encoder models the trend variations through a recursive smoothing process, effectively
suppressing the amplification of sudden anomalies. Meanwhile, the DampingLayer in the decoder ap-
plies attenuation control on the extrapolated trend components during the prediction phase, preventing
abnormal values from excessively influencing future forecasts.

This structural design enables the model to automatically regulate its response to abnormal fluctuations
during training, without the need for additional anomaly filtering steps. As a result, the model achieves
inherent suppression of anomalies and enhances the robustness and stability of the overall forecasting
process.

Beyond achieving strong predictive performance, ETSformer also emphasizes model interpretability.
The encoder and decoder utilize a multi-head attention mechanism for feature extraction, offering the po-
tential for attention weight visualization. By analyzing the attention distribution, it is possible to identify
which historical time steps the model focuses on during its prediction process, providing insight into the
decision-making patterns of the model.

Compared with standard Transformer architectures that rely solely on attention distributions for inter-
pretability, ETSformer further enhances model explainability by introducing decomposition into trend,
seasonality, and level components. This design not only strengthens the model’s visualization capabil-
ity at the attention level but also provides physically meaningful component-based explanations through
the outputs of the growth, seasonality, and level terms. This facilitates the analysis of the contribution
of different variation sources to the final prediction results. This integration of attention visualization
and trend decomposition within the interpretability framework enhances the usability and transparency
of ETSformer in practical applications. The model is not only capable of producing accurate prediction
results but also provides reasonable interpretative support for decision-making processes.

In time-series forecasting tasks, achieving high accuracy on the training set does not necessarily guaran-
tee good performance on unseen data. To improve the generalization capability of the model, ETSformer
incorporates smoothing mechanisms and damping control into its architectural design, enhancing its sta-
bility when handling various time scales and different air quality indicators.

Specifically, the GrowthLayer within the encoder utilizes exponential smoothing for recursive trend mod-
eling, effectively suppressing high-frequency noise and short-term abnormal fluctuations. This ensures
stable learning of long-term trend variations. In addition, the DampingLayer in the decoder introduces
damping factors during the trend extrapolation phase to dynamically control the growth rate, preventing
unreasonable amplification or oscillation of the trend components during long-term forecasting.

This collaborative design of smoothing and damping not only improves convergence efficiency during
training but also demonstrates stronger generalization performance during testing. ETSformer maintains
stable forecasting accuracy across different air quality indicators—including temperature, humidity, CO2

concentration, and PM2.5 concentration—and adapts to diverse data characteristics with varying degrees
of fluctuation, reducing the risk of overfitting.
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In summary, through the incorporation of trend decomposition, exponential smoothing, damping con-
trol, and multi-head attention mechanisms in both model architecture and training strategy, ETSformer
achieves multiple advantages, including adaptive anomaly handling, enhanced interpretability, and im-
proved generalization capability. Unlike traditional methods that rely on manual data cleaning or static
preprocessing, ETSformer provides intrinsic adaptive responses to abnormal fluctuations while preserv-
ing the physical interpretability of the prediction components, thereby enhancing its practical value in
real-world air quality forecasting tasks.

These advantages enable ETSformer to balance forecasting accuracy, stability, and interpretability when
dealing with complex, dynamically changing time-series data, offering reliable technical support for
multi-scenario environmental monitoring and forecasting applications.

3.6 Advantage Analysis of the Training Strategy

In response to the characteristics of air quality prediction tasks, including trend variations, periodic fluc-
tuations, and abnormal disturbances, this study incorporates multiple optimizations and innovations in
both model architecture and training strategy design. ETSformer integrates trend decomposition, sea-
sonality modeling, and smoothing damping control, which not only enhances the model’s adaptability
to complex dynamic changes at the architectural level but also improves its stability and generalization
performance through multi-parameter-group optimization, learning rate scheduling, data augmentation,
and early stopping mechanisms in the training process.

This section analyzes and summarizes the advantages of the proposed training strategy from three per-
spectives: adaptive anomaly handling capability, model interpretability, and generalization ability.

In air quality monitoring data, abnormal fluctuations or noisy samples often occur due to unexpected
events, environmental changes, or sensor errors. Traditional time-series forecasting methods typically
rely on prior data preprocessing steps, such as manually removing or smoothing anomalies, to reduce
their impact on prediction results. However, such preprocessing approaches often depend on empirical
judgment and may compromise the balance between anomaly detection accuracy and data utilization,
with the risk of losing valuable information during the cleaning process.

In contrast, ETSformer incorporates exponential smoothing and damping control mechanisms directly
into its structural design, providing inherent modeling capabilities for adaptive anomaly handling. The
GrowthLayer within the encoder models trend variations through recursive smoothing, effectively sup-
pressing the amplification of sudden anomalies. Meanwhile, the DampingLayer in the decoder applies
attenuation control to the extrapolated trend components during the prediction phase, preventing abnor-
mal values from exerting excessive influence on future forecasts.

This structural design enables the model to automatically adjust its response strength to abnormal fluc-
tuations during the training process without relying on additional anomaly filtering steps. As a result,
the model achieves intrinsic anomaly suppression, enhancing the robustness and stability of the overall
forecasting process.

Beyond strong predictive performance, ETSformer also emphasizes model interpretability. Both the en-
coder and decoder utilize multi-head attention mechanisms for feature extraction, offering the potential
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for attention weight visualization. By analyzing the attention distributions, it is possible to identify which
historical time steps the model focuses on during prediction, thereby providing insight into the decision-
making process.

Comparedwith conventional Transformer architectures that rely solely on attention distributions for inter-
pretability, ETSformer further enhances its explanatory power by introducing decomposition into trend,
seasonality, and level components. This design not only strengthens the model’s interpretability at the
attention level but also provides physically meaningful component-based explanations through the out-
puts of the growth, seasonality, and level terms. Such interpretability helps analyze the contribution of
different variation sources to the final prediction results.

The integration of attention visualization with trend decomposition improves the usability and trans-
parency of ETSformer in practical applications. The model not only generates prediction results but also
provides rational explanations to support decision-making processes.

In time-series forecasting tasks, high accuracy on the training set does not necessarily ensure good per-
formance on unseen data. To enhance the generalization ability of the model, ETSformer incorporates
smoothing mechanisms and damping control into its architectural design, improving stability across dif-
ferent time scales and various air quality indicators.

Specifically, the GrowthLayer within the encoder utilizes exponential smoothing for recursive trend mod-
eling, effectively suppressing high-frequency noise and short-term abnormal fluctuations. This ensures
stable learning of long-term trends. The DampingLayer in the decoder further introduces damping factors
during the trend extrapolation stage, dynamically controlling the growth rate and preventing unreasonable
amplification or oscillation of trend components in long-term forecasting.

This collaborative design of smoothing and damping not only improves convergence efficiency during
training but also demonstrates stronger generalization performance during testing. ETSformer consis-
tently maintains stable forecasting accuracy across different air quality indicators—including tempera-
ture, humidity, CO2 concentration, and PM2.5 concentration—and adapts to diverse data characteristics
with varying degrees of fluctuation, reducing the risk of overfitting.

In conclusion, ETSformer achievesmultiple advantages—including adaptive anomaly handling, enhanced
interpretability, and improved generalization—through the integration of trend decomposition, exponen-
tial smoothing, damping control, and multi-head attention mechanisms in both model architecture and
training strategy. Unlike traditional approaches that depend on manual data cleaning or static preprocess-
ing, ETSformer adaptively responds to abnormal fluctuations within the model itself while preserving the
physical interpretability of its prediction components, thereby enhancing its practical value in real-world
air quality forecasting tasks.

These advantages enable ETSformer to balance predictive accuracy, stability, and interpretability when
dealing with complex and dynamically changing time-series data, providing reliable technical support
for multi-scenario environmental monitoring and forecasting applications.
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4 Experimental Results and Discussion

4.1 Experimental Setup

To verify the effectiveness of the ETSformer model across various time-series forecasting tasks, this
study designs four groups of experiments based on four different types of time-series data, including
CO2 concentration, humidity, PM2.5 concentration, and temperature. All experiments adopt a consistent
model architecture and training parameter settings to ensure the fairness of the comparative results. The
specific experimental configurations are described as follows.

The four datasets used in this study are univariate time-series data with timestamps. The forecasting target
is to predict the sequence values for the next 12 time steps (pred_len = 12). The basic information of
each dataset is shown in Table ??.

Table 4.1: Basic information of the datasets used in this study

Dataset Name Prediction Target Sampling Interval Input Sequence Length (seq_len) Prediction Length (pred_len)
CO2 CO2 Concentration (ppm) 5 minutes 60 12
Humidity Humidity (%) 5 minutes 60 12
PM2.5 PM2.5 Concentration (µg/m3) 5 minutes 60 12
Temperature Temperature (°C) 5 minutes 60 12

The forecasting model used in this study is ETSformer (Exponential Smoothing Transformer), which
integrates the concept of exponential smoothing into the Transformer architecture. Through ETS de-
composition, the model explicitly handles the trend and seasonal components of time-series data, and
introduces a damping mechanism to enhance its forecasting capability under sudden change scenarios.

The main parameter configurations of the ETSformer model are listed in Table ??.

Table 4.2: Parameter configuration of the ETSformer model

Parameter Name Value
Model dimension (d_model) 256
Number of attention heads (n_heads) 4
Number of encoder layers (e_layers) 3
Number of decoder layers (d_layers) 3
Feedforward network dimension (d_ff) 512
Fourier basis (K) 1
Activation function (activation) sigmoid
Dropout rate (dropout) 0.3
Embedding method (embed) timeF (frequency-based time embedding)

All experiments in this study were conducted under the same training configuration, using a customized
Adam optimizer along with an exponential learning rate adjustment strategy. The detailed training pa-
rameter settings are summarized in Table 4.3.
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Table 4.3: Training parameter configuration of ETSformer

Parameter Name Value
Initial learning rate (learning_rate) 1× 10−5

Minimum learning rate (min_lr) 1× 10−7

Warmup epochs (warmup_epochs) 2
Batch size (batch_size) 256
Training epochs (train_epochs) 100 (with early stopping, patience set to 10)
Optimizer Customized Adam
Loss function Mean Squared Error (MSE)
Learning rate scheduler (lradj) exponential_with_warmup

4.2 Results for Each Dataset

4.2.1 Training Loss and Validation Loss Analysis

To evaluate the training performance of the ETSformermodel across different forecasting tasks, this study
records the variations in training loss and validation loss on four datasets, including CO2 concentration,
humidity, PM2.5 concentration, and temperature. The corresponding results are illustrated in Figure ??,
with subfigures (a) to (d) representing the results for each forecasting task, respectively.

(a) CO2 concentration forecasting task (b) Humidity forecasting task

(c) PM2.5 concentration forecasting task (d) Temperature forecasting task

Figure 4.1: Training and validation loss curves for the four air quality forecasting tasks using the ETS-
former model

As shown in Figure ??, the ETSformer model achieves a stable training process across all four forecast-
ing tasks. Both the training loss and validation loss exhibit an overall decreasing trend and eventually
converge.

Specifically, the loss curves on the humidity and temperature datasets show rapid decreases with relatively
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small fluctuations on the validation sets, indicating that the model demonstrates strong fitting capability
on stable and highly periodic data.

In contrast, the CO2 and PM2.5 datasets, which contain more abrupt changes and abnormal fluctuations,
present slightly more volatile validation losses and slower convergence rates. This suggests that the
model’s training performance is more affected by data complexity when dealing with highly variable
sequences. Nevertheless, the ETSformer model still maintains convergence without signs of overfitting.

The ETS decomposition and damping mechanisms integrated into the ETSformer architecture play a sig-
nificant role during the training process, effectively enhancing the model’s stability. These mechanisms
are particularly beneficial in trend extraction and learning from stable segments within the time-series
data.

4.2.2 Prediction Performance Evaluation

To comprehensively evaluate the forecasting performance of the ETSformer model across different tasks,
this study calculates five commonly used error metrics on the four test datasets, including Mean Absolute
Error (MAE),Mean Squared Error (MSE), RootMean Squared Error (RMSE),MeanAbsolute Percentage
Error (MAPE), and Mean Squared Percentage Error (MSPE). These metrics provide a comprehensive
assessment of the model’s prediction accuracy and stability from different perspectives, covering absolute
deviation, squared deviation, and relative error measurements.

The evaluation results for each dataset are summarized in Table ??.

Table 4.4: Performance evaluation results of the ETSformer model on different forecasting tasks

Dataset MAE MSE RMSE MAPE MSPE

CO2 55.06 20330.69 142.59 7.25% 1.79%
Humidity 0.9039 1.9196 1.3855 0.02% 0.00%
PM2.5 5.4546 95.2869 9.7615 3755.83% 16888521735.29%

Temperature 0.2423 0.1511 0.3887 0.01% 0.00%

As shown in Table ??, the ETSformer model achieves satisfactory forecasting performance across all four
prediction tasks. Among them, the humidity and temperature datasets exhibit the lowest error values,
indicating that the model demonstrates strong fitting capability on sequences with stable fluctuations and
clear periodic characteristics.

In contrast, the MAE and RMSE values for the CO2 and PM2.5 datasets are relatively higher, particularly
in theMAPE andMSPEmetrics. This suggests that the model faces certain challenges when dealing with
sequences containing abrupt changes and abnormal fluctuations.

These differences are mainly attributed to the inherent characteristics of the datasets: the humidity and
temperature sequences exhibit smoother variations and stronger regularity, making it easier for the model
to capture their trend and seasonal components. On the other hand, the CO2 and PM2.5 sequences contain
frequent spikes, outliers, or sudden changes, which increase the prediction difficulty and lead to higher
error levels.
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Overall, the ETSformer model demonstrates good stability and robustness across various prediction tasks,
especially achieving high forecasting accuracy in scenarios with stable data patterns.

4.2.3 Visualization Analysis of Prediction Results

To visually demonstrate the forecasting performance of the ETSformer model across different tasks, this
study selects representative samples from the test set of each dataset and plots the comparison curves
between the ground truth and the predicted values. The corresponding results are presented in Figure ??,
where subfigures (a) to (d) respectively show the prediction performance on CO2 concentration, humidity,
PM2.5 concentration, and temperature forecasting tasks. From the visualization results, it can be clearly

(a) CO2 concentration prediction vs. true values (b) Humidity prediction vs. true values

(c) PM2.5 concentration prediction vs. true values (d) Temperature prediction vs. true values

Figure 4.2: Visualization of the predicted results and ground truth for the four forecasting tasks using
the ETSformer model

observed that the ETSformer model achieves a high degree of alignment between the predicted values
and the ground truth across all four forecasting tasks. The model successfully captures the underlying
trends and periodic patterns of the time series. In particular, for the humidity and temperature prediction
tasks, the predicted curves almost completely overlap with the actual curves, demonstrating the model’s
excellent fitting capability in scenarios with stable and periodic fluctuations.

In the CO2 and PM2.5 concentration forecasting tasks, although the data exhibit certain volatility and
short-term spikes, the model is still able to accurately follow the overall trend and reconstruct the long-
term dynamics, avoiding significant deviations between the predicted and true trajectories. The prediction
curves remain close to the actual observations throughout most of the time, which highlights the adapt-
ability and stability of the ETSformer model across different types of time-series forecasting tasks.

Overall, the ETSformer model achieves high fitting accuracy across all the forecasting tasks in this study.
It demonstrates strong capability in trend characterization and periodic signal extraction, laying a solid
foundation for subsequent error analysis and performance comparison.

31



4.2.4 Error Distribution Analysis

To further evaluate the stability and error characteristics of the ETSformer model across different fore-
casting tasks, this study conducts a statistical analysis of the prediction errors (the difference between the
ground truth and the predicted values) on the test sets. The corresponding error distribution results are
illustrated in Figure 4.3, where subfigures (a) to (d) present the error distributions for CO2 concentration,
humidity, PM2.5 concentration, and temperature prediction tasks, respectively.

(a) Error distribution of the CO2 concentration fore-
casting task (b) Error distribution of the humidity forecasting task

(c) Error distribution of the PM2.5 concentration
forecasting task

(d) Error distribution of the temperature forecasting
task

Figure 4.3: Error distribution analysis of the ETSformer model across four forecasting tasks

From the visualization, it can be observed that the prediction errors of the ETSformer model exhibit a
concentrated, symmetric, and approximately normal distribution across all four forecasting tasks. The
majority of the errors are distributed near zero, indicating that the model maintains good robustness and
consistency in various time-series prediction scenarios without showing systematic bias.

In particular, the error distributions for the humidity and temperature tasks are more compact with shorter
tails, further confirming the model’s excellent fitting capability on stable and periodic data. Although the
CO2 and PM2.5 concentration datasets contain higher volatility and short-term fluctuations, their error
distributions also maintain good symmetry, with most errors concentrated within the range of ±500 and
only a few extreme outliers.

These error distribution characteristics clearly demonstrate that the ETSformer model can achieve stable
and reliable forecasting performance across different types of time-series prediction tasks. The model
not only performs well in trend fitting but also shows strong balance and control over error fluctuations,
maintaining consistent prediction quality in both stable and volatile intervals.

In summary, the ETSformer model exhibits stable, well-controlled, and unbiased error distribution pat-
terns across the four forecasting tasks in this study, further validating its strong predictive performance
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and broad applicability.

4.3 Discussion and Future Work

Based on the experimental results of the CO2 concentration, humidity, PM2.5 concentration, and tem-
perature forecasting tasks conducted in this study, it can be concluded that the ETSformer model exhibits
excellent performance across various prediction scenarios. Benefiting from the introduction of the ETS
decomposition mechanism in the model design, ETSformer effectively separates the long-term trend,
seasonality, and residual components of time-series data. This enhances the model’s capability for trend
modeling, resulting in forecasting outputs that closely align with the actual series in terms of overall
trajectory.

Throughout the training process, the model demonstrates good convergence and stability. The training
and validation loss curves are smooth, without noticeable oscillations or overfitting issues. Additionally,
the error distributions on the test sets approximate a normal distribution, indicating strong generalization
capability of the model.

Furthermore, ETSformer maintains stable prediction performance across different datasets, including
both stable and periodic sequences (such as humidity and temperature) and highly volatile or mutation-
prone sequences (such as CO2 and PM2.5 concentrations). This result suggests that the ETSformer model
possesses strong adaptability and broad application potential, capable of handling time-series forecasting
tasks under complex environmental conditions. The analysis of various error metrics further validates
that the model effectively controls prediction errors in most time periods, with few extreme error points,
ensuring stable and reliable forecasting quality.

Despite the favorable results achieved by ETSformer across multiple forecasting tasks in this study, sev-
eral issues remain to be optimized for real-world applications. Specifically, for datasets with high volatil-
ity or abrupt changes (e.g., CO2 and PM2.5 concentrations), the model exhibits relatively limited respon-
siveness to sudden variations. In these cases, the forecasted values may lag behind actual changes, and
deviations may occur in the peak positions and amplitudes. Moreover, the prediction accuracy slightly
decreases in the presence of extreme values, where the forecasts for certain high or low outliers may
deviate from the ground truth, thereby affecting the overall forecasting performance to some extent.

These issues are closely related to the core design philosophy of ETSformer, which emphasizes stable
trend decomposition. While the ETS mechanism effectively extracts trend and seasonal components and
prevents excessive trend extrapolation through the damping mechanism, this suppressive effect may also
limit the model’s dynamic adjustment capability when facing mutation signals, resulting in insufficient
adaptability in sudden-change scenarios.

To enhance the forecasting capability of ETSformer for highly volatile sequences and mutation scenarios,
several optimization directions can be considered in future research. First, introducing multi-scale fea-
ture modeling mechanisms, such as multi-scale convolution or pyramid structures, could strengthen the
model’s perception of features at different time scales and improve its ability to capture complex signals
with coexisting trends and mutations. Second, integrating anomaly detection techniques to identify and
handle mutation points or abnormal segments during the forecasting process may improve the model’s
responsiveness and accuracy in these situations.
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Additionally, combining ETSformer with other models known for mutation handling capabilities, such
as LSTM, GRU, or CNN architectures, may allow for complementary strengths between trend extraction
and high-frequency variation modeling. Furthermore, designing mutation-aware attention mechanisms
that dynamically adjust themodel’s focus whenmutation signals appear could further enhance themodel’s
adaptability in highly variable segments.

In summary, while ETSformer has demonstrated excellent stability and prediction performance in this
study, the exploration of the above directions may further improve its applicability and effectiveness,
especially for complex time-series forecasting tasks involving abrupt changes and high volatility.

34



5 IndoorAirQualityManagement StrategyBased
on Forecasting

In the field of indoor air quality (IAQ)management, the establishment of reasonable control targets serves
as the fundamental prerequisite for achieving effective regulation. Fluctuations in air quality parameters
not only impact human health and comfort but may also significantly influence virus transmission path-
ways, especially during special periods such as respiratory infectious disease outbreaks. Therefore, the
design of air quality management strategies should fully consider the differences in application scenar-
ios and formulate targeted control objectives to balance both human comfort and epidemic prevention
requirements.

Based on this consideration, this study proposes the concept of “dual-mode management” in the design
of air quality control strategies. Specifically, during normal periods, the control objectives prioritize
human comfort, while in epidemic periods, the focus shifts toward suppressing aerosol transmission and
reducing the risk of viral infection. This dual-mode design enables dynamic adjustment of air quality
parameter settings according to environmental demands, achieving more flexible and scientific indoor
environment management.

5.1 Scenario-Based Air Quality Control Objectives

5.1.1 Comfort-Oriented Air Quality Control Targets During Normal Periods

In normal periods, the primary goal of indoor air quality (IAQ) management is to ensure human com-
fort and maintain a healthy indoor environment that supports cognitive performance, work efficiency,
and learning productivity. Numerous studies have demonstrated that a well-maintained indoor air envi-
ronment not only reduces health risks associated with air pollution but also positively affects cognitive
function, sleep quality, and emotional well-being. Therefore, the reasonable definition of control ranges
for air quality parameters forms the basis for the development of indoor air management strategies.

From the perspective of comfort, key air quality parameters typically include temperature, relative humid-
ity, carbon dioxide (CO2) concentration, and fine particulate matter (PM2.5). Among these, temperature
and humidity directly influence thermal comfort perception, while CO2 concentration serves as an indi-
cator of indoor ventilation efficiency, indirectly reflecting occupant density and fresh air supply levels.
PM2.5 concentration represents one of the critical pollutants affecting respiratory health.

According to authoritative guidelines such as the World Health Organization (WHO) Indoor Air Quality
Guidelines, the ASHRAE Standard 55 from the American Society of Heating, Refrigerating and Air-
Conditioning Engineers, and the Chinese national standard GB/T 18883-2022 Indoor Air Quality Stan-
dard, the comfort-oriented target ranges for major air quality parameters during normal periods can be
summarized as follows: Among these parameters, the recommended CO2 concentration range is based
on the review by Mendell et al. (2024), which summarizes 43 global indoor air quality guidelines. In
most residential, office, and educational environments, 1000 ppm is widely adopted as the reference up-
per limit for adequate ventilation. However, to further enhance indoor air sensory satisfaction and reduce
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Table 5.1: Recommended control ranges for indoor air quality parameters during normal periods

Air Parameter Recommended Control Range
Temperature 22–26 °C
Relative Humidity 40%–60%
CO2 Concentration ≤ 1000 ppm (preferably < 800 ppm)
PM2.5 Concentration ≤ 15 g/m3 (24-hour average)

the risk of pollutant accumulation, some studies recommend setting the target concentration below 800
ppm, especially for high-occupancy or long-duration spaces [54, 55].

Thermal comfort refers to the integrated human perception of ambient temperature and humidity con-
ditions. The conventional thermal comfort standard, such as the PMV-PPD model, is derived from the
principle of heat balance and predicts human responses to environmental conditions. However, Brager
and de Dear (2001), through large-scale field studies across diverse climate zones, proposed the ”adaptive
comfort model,” which emphasizes that thermal comfort preferences vary with regional climate, cultural
background, and individual expectations. This model suggests that in naturally ventilated spaces, the ac-
ceptable temperature range is generally broader compared to mechanically ventilated environments, and
moderate fluctuations in indoor conditions can improve user comfort and satisfaction [56].

The adaptive comfort model also highlights the role of behavioral adjustments and psychological adap-
tation, such as opening windows or changing clothing, in expanding the acceptable temperature and
humidity range. Therefore, the air quality management strategy during normal periods should fully con-
sider space types and user habits, supporting a flexible adjustment window for temperature and humidity
to balance energy efficiency and occupant comfort.

Unlike pollutants that directly pose health risks (e.g., PM2.5 or CO), CO2 is typically not regarded as
harmful at normal concentrations. Instead, it serves as an important proxy for occupant density and fresh
air supply. Studies have shown that maintaining CO2 concentrations within 600–800 ppm generallymeets
the requirements for pollutant dilution and comfort. When concentrations approach or exceed 1000 ppm,
there may be a risk of minor discomfort, reduced attention, and impaired cognitive performance.

Based on these findings, this study sets the target CO2 concentration below 800 ppm as a key constraint
for the ”comfort-priority” mode under normal conditions.

As for PM2.5, a fine particulate pollutant that can penetrate deep into the respiratory tract, it poses long-
term risks to the respiratory and cardiovascular systems. Although short-term low levels of PM2.5 may
have limited impact on comfort perception, continuous accumulation in enclosed or semi-enclosed envi-
ronments can still cause discomfort or health concerns. According to the WHO 2021 air quality guide-
lines, the recommended annual average concentration for PM2.5 should not exceed 5 g/m3, and the 24-
hour average should not exceed 15 g/m3 [57]. Considering indoor-outdoor particulate exchange and
secondary indoor pollution sources, this study adopts 15 g/m3 as the PM2.5 control target during the
comfort-priority period.

In summary, the air quality management strategy for normal periods focuses on ensuring occupant com-
fort by integrating considerations of thermal conditions, ventilation, and pollutant levels. The recom-
mended control ranges are established based on international guidelines, national standards, and recent
research findings, providing a scientifically grounded and adaptable reference for subsequent manage-
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ment strategies.

5.1.2 Air Quality Control Objectives with Priority on Infection Prevention during Epi-
demic Periods

During respiratory infectious disease outbreaks, indoor air quality management not only plays a role in
maintaining comfort but also becomes a critical factor affecting the transmission of pathogens through
aerosols. Since the outbreak of COVID-19, numerous studies have confirmed that the SARS-CoV-2 virus
is primarily transmitted via airborne aerosols in indoor environments, especially in poorly ventilated and
densely occupied spaces, where the risk of airborne transmission is significantly increased. Therefore,
during epidemic periods, the air quality management objectives should shift from comfort-oriented con-
trol to infection prevention priority, adjusting air parameters to minimize the risk of virus transmission.

According to the ventilation guidelines issued by the ASHRAE Epidemic Task Force, WHO recom-
mendations on COVID-19 airborne transmission control, and the Chinese “Design Code for Infectious
Disease Hospital Buildings,” air quality control during epidemic periods should focus on the following
key parameters:

Table 5.2: Recommended air quality control ranges during epidemic periods

Air Quality Parameter Recommended Control Range (Epidemic Priority)
CO2 concentration ≤ 600 ppm (Enhanced ventilation)
Relative humidity 50%–60% (Properly increased humidity)
Temperature 20–24°C (Adjusted to suppress virus stability)
PM2.5 ≤ 10 µg/m3 (Reduce airborne virus carriers)

Among the key air quality parameters, CO2 concentration not only serves as an indirect indicator of
occupancy density and ventilation effectiveness but also directly correlates with the potential aerosol
load and infection risk in the air. Bazant et al. (2021) proposed using CO2 concentration monitoring as
a practical alternative to complex aerosol sampling methods, establishing an exposure time limit model
based on CO2 exceedance. This provides an operational risk assessment tool for air quality management
during epidemic control periods [58].

In terms of humidity control, Marr et al. (2019) reviewed the impact of relative humidity on the survival
and transmission of airborne viruses. They concluded that maintaining a relative humidity range of 50%–
60% can effectively reduce virus viability while influencing aerosol particle size, thereby disrupting their
aerodynamic behavior and deposition characteristics [59]. This recommendation has been supported by
multiple animal studies and epidemiological investigations.

Furthermore, Riddell et al. (2020) systematically demonstrated that the surface stability of SARS-CoV-2
varies significantly under different temperature conditions. Their findings showed that higher tempera-
tures can greatly accelerate viral inactivation, with virus survival on most surfaces being limited to less
than 24 hours at 40 °C [60]. Therefore, moderately lowering indoor temperatures can help suppress the
environmental stability of viruses in both aerosol and surface states, enhancing infection control effec-
tiveness.

In addition, Nor et al. (2021) reported from monitoring hospital wards during epidemic outbreaks that
PM2.5 particles can act as important carriers of viral aerosols. Viral RNA was detected in PM2.5 collec-
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tion samples, indicating that controlling fine particulate matter loading is also a critical component of air
quality management during epidemics [61].

In summary, air quality management during epidemic periods should prioritize minimizing aerosol trans-
mission risks. The control targets should follow the principle of ”ventilation priority, appropriate humid-
ity, temperature suppression, and particulate reduction.” Rational parameter settings rely not only on
environmental regulation needs but also on a deep understanding of pathogen survival mechanisms and
transmission dynamics. These epidemic control ranges provide a scientific basis for the design of multi-
mode management strategies and support the dynamic response and automated adjustment capabilities
of air quality management systems during infectious disease control.

5.2 Air Quality Management Strategy Design: Integration of Prediction-
Driven and Feedback Regulation

5.2.1 Overall Strategy Design Concept

In the process of indoor air quality management, traditional passive response control strategies rely on
real-time sensor detection to trigger regulation actions only after pollutant concentrations exceed pre-
set thresholds. However, this approach often suffers from delayed responses and untimely adjustments,
making it difficult to effectively handle rapid changes in pollutant levels, especially in scenarios with
high occupancy or unstable ventilation conditions.

To overcome these limitations, this study proposes introducing a feedforward control mechanism based
on time-series forecasting into the indoor air quality management system, in combination with traditional
feedback control methods, thereby constructing a dual-mechanism interactive air quality regulation strat-
egy.

Specifically, the proposed approach utilizes the trained ETSformer predictionmodel to performmulti-step
time-series forecasting of key air quality parameters (such as CO2 concentration, PM2.5 concentration,
temperature, and humidity), providing the expected trends of these parameters over the next period. The
prediction results serve as the feedforward signals, offering proactive decision support for the regulation
system. This allows the management system to adjust device operation states in advance, before pollutant
concentrations exceed the thresholds, enabling active regulation of air quality.

Meanwhile, the system simultaneously collects real-time monitoring data from sensors, forming the feed-
back signals. When discrepancies between the actual measurements and the forecasted results occur—
such as due to external disturbances (e.g., sudden window opening or occupancy spikes)—the feedback
mechanism promptly corrects the control actions to ensure the accuracy and robustness of the regulation
strategy. This design combines the foresight of prediction-driven control with the real-time responsive-
ness of feedback control, forming a dynamically adaptive air quality regulation system.

To achieve effective integration of prediction and feedback, the proposed management strategy adopts a
prediction-feedback closed-loop control architecture, with the core workflow consisting of the following
steps:

1. Multi-step prediction based on ETSformer: Periodically obtain the forecasted trends of air qual-
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ity parameters within the prediction interval and identify potential exceedance risks.

2. Feedforward decision-making: When the prediction indicates an upcoming exceedance of thresh-
olds, proactively adjust the operation states of the ventilation system, air purification devices, and
HVAC system to implement preventive regulation.

3. Real-time feedback monitoring: Continuously collect air quality sensor data to assess whether
the actual operating state meets the target control ranges.

4. Deviation compensation and regulation correction: If prediction errors or external disturbances
cause air quality deviations from the target ranges, the feedback mechanism promptly intervenes
to dynamically adjust device parameters and compensate for prediction uncertainty.

5. Mode adaptation and strategy updating: Depending on the current management mode (comfort-
priority or epidemic-control-priority), apply the corresponding target parameter settings and control
logic to ensure the achievement of management objectives.

Through the dual-mechanism design that integrates prediction-driven feedforward control with real-time
feedback regulation, the air quality management system achieves more flexible and efficient control re-
sponses. This design not only enhances the stability of air quality parameters but also supports energy
optimization, device health maintenance, and adaptability across various application scenarios.

5.2.2 Control Measures and Multi-Device Coordination Design

In a multi-parameter air quality management system, the rational configuration of control measures and
the coordinated operation of multiple devices are the fundamental basis for ensuring the effective imple-
mentation of regulation strategies. Based on the air quality management requirements, this study selects
natural ventilation, mechanical ventilation, fresh air systems, air purifiers, and air conditioning (including
dehumidification and humidification functions) as the main control components. A multi-device coordi-
nation mechanism is constructed with a focus on energy efficiency and safety assurance.

Multi-dimensional regulation of air quality requires the flexible scheduling of various devices according
to different air parameters and pollution sources, allowing complementary actions to be achieved. The
functional mechanisms of each device and their roles in the management strategy are summarized in
Table 5.3.

Table 5.3: Control measures and applicable scenarios in air quality management

Control Measure Main Function Applicable Scenario
Natural Ventilation Introduce outdoor fresh air, dilute indoor pollutants Suitable weather conditions, good outdoor air quality
Mechanical Ventilation Enhance airflow organization, supplement insufficient natural ventilation When natural ventilation is not feasible or ventilation demand increases
Fresh Air System Precisely control fresh air volume, filter outdoor particulate matter When particulate pollution is severe and large air exchange is required
Air Purifier Filter PM2.5, remove microbial aerosols Local supplementary purification, prioritized in densely populated areas
Air Conditioning (Cooling/Heating, Humidification/Dehumidification) Maintain thermal comfort, regulate humidity levels Comfort preservation, humidity control for virus transmission suppression

Among these control measures, natural ventilation is the preferred option in the air quality management
strategy due to its advantage of requiring no additional energy consumption. When natural ventilation is
insufficient or ineffective, mechanical ventilation and fresh air systems serve as supplementarymethods to
ensure the basic ventilation requirements. Air purifiers act as rapid response tools in localized areas where
particulate matter exceeds the standard, while the air conditioning system is responsible for maintaining
the stability of the thermal and humidity environment within the target range.
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Based on the dual-mechanism framework of prediction-driven and feedback control proposed in this
study, the actions of each control device follow the following priority principles:

1. Energy-saving priority: Under the premise of meeting air quality targets, natural ventilation is
prioritized. The unnecessary operation of high-energy-consuming devices (such as fresh air units
and air conditioning systems) is avoided as much as possible.

2. Safety supplementation: When natural ventilation cannot meet the air quality goals, mechanical
ventilation and fresh air systems are activated in a timely manner to ensure sufficient pollutant
dilution and air exchange rates.

3. Compliance assurance: If the pollutant prediction trends or real-time monitoring results indicate
a risk of exceeding the standard, multiple devices are coordinated to enhance purification capacity
(e.g., activating air purifiers, adjusting fresh air volume, modifying humidification or dehumid-
ification strategies of the air conditioning system) to maintain each parameter within the preset
control range.

This control logic takes into account the energy efficiency characteristics and functional mechanisms of
different devices, ensuring both energy-saving operation and effective regulation during strategy imple-
mentation.

Although the control logic remains consistent under different management modes (comfort-priority /
epidemic-prevention-priority), the target ranges for air quality parameters differ between these modes.
This results in corresponding adjustments to the action thresholds and device scheduling sequences (see
Table ??). For example, under the epidemic-prevention-priority mode:

1. The CO2 control threshold is stricter (≤ 600 ppm), requiring an early increase in fresh air volume
or the intensity of mechanical ventilation.

2. The humidity control target is shifted upward to 50%–60% to suppress the transmission of viral
aerosols.

3. Air purifiers are given higher priority, especially in areas with limited ventilation or high occupant
density.

By flexibly adjusting the parameter ranges, this design enables the same set of control logic to be effi-
ciently adapted to different application scenarios. This approach enhances the generalizability and emer-
gency response capability of the system, allowing air quality management to dynamically switch between
normal operation and epidemic prevention requirements.

5.3 Strategy Implementation Process

In order to achieve efficient control of indoor air quality, this study designs a complete closed-loop con-
trol process based on the dual-mechanism concept of prediction-driven and feedback regulation. This
process integrates the feedforward control capability provided by air quality forecasting with the feed-
back correction function from real-timemonitoring data, forming a dynamically adaptive air management
decision-making system.

The core idea of this closed-loop process includes the following key steps:
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Figure 5.1: Decision Flowchart of Air Quality Control Strategies

1. Air Quality Parameter Prediction (Predict): The ETSformer forecasting model is used to per-
form multi-step prediction on key air quality indicators (CO2, PM2.5, temperature, humidity) to
obtain the trend of air quality changes over the next period. The prediction cycle and steps can be
flexibly set according to specific application needs.

2. Exceedance Trend Determination and Management Target Adaptation (Judge): The predic-
tion results are compared with the air quality target ranges set under the current management mode
(comfort-priority / epidemic-prevention-priority). This step determines whether there is a future
risk of exceeding the standard and identifies the regulation targets accordingly.

3. Control Strategy Decision-Making (Decide): Based on the judgment results, considering the
current operation status of each device, priority logic, and energy consumption balance, a specific
control action plan is formulated. This includes adjustments of ventilation volume in the fresh air
system, power settings of air purifiers, and humidity parametermodifications of the air conditioning
system.

4. Real-time Feedback Monitoring and Deviation Compensation (Feedback & Correct): Con-
tinuous real-time air quality data collection from indoor sensors is carried out to assess the de-
viation between predictions and actual conditions. When there are prediction errors or external
disturbances that cause pollutant levels to deviate from the target range, the feedback mechanism
dynamically corrects control actions to ensure that air quality remains stable within the target range.

5. Mode Adaptation and Strategy Update (Adapt): The system supports dynamic switching of
management modes based on external epidemic signals or manual intervention, allowing automatic
updates of control parameters and adjustments of device strategies. This ensures good adaptability
and robustness of the system across different application scenarios.

The overall decision-making process is illustrated in Figure ??.
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5.4 Theoretical Advantages: Exploration of Prediction-Based Air Quality
Management Design

In the field of indoor air quality management, traditional control strategies are mostly based on passive
responses. These approaches rely on real-time monitoring data and activate control devices only after
pollutant concentrations reach or exceed preset thresholds to restore air quality to the target range. How-
ever, due to sensor response delays, system inertia, and the rapid accumulation of pollutants, traditional
passive control methods often suffer from delayed reactions, large fluctuations, and insufficient energy
efficiency, making it difficult to meet air quality assurance needs in high-density occupancy spaces or
complex application scenarios.

To address these issues, this study proposes a prediction-based air quality management strategy. It incor-
porates the future air quality trends predicted by the ETSformer model as feedforward signals into the
control system’s decision-making process, achieving a fusion of proactive intervention and dynamic reg-
ulation. From a theoretical perspective, this strategy offers potential advantages over traditional passive
control in terms of response speed, control stability, and energy optimization.

The prediction-based air management strategy can anticipate air quality trends before pollutant concen-
trations exceed the threshold. It initiates control measures proactively when a future exceedance risk is
predicted. Compared with traditional strategies that reactively adjust after the pollutant concentration
surpasses the limit, the prediction-driven design has a clear feedforward control advantage. In theory,
it can effectively reduce the probability of exceedance events, shorten the air quality recovery time, and
improve overall environmental stability.

Traditional passive response control, due to the lack of predictive capability, often leads to sharp fluctu-
ations in control actions and frequent on-off cycling of equipment, increasing both energy consumption
and the risk of equipment wear. The prediction-driven strategy designed in this study takes into account
the forecasted trends and regulation buffer zones when making decisions on device operation, supporting
gradual adjustments of control actions. This design facilitates smooth transitions in the control process
while achieving air quality targets, reducing mechanical stress and maintenance costs caused by frequent
equipment cycling, and optimizing energy utilization efficiency.

Indoor air quality is influenced by multiple dynamic factors, including seasonal changes, fluctuations in
occupancy density, differences in activity types (e.g., meetings, classes, rest periods), weather conditions,
and variations in outdoor pollutant levels. The prediction-based management strategy can flexibly adjust
the forecasting interval length and control response intensity, demonstrating adaptability to various com-
plex application scenarios. Especially in environments with high and variable foot traffic, this strategy is
expected to achieve more precise pollutant control and more reasonable energy scheduling.

It is worth noting that this study primarily focuses on the design and methodology of air quality manage-
ment strategies. Direct experimental comparisons between the prediction-driven strategy and traditional
passive response strategies have not yet been conducted. However, drawing on existing literature regard-
ing the application of predictive control in building energy optimization, industrial process control, and air
pollution management, it is generally recognized that prediction-driven approaches provide advantages
in response speed, control effectiveness, and energy savings.
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For example, in the optimization control of heating, ventilation, and air conditioning (HVAC) systems,
predictive models are widely used for load forecasting and feedforward scheduling, and have been proven
to enhance energy efficiency and reduce operational fluctuations [62]. In the field of air pollution control,
research on model predictive control (MPC) also indicates that using feedforward prediction can signif-
icantly reduce the time that pollutant concentrations exceed the standards and improve pollutant reduc-
tion efficiency [63]. Therefore, although this study has not yet conducted field validation, the proposed
prediction-driven management strategy is theoretically reasonable and holds great application potential.
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