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ABSTRACT

As a core topic in the field of artificial intelligence, learning has always been one of the key steps to-
wards achieving strong artificial intelligence. It aims to transform complex data structures into concise
numerical representations, so that machine learning models can better discover patterns and rules from
them. Graph data is a data structure used to represent complex relationships between entities, consist-
ing of nodes and edges, where nodes represent entities or objects and edges represent relationships or
connections between nodes. Graph data has been widely applied in various fields [1] [2], such as so-
cial networks, transportation networks, knowledge graphs, etc. Many machine learning or deep learning
methods typically attempt to map graph data into a low dimensional vector space [3] for easier processing
and analysis. This mapping process is commonly referred to as graph embedding or graph representation
learning, aimed at effectively preserving the relationships and attribute information between nodes in the
original graph data. Through graph representation learning, complex tasks can be analyzed and processed
more efficiently. For example, graph representation learning is widely used in recommendation systems
to handle complex user item interactions and improve recommendation quality [4].

The hyperbolic embedding of networks is an effective means of processing graph data information, which
has advantages in expressing hierarchy [5] and capturing complex relationships in graph data. With
the rapid development of network science and advances in mathematical theory, especially the negative
curvature property of hyperbolic geometry, an ideal framework has been provided for simulating the
infinite expansion and hierarchical structure of networks. Combining the development of deep learning
and machine learning techniques, hyperbolic geometry embedding has become an effective means of
solving precise network representations in practical applications such as social network analysis and
recommendation systems.

This paper conducts a series of studies on comparing three main popular hyperbolic embedding meth-
ods. It primarily considers machine learning methods, specifically the Poincare method and the Lorentz
method, and model-based methods, primarily the D-Mercator method. Model-based methods from the
network science community have advantages in interpretability and accurately capturing the hierarchical
structure and clustering of networks, thereby maintaining an accurate description of the global network
topology. In contrast, machine learning models better adapt to local structural patterns when data is suf-
ficient. The choice of method often depends on the specific application scenario and research objectives.
Therefore, the contribution of this thesis lies in quantitatively comparing the embedding quality of real-
world networks in hyperbolic space, obtained through three main hyperbolic embedding methods, across
different research communities (e.g., computer scientists vs. statistical physicists) and elucidating their
performance in two key applications of interest.Specifically:

1. We consider and compare three hyperbolic embedding methods—the Poincare method, the Lorentz
method, and the D-Mercator method, applying them to the topology of the Autonomous Systems
Internet (IPv6) [6]. We calculate the rank correlation coefficient and Pearson coefficient between
between the hyperbolic node distances obtained in the different embeddings. With the Pearson
correlation coefficient we measure the linear correlation between two sets of hyperbolic distances,
while the rank correlation coefficient is a method for measuring the degree of similarity between
the hyperbolic distance rankings of the same pair of nodes across embeddings, which captures the
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correlation among the hyperbolic distance orderings between embeddings.

2. We also study the performance of the embeddings obtained by the different methods in two main
applications of interest: (i) greedy routing [7] [8], where we evaluate both the routing success rate
and the average number of hops; and (ii) link prediction [9], conducted under different link removal
rates and evaluated using standard metrics including ROC/AUC and PR/AUPR.

Keywords: Hyperbolic Geometry, Greedy Routing, Network Embedding, Graph Data
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1 Introduction

1.1 Aims and Objectives

As a core topic in the field of artificial intelligence, learning has always been one of the key steps to-
wards achieving strong artificial intelligence. It aims to transform complex data structures into con-
cise numerical representations, so that machine learning models can better discover patterns and rules
from them.Graph data is a prevalent data structure in real-world scenarios, widely utilized across various
domains and applications due to its ability to intuitively capture diverse relationships and interactions.
Khoshraftar et al. (2022) [10] provided a comprehensive survey on graph representation learning meth-
ods, highlighting the significance of graph data across various application domains. For instance, in
recommendation systems, graph data represents interactions between users and items, such as clicks,
purchases, and ratings, as well as relationships between users and items or among items themselves [11].
Knowledge graphs, as a specialized form of graph data, further enrich this representation by encapsulat-
ing semantic relationships between entities. Effectively modeling, analyzing, and uncovering the latent
features of graph data is a central challenge in the field of graph data mining. To address this, graph
representation learning aims to encode nodes or edges within graph data into low-dimensional vectors
that preserve the original structure and attributes, facilitating downstream tasks. By leveraging these
vector representations, recommendation systems can extract meaningful structural and relational infor-
mation from user-item interaction graphs, generate latent representations reflecting user preferences and
item attributes, and provide personalized recommendations. Moreover, integrating knowledge graphs
into recommendation systems enhances recommendations by incorporating supplementary semantic re-
lationships, thereby uncovering hidden user interests and preferences. Guo et al. (2020) [4] provided a
detailed survey on knowledge graph-based recommender systems, highlighting how semantic relation-
ships in knowledge graphs can be leveraged to improve recommendation performance.

Although significant progress has been made in this field, most existing representation learning meth-
ods are still limited to using Euclidean space as the embedding carrier. This method is inadequate when
dealing with complex network data with hierarchical structures [12]. For example, real-world networks
such as social networks, biological networks, and knowledge graphs often present a hierarchical tree-like
structure [13], which Euclidean space cannot effectively capture. The development of hyperbolic net-
work embeddings is based on the need for a deeper understanding of the structural characteristics of such
complex networks, as well as the recognition of the limitations of traditional Euclidean space embedding
methods in expressing hierarchy and capturing complex relationships. With the rapid development of
network science and advances in mathematical theory, the negative curvature property of hyperbolic ge-
ometry has provided an ideal framework for simulating the infinite expansion and hierarchical structure
of networks [5] [14] [15]. With advances in hyperbolic geometry and network modeling, hyperbolic em-
bedding has become an effective technique for capturing hierarchical structures in real-world networks,
and has been successfully applied in tasks such as social network analysis and recommendation systems.

Hyperbolic geometry is a non Euclidean geometry that describes spaces with negative curvature, where
parallel lines can be infinitely many and the sum of interior angles of triangles is less than 180 degrees.
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The definition of hyperbolic space is a type of space with a negative constant curvature. In hyperbolic
space, as the radius increases, the circumference and area of a circle grow much faster than in Euclidean
space. For example, in hyperbolic space, the ratio of the circumference of a circle increases exponentially
with its radius. The characteristics of this space make hyperbolic geometry very suitable for characteriz-
ing complex networks [5] with hierarchical and scale free properties. These characteristics of hyperbolic
geometry provide a theoretical basis for hyperbolic embedding, enabling it to reveal the inherent hierar-
chical structure and topological properties of networks. For example, the exponential dilation property
in hyperbolic space can be used to more naturally represent networks with hierarchical structures. In
addition, hyperbolic embedding has demonstrated excellent performance in multiple fields such as rec-
ommendation systems, knowledge graphs [14], natural language processing [16], computer vision, and
bioinformatics.

In summary, there are many advantages to using hyperbolic space embedding methods to process graph
data: (1) Natural representation of hierarchical structures [5]: Graph data often contains hierarchical
or hierarchical structures, such as community structures in social networks or classification levels in
biological networks. Hyperbolic space can naturally represent these hierarchical structures, allowing the
hierarchical relationships in graph data to be intuitively reflected in embedding vectors. (2) Improving
embedding efficiency [14] [15]: The exponential growth property of hyperbolic space allows for more
efficient utilization of dimensions when embedding graph data. This means that the complex structure
of graph data can be represented with fewer dimensions, thereby improving embedding efficiency and
reducing storage and computational costs. (3) Enhanced classification and clustering performance [17]:
In hyperbolic space, similar nodes (such as those with similar features or behaviors) will be closer to each
other, while dissimilar nodes will be farther apart. This geometric attribute helps improve the accuracy of
node classification and clustering in graph data, such as identifying user preferences in recommendation
systems or discovering communities in social networks. (4) Optimized routing and link prediction [7]:
In network design and analysis, such as Internet routing or biological information networks, hyperbolic
embedding can help optimize routing strategies and improve the accuracy of link prediction, by better
understanding the geometric relationship between nodes. [18] In this thesis� we will conduct a study on
the embedding quality of graph data with hierarchical structure after embedding into hyperbolic space
using different hyperbolic embedding methods. The purpose is to compare the embedding results of three
major methods on the same dataset, explore the relationship between them, and attempt to quantify the
quality of embedding through experiments such as greedy routing and missing link prediction.

1.2 Current State of Research

There are currently many methods for embedding real networks into hyperbolic space, which are mainly
divided into two categories: machine learning [14] [15] methods and model-based methods [19]. The
core idea of hyperbolic embedding method is to map nodes in the network to hyperbolic space, where
the distance between nodes reflects their relationship in the original network. In machine learning, these
mappings are achieved through optimization algorithms with the goal of minimizing the distance in the
embedding space and the relationships in the original network.Machine learning-based hyperbolic em-
bedding methods typically do not rely on complex optimization processes because they leverage gradient
descent algorithms that iteratively adjust the embedding positions by computing gradients of the loss
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function with respect to the hyperbolic coordinates [20]. This approach simplifies the optimization by
breaking down the problem into a series of local updates, where at each step the algorithm moves the
embeddings in the direction that most reduces the discrepancy between the hyperbolic distances and the
original network relationships. The efficiency of gradient descent stems from its ability to handle high-
dimensional parameter spaces while avoiding the need for computationally expensive global optimization
procedures [21].

Gradient descent is an optimization algorithm used to minimize the objective function, typically used in
machine learning and artificial intelligence to train models. It iteratively adjusts parameters and searches
along the opposite direction of the objective function gradient (i.e. the steepest descent direction) to find
the local minimum of the function. The key to gradient descent is to calculate the gradient of the objective
function with respect to the parameters, which points towards the direction where the function grows the
fastest. In each iteration, the algorithm updates the parameters to move along the negative direction
of the gradient, with the step size determined by the learning rate. Gradient descent can be applied to
various models and loss functions, including linear regression, neural networks, etc., and is one of the
most common parameter optimization methods in machine learning. Its main advantages are simplicity,
intuitiveness, and the ability to easily parallelize large-scale data sets.

Next, we will overview two methods of embedding real networks into hyperbolic space using machine
learning:

1. Poincare disk model

The Poincare disk model is a conformal representation of hyperbolic space that captures the exponen-
tial growth characteristics of hyperbolic space through specific distance measurement formulas. In this
model, the points are located within the unit disk, while the line (geodesic) is the vertical arc on the disk
boundary or the diameter within the disk. Thismodel has a constant negative curvature of -1, which allows
it to intuitively represent the hierarchical and scale free properties in hyperbolic space. The Poincare disk
model is particularly suitable for representing networks with hierarchical and tree like structures, as it can
naturally capture the exponential growth characteristics of these structures. These characteristics make
the Poincare disk model a powerful tool for understanding and analyzing complex network structures.

In Nickel et al.’s study [14], the Poincare disk model was used to learn hierarchical representations from
symbolic data. This method is particularly suitable for datasets with potential hierarchical structures, such
as text and graph structured data. In order to learn these embeddings, the author proposes an effective
algorithm based on Riemann optimization [22]. This algorithm optimizes embedding by minimizing a
specific loss function that encourages semantically similar objects to approach each other in the embed-
ding space. Through experiments, the author has demonstrated that Poincare embeddings are significantly
superior to traditional Euclidean embeddings in terms of representation and generalization ability on data
with potential hierarchy.

The authors first evaluated the performance of Poincare embedding on the WORDNET dataset, which
contains a large number of nouns and their superclass relationships. The experimental results show that
Poincare embedding can effectively reconstruct data and performwell in link prediction tasks. In addition,
the authors conducted link prediction experiments on social network datasets by removing some links
from the dataset and embedding using the Poincare disk model again. The likelihood of link existence is
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reflected by the distance between links. Experimental results show that although some links are removed,
the quality of the embedded network is still good, proving the effectiveness of Poincare embedding in
predicting network links, especially in low dimensional spaces.

Another important application of Poincare embedding is in lexical implication tasks. The application of
Poincare embedding method in lexical implication tasks demonstrates its unique advantages in handling
hierarchical relationships. Vocabulary implication is a key issue in the field of natural language process-
ing, which involves determining the semantic relationship between two terms, such as whether one term
is conceptually a subset of the other term. This relationship often manifests as a hierarchical structure, for
example, ’cat’ is an ’animal’. In the paper, the author evaluates the ”is” relationship between noun pairs
using the Poincare embedding method. This method utilizes the geometric properties of hyperbolic space
to capture the hierarchical relationships between vocabulary. In hyperbolic space, each word is mapped to
a point, and the similarity or implication relationship between words is measured by the distance between
points. Through this approach, Poincare embeddings can not only capture direct relationships between
vocabulary, but also reflect deeper semantic hierarchies. The application of Poincare embedding method
in lexical implication tasks not only demonstrates its ability to handle hierarchical relationships, but also
demonstrates its potential in capturing and predicting complex network structures.

In summary, Poincare embedding provides a powerful new tool for processing symbolic data with hier-
archical structures. It can more naturally represent the hierarchical structure of data by embedding it into
hyperbolic space, while improving the quality and generalization ability of embedding through optimiza-
tion algorithms. This method has demonstrated excellent performance in multiple tasks, providing new
directions for future research.

2. Lorentz model

The Lorentz model is a type of model in hyperbolic geometry, proposed by German mathematician
Hermann Minkowski. It utilizes the concept of Lorentz transformation, a mathematical tool in special
relativity that describes the relativity of time and space. In this model, points in hyperbolic space are
composed of N-dimensional coordinates and additional time or correlation coordinates, forming an N+1-
dimensional vector. The key advantage of this representation lies in its distance measurement, where the
Lorentz distance inherently combines spatial and temporal components through the Lorentz inner prod-
uct. This unified processing method achieves the constraint of points to the hyperbolic surface in class
coordinates, avoiding the numerical instability of the Poincare sphere model near the boundary. The
geodesic distance (shortest path) can be calculated in a closed form without the need for iterative approx-
imation. The conformal property of this model maintains angle invariance, making it very useful when
dealing with complex hierarchical data. The Lorentz model is widely used in physics and mathematics,
especially in capturing complex network structures and processing machine learning applications such
as hierarchical text and graph data.

In Kiela et al.’s study [15], a hypersphere embedding method based on the Lorentz model was proposed
to discover hierarchical relationships from large-scale unstructured similarity data. This method is par-
ticularly suitable for discovering hierarchical relationships between concepts from pairwise similarity
scores, such as in biological classification, social network analysis, language evolutionary trees [23], and
other scenarios. The advantage of the Lorentz model lies in its ability to efficiently perform Riemann
optimization, which makes it possible to directly calculate geodesics on hyperspheres, thereby avoiding
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numerical instability that occurs in the Poincare sphere model. In addition, the Lorenz model can restore
the correct hierarchical relationships from embeddings while maintaining the order of similarity.

In order to learn high-quality embeddings, the authors propose a new optimization method based on the
Lorentz model. This method optimizes by directly following the geodesic on the hypersphere, instead
of only performing first-order approximations as in the Poincare model [14]. The experimental results
show that this method is particularly effective in low dimensional spaces and can provide higher quality
embeddings than Poincare embeddings. To verify this result, two models were applied on two real-world
datasets: one on the organizational structure of companies, and the other on the historical relationships of
language families. Embedding organizational structure data can reveal the hierarchical structure within
the company; Embedding on language family data can discover historical connections between languages.
These experimental results demonstrate the effectiveness of the Lorentz model in discovering meaningful
hierarchical structures.

Overall, the proposed hyper spherical embedding method based on the Lorentz model provides a power-
ful tool for discovering hierarchical relationships from unstructured data. The main contributions of this
article [15] are threefold: firstly, a new hypersphere embedding model is proposed, which is based on
the Lorentz model and can effectively learn hierarchical representations; Secondly, an efficient Riemann
optimization method was proposed, which can directly optimize in high-dimensional space and avoid nu-
merical instability; Finally, experimental results on two real-world datasets demonstrate that this method
can effectively discover hierarchical relationships from pairwise similarity scores. This method can re-
store the correct hierarchical relationships from embeddings while maintaining similarity order, which is
of great significance for understanding the structure and evolution of complex systems.

Next, overview a type of hyperbolic embedding method originating from the network science community
and preceding the work of Kiela et al. Papadopoulos et al. proposed a network mapping method called
HyperMap [24], which can embed complex real-world networks into hyperbolic space. HyperMap is
based on a rigorous geometric theory of complex networks, which models complex networks as random
geometric graphs in hyperbolic space. This method estimates the hyperbolic coordinates of new nodes
in a growing network by replaying the geometric growth process of the network, thereby maximizing the
likelihood of network snapshots in themodel. This method utilizes the Popularity Similarity Optimization
(PSO) model, which is a model that describes the growth of complex networks and can reproduce various
structures and dynamic characteristics of real networks. The PSO model assumes that the probability
of a new node in the network connecting to other nodes based on its position in hyperbolic space is a
decreasing function of hyperbolic distance. The HyperMap method utilizes this theory to infer the order
of node appearance through maximum likelihood estimation (MLE) [25], and based on this, replays
network growth to find hyperbolic coordinates that maximize local likelihood for each new node.

HyperMap has been applied to the autonomous system (AS) topology of the Internet, and found that this
method can produce meaningful results, such as identifying soft communities of ASs belonging [5] in the
same geographical region. In addition, the network map obtained using HyperMap can predict missing
links in the Internet with high accuracy, surpassing popular existing methods. The network map con-
structed by HyperMap also exhibits high navigability, which means that most greedy geometric routing
paths are successful and have low stretch. HyperMap also has outstanding performance in predicting
missing links. Compared to several classic link prediction techniques such as common neighbors, de-

5



gree product, inverse shortest path, Katz index, and hierarchical random graph model, HyperMap shows
stronger predictive ability, especially in predicting ”difficult to predict” links (links between low degree
nodes without common neighbors).

However, the HyperMapmethod still has significant limitations and room for improvement, such as accu-
rate estimation of the angular coordinates of early nodes and improvement in the process of maximizing
the likelihood function. Nevertheless, HyperMap performs well in embedding accuracy and computa-
tional efficiency, providing a powerful tool for understanding network structure and dynamics. This
work not only advances our understanding of network geometry, but also provides new perspectives and
methods for the field of network science.

Robert Jankowski et al. [19]developed another method which combines MLE like HyperMap with
Laplacian Eigenmaps, called D-Mercator for embedding complex real-world networks into multidimen-
sional hyperbolic spaces. The D-Mercator method is model-based and can map the network to a (D+1)
- dimensional hyperbolic space, where the similarity subspace is represented as a D-dimensional sphere.
The proposal of this method is to solve the problem of better describing real-world networks through
multi-dimensional latent geometric models.

The core of the D-Mercator method lies in utilizing the properties of hyperbolic geometry, which are par-
ticularly useful in describing networks with hierarchical structures. In hyperbolic space, the probability
of connections between nodes follows a form similar to the law of gravity, where the ”hidden degree”
of nodes and their position on the D-dimensional sphere determine the likelihood of their interactions.
This method can not only capture the local connectivity patterns of the network, but also reveal the global
structural features of the network, such as community structure and network navigability.

The D-Mercator method provides a new perspective for studying the navigability of networks by em-
bedding them into multidimensional hyperbolic spaces. In this approach, the navigability of the network
can be evaluated by applying Greedy Routing in hyperbolic space. Greedy routing is a simple routing
strategy that selects the neighbor closest to the target node as the next routing point at each step. The
success or failure of this method, as well as the efficiency of the routing path (such as path length and
the proportion of successfully reached targets), are indicators of network navigability and of the embed-
ding quality (the higher the performance of greedy routing, the more congruent is the embedding with
the network topology). In the D-Mercator method, the navigability of the network depends not only
on the local connectivity between nodes, but also on the global structure of the network in hyperbolic
space. Therefore, by optimizing the embedding of the network in hyperbolic space, the navigability of
the network can be improved, thereby enhancing the information transmission efficiency of the network
while maintaining its structural characteristics. This method provides a new tool for understanding and
improving the navigability of complex networks, especially in network applications that require efficient
path planning and information dissemination.

Researchers have validated the accuracy of the D-Mercator method in embedding quality and model pa-
rameter inference through testing on synthetic networks. They found that the embeddings obtained using
the D-Mercator method can highly accurately restore the original coordinates of the network and correctly
determine all other model parameters, including hidden degree and inverse temperature parameters. In
addition, D-Mercator is able to identify the dimensions used to generate synthetic networks without prior
knowledge of that dimension.
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In the application to real-world networks, the D-Mercator method demonstrates its advantages in mul-
tidimensional representation. For example, in AddHealt ’s [26] research on networks, this method can
clearly distinguish student groups of different grades in a two-dimensional hyperbolic space, which can-
not be achieved in a one-dimensional representation. The D-Mercator method has also demonstrated its
effectiveness in community detection and greedy routing tasks in other networks, such as the International
Apple Trade Network (FAO apples) and the Global Flight Network (OpenFlights).

The proposal of the D-Mercator method provides a new tool for the field of network science, which can
not only improve our understanding of network structure, but also play an important role in machine
learning, community detection, and network dynamics research. By embedding networks in appropriate
dimensions, researchers can more accurately capture the complexity and diversity of networks, providing
new perspectives and methods for the study of complex systems.

By comparing hyperbolic embedding methods from the machine learning and network science commu-
nities, we can gain a deeper understanding of their characteristics. In the field of machine learning,
hyperbolic embedding methods are commonly used for data visualization, clustering, and dimensional-
ity reduction, while the network science communities focus more on capturing the geometric properties
and topological structure of the network. The core idea of hyperbolic embedding is to map nodes in the
network to hyperbolic space, where the distance between nodes reflects their relationship in the original
network. In machine learning, these mappings are achieved through optimization algorithms with the
goal of minimizing the distance in the embedding space and the relationships in the original network. In
the network science community, hyperbolic embedding relies more on geometric models of the network,
which attempt to capture its dynamic and structural characteristics. In machine learning, hyperbolic em-
bedding methods may not rely on complex optimization processes, which may include gradient descent
and automatic encoding of neural network structures. In the network science community, hyperbolic em-
bedding methods may focus more on the accuracy of the model and the consistency of the physical model
of the network. For example, hyperbolic embedding methods in the network science community may be
based on geometric models of the network that attempt to capture the growth and evolution process of
the network.

The latest method from network science for hyperbolic network embedding is a novel method called FiD
Mercator [27] published by Jankowski et al., which is a model-based ultra-low dimensional dimensional-
ity reduction technique used to embed complex networks into hyperbolic space. FiD Mercator created a
D-dimensional map that describes the network by integrating node features (i.e. node attributes or quality
descriptions) with the network structure. This method effectively utilizes features as initial conditions to
guide node coordinate search towards the optimal solution. FiD Mercator is an extension of D-Mercator
that not only considers network structure but also node characteristics. FiD Mercator improves the accu-
racy and robustness of embedding by integrating node features during the embedding process, especially
when the features are highly correlated with the network structure. By applying FiD Mercator on multi-
ple real-world network datasets, including citation networks, social networks, product networks, and web
networks. The comparison of experimental results with D-Mercator’s results shows that FiD Mercator
performs better in link prediction and node classification tasks than the D-Mercator method that relies
solely on network structure. This indicates that when node features are highly correlated with network
topology, integrating feature information into network embedding can significantly improve embedding
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quality.

By combining network topology and node characteristics, FiD Mercator can provide richer and more
accurate descriptions for complex networks, and improve performance in various downstream tasks. The
development of this method provides new tools for the field of network science, which helps to better un-
derstand and predict the behavior of complex networks. Future research may explore how to intelligently
select feature sets and integrate non binary features into analysis to further optimize the performance of
network embedding and related tasks.

1.3 Contribution

This paper conducts a series of studies on comparing three main popular hyperbolic embedding meth-
ods. It primarily considers machine learning methods, specifically the Poincare method and the Lorentz
method, and model-based methods, primarily the D-Mercator method. Model-based methods from the
network science community have advantages in interpretability and accurately capturing the hierarchical
structure and clustering of networks, thereby maintaining an accurate description of the global network
topology. In contrast, machine learning methods exhibit better local adaptability when data is abundant
and computational resources are sufficient. The choice of method often depends on the specific appli-
cation scenario and research objectives. Therefore, the contribution of this thesis lies in quantitatively
comparing the embedding quality of real-world networks in hyperbolic space, obtained through three
main hyperbolic embedding methods, across different research communities (e.g., computer scientists vs.
statistical physicists) and elucidating their performance in two key applications of interest.Specifically:

1. We consider and compare three hyperbolic embedding methods—the Poincare method, the Lorentz
method, and the D-Mercator method, applying them to the topology of the Autonomous Systems
Internet (IPv6) [6]. The comparison allows us to understand the strengths and limitations of each
method in preserving the intrinsic structure and relationships of the graph. We calculate the rank
correlation coefficient and Pearson coefficient between between the hyperbolic node distances ob-
tained in the different embeddings. With the Pearson correlation coefficient we measure the linear
correlation between two sets of hyperbolic distances, while the rank correlation coefficient is a
method for measuring the degree of similarity between the hyperbolic distance rankings of the
same pair of nodes across embeddings, which captures the correlation among the hyperbolic dis-
tance orderings between embeddings.

2. This article not only investigates the linear or nonlinear relationship between the results of embed-
ding different types of hyperbolic embedding methods into the same dataset, but also quantitatively
studies the quality of embedding results. This article considers methods such as greedy routing and
missing link prediction. For greedy routing, we randomly set the starting node and target node, and
each time select the neighboring node with the shortest hyperbolic distance from the target node
among the current node’s neighboring nodes as the next node, and check whether it can ultimately
reach the target node. We can quantify embedding quality using success rate and average hop count;
For missing link prediction, Randomly remove some links while maintaining network connectivity,
and then re embed the remaining links into hyperbolic space, and the hyperbolic distance between
nodes is calculated pairwise and sorted from small to large. The hyperbolic embedding quality
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can be quantified by the negative correlation between these hyperbolic distances and the probabil-
ity of missing links. These quantitative indicators provide a method to evaluate and compare the
performance of hyperbolic embedding methods in practical network routing tasks, thereby help-
ing researchers and practitioners better understand and utilize graph data embedding in hyperbolic
space.

1.4 Structure of the Thesis

This thesis compares hyperbolic embedding methods for real-world networks and consists of five chap-
ters. The specific organization and arrangement of each chapter is as follows:

The first chapter is an introduction. Firstly, the research background and significance of this topic are
introduced; Secondly, the research status of hyperbolic embedding methods in machine learning and
network science communities are introduced; Subsequently, the main contributions of this paper are in-
troduced; Then, the organizational structure of this paper is introduced; Finally, a brief summary is made
for the entire introduction section.

The second chapter is related theoretical knowledge. Firstly, the basic concepts of graph data are intro-
duced; Secondly, geometric related concepts are introduced; Then Euclidean geometry and hyperbolic
geometry are introduced, along with two isometric models of hyperbolic geometry, including the Lorentz
model and the Poincare sphere model. Subsequently, the hyperbolic embedding algorithm model from
network science is introduced.

The third Chapter is about research methods, mainly proposing corresponding solutions to the problems
we are studying. Firstly, we introduced the AS (Autonomous Systems) dataset used, and then embedded
the same dataset using machine learning methods (Poincare method and Lorentz method) and network
science methods (D-Mercator method). We calculate the Pearson coefficient and the rank correlation
coefficient (e.g., Spearman’s ρ) of the obtained results to assess whether there is a linear or monotonic
nonlinear relationship between the results of different methods. Finally, we quantify the embedding
quality of the two methods by calculating the success rates of greedy routing and missing link prediction.

The fourth Chapter is Results and Discussion, mainly carrying on the calculations and experiments men-
tioned in Chapter 3. We compare the relationship and embedding quality of the three methods through
quantitative results. Determine whether there are linear or nonlinear relationships between the results
obtained by processing the same data using three different methods, based on the Pearson coefficient
and the rank correlation coefficient; Quantify the embedding quality of three methods by comparing the
results of greedy routing and missing link prediction. Discussing the advantages and disadvantages of
three methods based on the results can better help people.

The fifth chapter is a summary and outlook. Firstly, a summary of the research background and content of
this article has been made. Secondly, based on the current research status, future directions worth further
investigation were explored.
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1.5 Summary

This chapter first introduces the advantages of hyperbolic embedding based on the limitations of current
Euclidean space representation data, and then presents the objectives and work of this paper. Then,
by introducing the current status of hyperbolic embedding technology and comparing the advantages
and disadvantages of various technologies, we have gained a preliminary understanding of hyperbolic
embedding technology. Furthermore, the main contributions of this thesis and the general content of
each part of the overall article were introduced, followed by a summary.
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2 Related theoretical knowledge

2.1 Graph Data

Graph data is a data structure composed of nodes and edges between nodes, which can reflect complex
data in the real world. As early as 2009, Papadopoulos et al. [28]demonstrated in their paper ’Curva-
ture and Temperature of Complex Networks’ that real-world graph data often possess latent hierarchical
properties [29] [30] [31] or unobservable underlying structures, which significantly influence the inter-
pretation and analysis of such data. Therefore, understanding and utilizing the hierarchical structure in
graph data for hierarchical modeling can help to more comprehensively grasp the intrinsic structure and
relationships of graph data, thereby improving the accuracy and interpretability of the model. For exam-
ple, social networks, air transportation networks, and so on. Papadopoulos et al. (2012) [32]proposed
a hyperbolic geometry-based network generation model that integrates two key factors—node popular-
ity and similarity—to generate graph structures with realistic network properties. In the diagram, nodes
represent entities in real life; If the graph represents a social network, then nodes represent individual
users. Edge represents the relationship between every two entities; For social networks, the edges be-
tween nodes represent the existence of communication or shared interests between them. Graphs can
be divided into two categories: isomorphic graphs and heterogeneous graphs. Isomorphic graphs only
contain a single type of node and edge, while heterogeneous graphs contain multiple types of nodes and
edges, which enables heterogeneous graphs to more accurately map complex network structures in the
real world. Graph data has a wide range of applications in various fields, including recommendation
systems, traffic flow prediction, and community detection.

A graph G=(V, E), composed of a set of nodes V and an edge set E, where (u, v) ∈ E represents the
connection between nodes u and v, reflecting their specific relationship. The graph can be directed or
undirected, depending on whether the edges have directionality.

The relationships between nodes in a graph are usually represented by adjacency matrices. For a graph
with n nodes, its adjacency matrix A is an n × n matrix. If there is an edge between node i and node j,
then Aij=1; If there are no edges, Aij=0. This representation method allows us to efficiently process and
analyze graph data in matrix form.

Node features are vectors or matrices that encode or represent nodes in a graph. In practical applica-
tions, graph nodes usually have a variety of features. For example, in social networks, node features
can include a user’s friend list, interests, hobbies, and so on. By utilizing machine learning, deep learn-
ing [33] [34], and other methods, node features can be further processed to extract richer node features,
thereby improving model performance.

In this thesis, we use AS graph data. AS (Autonomous System) refers to a collection of one or more
networks that are logically managed and exhibit a consistent routing strategy externally. Each AS is
identified by a unique number (ASN, Autonomous System Number), which is used to identify and make
routing decisions in the Internet. Autonomous systems are widely used in operator networks, enterprise
networks and data centers to achieve hierarchical and efficient management of routes in the Internet. They
exchange routing information with other ASs through protocols such as BGP (Border Gateway Protocol),
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thus ensuring the interconnection of the global Internet [35].

2.2 Geometrical Concept

In order to better understand hyperbolic space, this section will introduce somemajor geometric concepts.
For more detailed knowledge of geometric theory, please refer to relevant standard textbooks. [36] [37]

1. Manifolds: Manifolds are geometric objects that are locally similar to Euclidean spaces. In a man-
ifold M of dimension d, each point’s neighborhood can be approximated as a local approximation of
d-dimensional Euclidean space Rd. For example, the Earth can be modeled as a spherical object, and its
local regions can be approximated using R2.

2.Tangent Space: In a Riemannian manifold M , the tangent space TuM at a point u is a d-dimensional
vector space that provides a first-order approximation of the manifoldM at u. It is the local linearization
of the manifold at point u, capturing the linear behavior of the manifold in the vicinity of that point.

3.Riemannian metric: The Riemannian metric is a core concept in Riemannian geometry, providing an
intrinsic measure for each point on a manifold, allowing us to measure lengths and angles in the vicinity
of that point. Specifically, at any point u on a manifold M , the Riemannian metric g defines the inner
product on the tangent space TuM , which permits us to compute the length of vectors and the angle
between two vectors.

4.Riemannian Manifold: Riemannian Manifold, also known as a Riemannian metric space, is a funda-
mental concept in Riemannian geometry. It is a smooth manifold equipped with a Riemannian metric,
which allows us to define geometric concepts such as distance, angles, and volume on the manifold. For-
mally, a d-dimensional smooth manifoldM equipped with a Riemannian metric tensor g is defined as a
Riemannian manifold, denoted as (M, g). [38]

5.Geodesics: In Riemannian geometry, geodesics are the shortest paths connecting two points, general-
izing the concept of a straight line in Euclidean space.

6.Exponential Map: The exponential map is a method of mapping from the tangent space at a point on a
Riemannian manifold to the manifold itself, denoted as expu : TuM → M . On a Riemannian manifold
M , for any vector t in the tangent space TuM at point u ∈ M , the exponential map expu(t) generates a
point on the shortest geodesic starting from u and traveling in the direction and length specified by the
vector t. The definition of the exponential map is particularly useful in gradient descent and optimization
algorithms, as it provides a way to perform parameter updates along geodesics, naturally preserving the
intrinsic geometric structure of the data.

7.logarithmic map: The logarithmic map can be considered as the inverse process of the exponential map,
that is logu : M → TuM . For two points u and z on the Riemannian manifoldM , if there exists a unique
shortest geodesic between them, then the logarithmic map logu(z) projects the point z on the manifold
M back to a vector in the tangent space TuM at point u. The direction and magnitude of this vector
represent the direction and distance from z along the shortest geodesic to u.
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2.3 Euclidean Space

Euclidean geometry, a geometry with zero sectional curvature, serves as the cornerstone of many math-
ematical theories and has significantly shaped our understanding of the spatial relationships. It is based
on five fundamental postulates that define the behavior of points, lines, and planes:

1. Through any two distinct points, there is exactly one straight line.

2. A line segment can be extended in both directions to form a line that is infinitely long.

3. Given any point not on a given line, there is exactly one line through the point that does not intersect
the given line; this line is unique and is called a parallel to the given line.

4. All right angles are congruent (equal in measure).

5. For any triangle, the sum of the interior angles is exactly 180 degrees.

6. If two lines are each intersect a third line, and the sum of the interior angles on the same side of
the third line is less than two right angles, then the two lines, if extended indefinitely, will meet on
that side of the third line; this is the basis for the concept of parallelism.

These postulates form the basis for Euclidean geometry and are essential for understanding the properties
of geometric figures and for solving geometric problems.

In d-dimensional Euclidean space, to calculate the distance between two points as well as the angle
between vectors or lines, given two vectors u, v ∈ Rd, their standard inner product is defined as:

⟨u, v⟩ =
d∑

i=1

uivi (2.1)

By utilizing the standard inner product, the length of vector u can be obtained as:

∥u∥ =
√

⟨u, u⟩ =

√√√√ d∑
i=1

(ui)
2 (2.2)

The length function of vector u satisfies the properties of a norm, and thus is also referred to as the
Euclidean norm on Euclidean space. The Euclidean distance can be defined using the Euclidean norm
as:

d(u, v) = ∥u− v∥ =

√√√√ d∑
i=1

(ui − vi)
2 (2.3)

Given two points u, v ∈ Rn in Euclidean space and a vector t ∈ TuRn in the tangent space, the expo-
nential map and logarithmic map of Euclidean space are defined as:

expu(t) = u+ t (2.4)

logu(v) = v − u (2.5)
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2.4 Hyperbolic Geometry

Hyperbolic Geometry, also known as Lobachevskian Geometry, is a type of non-Euclidean geometry
independently discovered by the Russian mathematician Nikolai Ivanovich Lobachevsky and the Hun-
garian mathematician János Bolyai. The main difference between this geometry and Euclidean geometry
is that it abandons the parallel postulate of Euclidean geometry, which means that in hyperbolic geometry,
through a point not on a given line, multiple lines can be drawn parallel to the given line.

Some fundamental characteristics of hyperbolic geometry include:

• Existence of Parallel Lines: In hyperbolic geometry, given a line and a point not on that line, an
infinite number of lines can be drawn through the point that are parallel to the given line.

• Sum of Angles in a Triangle: Due to the constant negative curvature of hyperbolic space, the sum
of the interior angles of a triangle in hyperbolic geometry is always less than 180 degrees (or π
radians).

• Hyperbolic Plane: Hyperbolic geometry is typically studied on the hyperbolic plane, a special
kind of geometric space that can be imagined as an infinitely large surface where the straight lines
are geodesics, the shortest paths between two points on the surface.

• Hyperbolic Distance: In hyperbolic geometry, the distance between two points is defined using
hyperbolic metrics. Because hyperbolic space is curved with constant negative curvature, the radial
approach to distance measurement varies, which is different from the metrics used in Euclidean
geometry.

(1)Poincare model

The Poincare disk model is a representation of hyperbolic space that maps hyperbolic space to an open
unit disk. In this model, points in hyperbolic space are represented as points inside a disk, while the
boundaries of the disk correspond to points at infinity in hyperbolic space. The visualization of the
Poincare disk model is shown in Figure 2.1, where the distance between each edge of the nodes is equal.
Since this model is presented in two-dimensional Euclidean space, it appears that the closer it is to the
center of the circle, the greater the distance, while the distance between the nodes at the original center
of the circle is relatively small. So if it is known that the distance between nodes is equal, it can be seen
that nodes closer to the edge have a greater distance.
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Figure 2.1: Poincare disk model

As shown in Figure 2.2, Suppose we have a hyperbolic world confined within the boundary of a unit
circle, and this world is governed by two important physical laws:

1. If an objectX is at a distance d from the originO, then the temperature of the object is given by 1−d2.

2. The size of an object is directly proportional to its temperature.

In this hyperbolic world, the temperature T of an objectX as a function of its distance d from the origin
O can be expressed as:

T = 1− d2 (2.6)

Let S represent the size of the object, which is proportional to its temperature. If we denote the propor-
tionality constant by k, then the size S can be written as:

S = kT = k(1− d2) (2.7)

Figure 2.2: Hyperbolic space represented by unit circles

The Poincare model Bd is a manifold equipped with the Riemannian metric gB = λ2
ug

E , where λ2
u =
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2
1−∥u∥2 and gE is the Euclidean metric. For a d-dimensional hyperbolic space, the Poincare ball model
can be defined within the unit ball of d-dimensional Euclidean space:

Bd = {u ∈ Rd : ∥u∥ < 1} (2.8)

Here, ∥ · ∥ denotes the Euclidean norm. The tangent space TuB
d at a point u on Bd is a d-dimensional

Euclidean space, which is closest to the neighborhood of point u in Bd. Given two points u, v ∈ Bd in
the Poincare ball, and a vector t ∈ TuB

d, the exponential map expu(t) : TuB
d → Bd and the logarithmic

map logu(v) : Bd → TuB
d can be expressed as follows:

expu(t) = u⊕
(
tanh

(
∥t∥

1− ∥u∥2

)
t

∥t∥

)
(2.9)

The logarithmic map logu(v) is defined as:

logu(v) = (1− ∥u∥2) · tanh−1(∥ − u⊕ v∥) −u⊕ v

∥ − u⊕ v∥
(2.10)

where ⊕ denotes the Möbius addition.

Formally, the distance between two points u, v ∈ Bd in the Poincare ball is defined as:

dB(u, v) = arcosh
(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(2.11)

One of the characteristics of the Poincare ball model is its angle-preserving property. It maintains the
measurement of angles, meaning that the intersection angle of two curves in hyperbolic space is equivalent
to the intersection angle of their representations in the Poincare ball model. Additionally, in the Poincare
ball model, the boundary of the ball corresponds to the points at infinity in hyperbolic space. Although
the boundary of the ball is not part of hyperbolic space itself, it plays a significant role in helping us
understand the structure of hyperbolic space.

(2)Lorentz model

The Lorentz model, also known as the hyperboloid model, is a way to represent hyperbolic geometry. It
is equipped with a metric tensor gH and is defined as the upper sheet of a two-sheeted hyperboloid in
Rd+1:

Hd = {u ∈ Rd+1 : ⟨u, u⟩L = −K,u0 > 0} (2.12)

where ⟨·, ·⟩L denotes the Lorentzian inner product, and the curvature is −1/K with K > 0. For two
points u, v ∈ Rd+1 on the hyperboloid, the Lorentzian inner product is defined as:

⟨u, v⟩L = uT gHv = −u0v0 +

d∑
i=1

uivi (2.13)

Here, gH is a diagonal matrix with all elements being 1 except for the first element, which is -1.
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The distance between two points u, v ∈ Hd in the Lorentz model is given by:

dKH(u, v) =
√
Karcosh

(
−⟨u, v⟩L

K

)
(2.14)

For points u, v ∈ Hd, and a vector t ∈ TuH
d with t ̸= 0 and v ̸= u, the exponential map expKu :

TuH
d → Hd and the logarithmic map logKu : Hd → TuH

d are defined as:

expKu (t) = cosh
(
∥t∥L√
K

)
u+

√
K sinh

(
∥t∥L√
K

)
t

∥t∥L
(2.15)

logKu (v) = dKH(u, v)
v + 1

K ⟨u, v⟩Lu
∥v + 1

K ⟨u, v⟩Lu∥L
(2.16)

where ∥t∥L =
√
⟨t, t⟩L is the Lorentzian norm of t. The tangent space at point u in the Lorentz model

Hd is defined as the d-dimensional vector space that approximatesHd to the first order at u:

TuH
d = {t ∈ Rd+1 : ⟨t, u⟩L = 0} (2.17)

The Lorentz model provides an effective space for Riemannian optimization and has the advantage of
numerical stability. It is particularly useful for learning hierarchical structures from large-scale unstruc-
tured similarity scores. The model’s ability to avoid numerical instability and its capacity for Riemannian
optimization make it a valuable tool for handling complex relationships in large datasets.

2.5 Mercator

We have provided a detailed introduction to the concept and model of hyperbolic space above, and many
existing algorithm models are derived from classical hyperbolic geometry models. For example, Maxi-
milian Nickel et al. proposed an algorithm model based on the Poincare disk model, which was derived
from the Poincare disk model. Here we will provide a detailed introduction to the hyperbolic embedding
method used in this article, which is the D-Mercator method.

The D-Mercator is a model-based embedding method that produces multidimensional maps of real net-
works into the (D + 1)-hyperbolic space, where the similarity subspace is represented as a D-sphere. It
is an extension of the Mercator tool, which embeds networks into the hyperbolic plane, and is particu-
larly suited for networks that are better described by a multidimensional formulation of the underlying
geometric model.

The D-Mercator [19] method is based on the multidimensional formulation of the geometric soft con-
figuration model, the SD = HD+1 model, which is a multidimensional generalization of the S1 model.
For example, the similar subspace of the hyperbolic space with D=2 in Figure 2.3 is equivalent to the
surface of a sphere in three-dimensional Euclidean space. Here, the hyperbolic space will be visualized
and represented more vividly in Euclidean space. After embedding data into hyperbolic space, nodes
will be embedded on the surface of a sphere, representing individual data, just like in the graph. Then the
hyperbolic distance between nodes here is determined by the angular coordinates and radial distance. In
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this model, a node i is assigned a hidden variable representing its popularity, influence, or importance,
denoted κi and named hidden degree. It is also assigned a position in theD-dimensional similarity space
chosen uniformly at random, and represented as a point on aD-dimensional sphere.

The connection probability between a node i and a node j takes the form of a gravity law:

pij =
1

1 +
(
R∆θij
µκiκj

)β (2.18)

where∆θij = arccos
(vi·vj

R2

)
represents the angular distance between nodes i and j in theD-dimensional

similarity space, β > D is the inverse temperature that calibrates the coupling of the network topology
with the underlying metric space, and µ controls the average degree of the network. The parameter µ
controls the average degree of the network and is defined as:

µ =
βΓ
(
D
2

)
sin
(
Dπ
2β

)
2π1+D

2

(
1 + D

2

)
⟨k⟩

(2.19)

where Γ is the Gamma function,D is the dimensionality of the similarity subspace, and ⟨k⟩ is the average
degree of the network. The hyperbolic distance d between two points with radial coordinates ri and rj ,
and angular separation∆θ can be expressed as:

d = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(∆θ) (2.20)

The hyperbolic radius ri is given by:

ri = R̂− 2

D
ln
(
κi
κ0

)
, (2.21)

where R̂ is defined as:

R̂ = 2 ln

(
2R(

µκ20
)1/D

)
. (2.22)
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Figure 2.3: Geometric soft configuration model (Source: Jankowski et al., 2023)

2.6 Summary

This chapter mainly introduces some relevant theoretical knowledge contained in this thesis. Specifi-
cally, this chapter first provides an overview of the basic concepts and applications of graph data, and
explains what the AS dataset used in this thesis is. Then, the basic concepts andmathematical background
knowledge related to hyperbolic geometry were introduced, as well as the relevant content of Euclidean
geometry, which can be compared to understand the difference between hyperbolic space and Euclidean
space. Then, two isometric models of hyperbolic geometry were introduced successively, including the
Lorentz (hyperbolic) model and the Poincare model. Subsequently, in order to better introduce the exper-
iments conducted in the following text, the D-Mercator model from network science used in this article
was emphasized, and its various formulas for hyperbolic distance calculation were detailed.
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3 Quantifying Embedding Quality

3.1 Greedy Routing

Greedy routing is a strategy used in networks to find a path from a source node to a target node. In
this method, each node forwards a message to its neighbor that is closest (according to some distance
metric) to the target node. This process is repeated until the message reaches the target node. Greedy
routing was systematically analyzed by Boguñá et al. (2009) [39], who demonstrated its effectiveness in
complex networks. Furthermore, Krioukov et al. (2010) [5] showed that when networks are embedded
into hyperbolic space, greedy routing can achieve near-optimal efficiency due to the inherent hierarchical
and geometric properties of hyperbolic embeddings. The key characteristics of greedy routing include:

• Local Decision Making: Each node makes forwarding decisions based only on information about
its immediate neighbors, without requiring global network knowledge.

• Simplicity: The algorithm is straightforward to implement because it relies on local information.

• Efficiency: In some network topologies, greedy routing can quickly find a path to the target node,
especially when the network has favorable structural properties.

• Potential Suboptimal Solutions: Greedy routing does not guarantee finding the globally optimal
path; it may become trapped in localminima [40], in which case the path is considered unsuccessful.

• Dynamic Adaptability: Greedy routing can adapt to dynamic changes in the network since it
depends only on current neighbor information.

• Effectiveness in Specific Networks: Greedy routing can be very effective in certain types of net-
works, such as small-world networks [41] or scale-free networks [42], due to their highly clustered
nature, which allows greedy routing to quickly find a path to the target.

Figure 3.1: Greedy Routing Flowchart
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The specific process of greedy routing is illustrated in Figure 3.1. After completing the node embedding,
we obtain the coordinate information of the nodes in hyperbolic space. We randomly select two nodes
as the starting node and the target node, respectively. Starting from the starting node, the data packet is
carried, and the distance from its neighboring nodes to the target node is calculated. The data packet is
then sent to the neighbor node that is closest to the target node. For each node storing the data packet, we
consider its neighbors. We then calculate the hyperbolic distance from each neighbor to the target and
forward the data packet to the neighbor with the smallest distance, repeating this process until the target
node is reached. If a data packet visits the same node twice, it will be discarded, considered a routing
failure, and a new routing cycle will begin.

If the embedding quality is good, the success rate of greedy routing will be high, indicating that the
embedding method can effectively capture the hierarchical relationships between nodes and accurately
reflect the connection patterns between nodes and their neighbors. Specifically, high-quality embedding
maps the relationships between nodes in the topological structure into hyperbolic space, enabling greedy
routing to quickly find the optimal path based on hyperbolic distance. Conversely, if the embedding
quality is poor, the success rate of greedy routing will be low, indicating that the embedding method fails
to effectively capture the hierarchical relationships between nodes or accurately reflect the connection
patterns between nodes and their neighbors, and even struggles to distinguish the importance or weights
of interconnected nodes.

3.2 Missing Link Prediction

Missing link prediction is an important method for evaluating the quality of network embedding. The
core idea is to randomly remove some connected node pairs (i.e. links) and use embedding methods to
regenerate the hyperbolic coordinates of nodes, in order to predict whether these removed links can be ac-
curately restored. Link prediction was originally proposed by Liben-Nowell and Kleinberg (2003) [43]
to study the evolution and structure of complex networks. With the development of graph representa-
tion learning, embedding-based methods have become widely adopted. Early works such as DeepWalk
(Perozzi et al., 2014) [44] and node2vec (Grover and Leskovec, 2016) demonstrated that effective node
embeddings can significantly improve link prediction performance. The specific procedure is as follows:

1. Data Preprocessing: First, a certain proportion of connected node pairs (typically 10%, 20%,
or 30%) are randomly removed from the initial graph dataset. These removed node pairs serve
as positive examples (i.e., real existing links). The modified graph dataset is then used for the
subsequent embedding process.

2. Embedding Process: The modified graph dataset is embedded into hyperbolic space using two
different methods:

• Network Science Method: The D-Mercator method is used to compute the hyperbolic coor-
dinates of nodes.

• Machine Learning Methods: The Poincare model and the Lorentz model are used to com-
pute the hyperbolic coordinates of nodes.

3. Constructing the Validation Set:
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• Positive Examples: The node pairs randomly removed from the initial graph dataset will
serve as the positive examples for the subsequent validation set. However, it is important
to note that removing a certain proportion of node pairs may result in the complete removal
of nodes with small degrees (i.e., nodes with few neighbors). This means that after embed-
ding into hyperbolic space, we may not obtain the hyperbolic coordinates for these nodes.
Consequently, during subsequent evaluation, it will be impossible to calculate the hyperbolic
distances for node pairs involving these nodes. Therefore, we need to use the node ID infor-
mation from the embedded nodes and compare it with all the IDs in the randomly removed
node pairs to identify those node IDs that exist only at one end. We then remove the node
pairs associated with these nodes from the randomly removed node pair set. The remaining
node pairs constitute the true positive examples for the validation set.

• Negative Examples: We consider all unconnected node pairs by exhaustively pairing all
nodes and removing any existing links from the original dataset. Using all unconnected node
pairs as negative samples better approximates real-world application scenarios and prevents
evaluation fluctuations caused by random sampling.

• The positive and negative examples are combined into a validation set for subsequent evalu-
ation.

4. Calculating Hyperbolic Distance: Based on the vectors of the embedded nodes, the hyperbolic
distance between all node pairs in the validation set is calculated using the corresponding hyper-
bolic distance formulas (e.g., Poincare distance or Lorentz distance). The distances are then sorted
in ascending order. In hyperbolic space, the probability of a link existing between two nodes is
inversely proportional to their hyperbolic distance, meaning that a smaller hyperbolic distance in-
dicates a higher probability of a link existing between the nodes.

5. Evaluating Embedding Quality: Compare the hyperbolic distance distribution between the pos-
itive samples (deleted real edges) in the validation set and all other unconnected negative samples
in the embedding space. If the embedding quality is good, the positive sample edges in the val-
idation set should be significantly concentrated in a smaller distance interval, while the negative
sample edges should be distributed in a larger distance range. By plotting ROC and PR curves and
calculating metrics such as recall, AUC, and AUPR, the performance of embedding methods in
missing link prediction tasks can be quantified.

3.2.1 ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graphical tool used to evaluate the performance
of binary classification models. It demonstrates the classification capability of a model by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR) at various thresholds. In this context, we
will plot the ROC curves for the missing link prediction task using different methods. To achieve this,
we first sort the validation sets of each method in ascending order based on hyperbolic distance. Then,
we use each row’s hyperbolic distance as a threshold to calculate the TPR and FPR within that threshold.
This process is repeated until the last row’s distance is used as the threshold. By plotting the TPR and
FPR at each threshold on the graph, we obtain the ROC curve. In the context of missing link prediction:
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• True Positive Rate (TPR): The proportion of actual positive examples (removed links) that are
correctly predicted as positive. The formula for TPR is:

TPR =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)
(3.1)

Here, TPmeans true positive, indicating the number of positive cases correctly predicted as positive cases;
FN stands for false negative, indicating the number of positive cases that were incorrectly predicted as
negative. The sum of the two is the sum of the number of positive examples in the validation set.

• False Positive Rate (FPR): The proportion of actual negative examples (non-existent links) that
are incorrectly predicted as positive. The formula for FPR is:

FPR =
False Positives (FP)

False Positives (FP)+ True Negatives (TN)
(3.2)

Here, FP means false positive, indicating the number of negative cases that were incorrectly predicted as
positive; TNmeans true negative, indicating the number of negative cases correctly predicted as negative.
The sum of the two is the sum of the number of negative examples in the validation set.

The ROC curve provides a visual assessment of the trade-off between sensitivity (TPR) and specificity (1
- FPR). Amodel with perfect classification ability will have an ROC curve that passes through the top-left
corner of the plot, indicating a TPR of 1 and an FPR of 0. In Figure 3.2 below, we plot the ROC curve
for the D-Mercator method with 10% of the links removed. The fact that the prediction curve lies above
the diagonal demonstrates that the model has predictive capability. From the figure, we can see that the
curve is significantly above the diagonal, indicating that the method can effectively distinguish between
missing links and non-existent links, thereby achieving the goal of predicting missing links. The results
for other proportions of missing links are also excellent, but they are not shown here to avoid clutter.

Figure 3.2: Receiver Operating Characteristic (ROC) of D-Mercator

3.2.2 AUC

AUC (Area Under the ROC Curve) is the area under the ROC curve used to quantify the overall perfor-
mance of binary classification models. It is a scalar value between 0 and 1, which can comprehensively
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reflect the classification ability of the model at different thresholds. In missing link prediction, AUC is a
key metric for evaluating the quality of embedding methods. Specifically:

• High-Quality Embedding: If AUC is close to 1, the embeddingmethod can effectively distinguish
between missing links (positive examples) and non-existent links (negative examples), indicating
that the method captures the network’s topological structure and node relationships.

• Low-Quality Embedding: If AUC is close to 0.5, the embedding method fails to distinguish be-
tween missing links and non-existent links, suggesting that the method does not adequately reflect
the network’s topological properties.

AUC represents the probability that a randomly chosen positive example will be ranked higher than a
randomly chosen negative example.It is calculated as:

AUC =

∫ 1

0
TPR(FPR) d(FPR) (3.3)

AUC offers several significant advantages that make it a widely used metric for evaluating binary classifi-
cation models. First and foremost, AUC is threshold-independent, meaning it provides a comprehensive
assessment of a model’s performance across all possible classification thresholds, rather than being lim-
ited to a single cutoff point. This is particularly valuable in scenarios where the optimal threshold is
unknown or may vary depending on the application. Additionally, AUC is robust to class imbalance,
making it suitable for datasets where the number of positive and negative examples is highly skewed.
Unlike metrics such as accuracy, which can be misleading in imbalanced datasets, AUC focuses on the
model’s ability to rank positive examples higher than negative ones, offering a more reliable evaluation.
Furthermore, AUCprovides an intuitive and interpretable single scalar value, facilitating easy comparison
between different models or embedding methods. In the context of missing link prediction, AUC’s ability
to capture the trade-off between sensitivity (TPR) and specificity (1 - FPR) makes it an ideal metric for
assessing how well an embedding method can distinguish between missing links (positive examples) and
non-existent links (negative examples). A high AUC value indicates that the model can effectively rank
true missing links higher than non-existent ones, reflecting the embedding method’s success in preserv-
ing the network’s topological structure and node relationships. Overall, AUC’s threshold independence,
robustness to imbalance, and interpretability make it a powerful tool for evaluating and comparing the
performance of classification models, especially in complex tasks like missing link prediction.

3.2.3 PR Curve

The Precision-Recall (PR) curve is a graphical tool used to evaluate the performance of binary classifi-
cation models, particularly in imbalanced datasets. Unlike the ROC curve, the PR curve plots Precision
against Recall at various thresholds, providing a clear view of the trade-off between these two metrics.
Below is a detailed explanation of the PR curve:

• Recall: The proportion of correctly predicted positive cases in the actual positive cases (removed
links) is represented by TPR, which is the recall rate. Therefore, the calculation formula is the
same as Equation 3.1.

• Precision: The proportion of samples predicted as positive cases that are actually positive cases is
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calculated using the following formula:

Precision =
True Positives (TP)

True Positives (TP)+ False Positives (FP)
(3.4)

The Precision-Recall (PR) curve illustrates a model’s performance by plotting precision and recall values
at various thresholds. To construct the PR curve, node pairs are first sorted in descending order based on
their predicted scores, with each score treated as a potential threshold. For each threshold, recall (i.e., the
true positive rate) and precision (i.e., the proportion of correctly predicted links among all predicted links
above the threshold) are calculated. Each point on the PR curve corresponds to the precision and recall
values at a specific threshold. Specifically, if the PR curve extends toward the top-right corner of the plot,
it indicates that the embedding results achieve high precision and recall, suggesting that the embedding
method or model is effective in distinguishing missing links from non-existent ones. In contrast, if the
PR curve remains close to a horizontal line, it suggests that the embedding method fails to effectively
differentiate between missing and non-existent links, indicating a need for further optimization of the
embedding approach or adjustment of model parameters.

Ideally, the PR curve should extend horizontally from the top-left corner (0,1) to the top-right corner
(1,1), and then drop vertically to the bottom-right corner (1,0), forming an “L”-shaped curve. As shown
in Figure 3.3, this shape indicates that the model maintains perfect precision across all levels of recall.
Although such an ideal curve is rarely achieved in practical applications, it serves as a theoretical upper
bound for evaluating model performance. Furthermore, by comparing actual PR curves to this ideal, the
closer a curve approaches the top-right corner, the better the corresponding model performs.

Figure 3.3: Precision-Recall(PR) of Poincare

The Precision-Recall (PR) curve offers several key advantages, making it a powerful tool for evaluat-
ing binary classification models, particularly in scenarios with class imbalance. Unlike the ROC curve,
which can be overly optimistic in the presence of class imbalance, the PR curve specifically focuses on
the performance of the positive class, making it more sensitive to datasets where positive examples are

25



rare. As a result, the PR curve complements the ROC curve, providing a multifaceted perspective on the
quality of embedding methods for datasets. By plotting the relationship between Precision and Recall at
various classification thresholds, the PR curve clearly illustrates the trade-off between these two critical
metrics. Precision measures the proportion of predicted positive examples that are actually correct, which
is particularly important in applications where false positives are costly. On the other hand, Recall mea-
sures the proportion of actual positive examples that are correctly identified, which is crucial for tasks
where missing positive examples (e.g., missing links in a network) can have significant consequences.
Overall, the PR curve’s focus on the positive class, its sensitivity to class imbalance, and its ability to
visualize the Precision-Recall trade-off make it an indispensable tool for evaluating the performance of
classification models in real-world applications such as missing link prediction.

3.2.4 AUPR

AUPR (Area Under the Precision-Recall Curve) is a keymetric for evaluating classificationmodel perfor-
mance, particularly suited for imbalanced datasets. Unlike ROC-AUC, AUPR places greater emphasis on
the prediction quality of positive-class samples (typically the minority class), making it widely applicable
in fields such as medical diagnosis, anomaly detection, and in formation retrieval.

The calculation of AUPR is based on the integral of the precision recall curve, and its core formula is as
follows:

AUPR =

∫ 1

0
Precision(r) dr (3.5)

Here r denotes the recall and Precision(r) represents the precision at recall level r.

Due to the fact that the actual data is discrete, it is usually approximated by the 1-trapezoid rule:

AUPR ≈
n−1∑
k=1

(rk+1 − rk) ·
Precision(rk+1) + Precision(rk)

2
(3.6)

Here rk and Precision(rk) represent the recall and precision at the k-th threshold respectively, and n

denotes the total number of threshold points.

AUPR exhibits unique advantages that establish it as a core metric for evaluating classification models,
particularly for class-imbalanced problems. First, AUPR is threshold-independent, providing a compre-
hensive assessment of the precision-recall trade-off across all possible classification thresholds rather than
relying on a single threshold setting. This characteristic proves particularly valuable when the optimal
decision boundary is ambiguous or requires dynamic adjustment. Second, AUPR is specifically designed
for imbalanced data. When the positive class ratio is extremely low, AUPR offers a more realistic per-
formance evaluation than the potentially inflated ROC-AUC by focusing on both prediction quality (pre-
cision) and coverage capability (recall) of positive samples. AUPR directly measures a model’s ability
to rank positive instances, ensuring high-confidence predictions prioritize covering true positives.

In missing link prediction tasks, AUPR precisely captures a model’s discriminative power between sparse
positive samples (true missing links) and abundant negative samples (non-existent links). A high AUPR
value indicates that the embedding method can not only accurately identify missing links (high recall) but
also maintain prediction reliability (high precision), reflecting how well the embedding space preserves
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the network’s topological structure.

3.3 Rank Correlation and Pearson Coefficient

The greedy routing and missing link prediction experiments discussed above provide effective ways to
quantify the embedding quality of the Poincare, Lorentz, and D-Mercator methods on graph datasets.
By examining the final results of these experiments, we can distinguish the performance of the three
embedding methods and determine which one achieves better embedding quality. However, while these
experiments allow us to individually assess the performance of each method—identifying which methods
excel andwhich fall short—they do not reveal whether the embeddings generated by the threemethods are
correlated when applied to the same dataset. For instance, do the embeddings exhibit linear or nonlinear
relationships? Are the results of one method consistent with those of another? Although the formulas
used by the three methods to compute hyperbolic embeddings are different, we hypothesize that the
embeddings of high-degree nodes (those with many neighbors) may exhibit similarities, which requires
experimental validation. To address these questions, we introduce rank correlation coefficients (such
as Spearman’s rank correlation) and Pearson correlation coefficients, along with rank correlation scatter
plots, to investigate whether the embeddings produced by the three methods are correlated. This analysis
not only complements the previous experiments but also provides deeper insights into the relationships
between the embeddingmethods, helping us understand whether they capture similar structural properties
of the graph data.

3.3.1 Rank Correlation Coefficients

The rank correlation coefficient is a statistical measure used to assess the strength of a monotonic rela-
tionship between two variables. Unlike the Pearson correlation coefficient, which measures linear rela-
tionships, rank correlation coefficients are based on the ranks of the data rather than their raw values.
This makes them particularly useful for analyzing non-linear but monotonic relationships, as well as
datasets with outliers or non-normal distributions. Below, we introduce two commonly used rank cor-
relation coefficients: Spearman’s rank correlation coefficient [45] [46] and Kendall’s rank correlation
coefficient [47] [48].

• Spearman’s Rank Correlation Coefficient: Spearman rank correlation coefficient is the most
commonly used type of rank correlation coefficient, denoted as ρ, measures the strength and direc-
tion of the monotonic relationship between two variables. It is calculated as:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(3.5)

di is the difference in ranks between the two variables. In the context of graph data, after embedding
the data into three different hyperbolic spaces to obtain the corresponding hyperbolic coordinates,
the hyperbolic distances between each pair of nodes are calculated using the three different hyper-
bolic distance formulas and then ranked. Here, di represents the difference in the rankings of the
hyperbolic distances for any given pair of nodes in any two hyperbolic spaces.n is the number of
samples.
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The Spearman rank correlation coefficient ranges from [−1, 1], where p = 1 indicates a perfect
positive correlation, meaning the ranks of the two variables are completely consistent; p = −1

indicates a perfect negative correlation, meaning the ranks of the two variables are completely op-
posite; and p = 0 indicates no correlation, meaning there is no monotonic relationship between the
ranks of the two variables. One of the key advantages of the Spearman rank correlation coefficient
is that it does not rely on the linear relationship of the data, making it suitable for nonlinear but
monotonic relationships. Additionally, it is less sensitive to outliers because it is based on ranks
rather than raw values.

• Kendall’s Rank Correlation Coefficient: Kendall rank correlation coefficient is another com-
monly used rank correlation coefficient, denoted as τ , is another measure of rank correlation. It is
calculated as:

τ =
C −D

1
2n(n− 1)

(3.6)

The calculation of Kendall’s rank correlation coefficient is based on the number of concordant pairs
and discordant pairs. Here,C represents the number of concordant pairs, where the rank changes of
the two variables are in the same direction;D represents the number of discordant pairs, where the
rank changes of the two variables are in opposite directions; and n is the sample size. Specifically,
for any two data points (xi, yi) and (xj , yj), if xi > xj and yi > yj , or xi < xj and yi < yj , these
pairs are considered concordant because their rank changes are in the same direction. Conversely,
if xi > xj and yi < yj , or xi < xj and yi > yj , these pairs are considered discordant because their
rank changes are in opposite directions. By comparing the number of concordant and discordant
pairs, Kendall’s rank correlation coefficient measures the strength of the monotonic relationship
between the two variables.

Kendall’s rank correlation coefficient also ranges from [−1, 1], with interpretations similar to those
of Spearman’s rank correlation coefficient. One of its key advantages is that it is more robust for
smaller datasets, making it particularly useful when the sample size is limited. Additionally, it is
suitable for non-parametric statistics, as it does not rely on assumptions about the distribution of
the data, providing greater flexibility in various analytical scenarios.

Here, since our graph dataset has a relatively large sample size, Kendall’s rank correlation coefficient
is not suitable. Therefore, we choose Spearman’s rank correlation coefficient to explore the nonlinear
but monotonic relationships between the three embedding methods. Additionally, because the rank cor-
relation coefficient is based on ranks rather than raw values, it is less sensitive to outliers, effectively
mitigating the impact of possible anomalies in the embedding.

3.3.2 Pearson Correlation Coefficient

The Pearson correlation coefficient, also known as Pearson’s r, is a measure of the linear correlation
between two variables. It quantifies the degree to which a linear relationship exists between the variables,
ranging from−1 to 1.The Pearson correlation coefficient is defined as the covariance of the two variables
divided by the product of their standard deviations. Mathematically, it is expressed as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.7)
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xi and yi are the individual data points of the two variables.x̄ and ȳ are the means of the two variables.n
is the number of data points.

Its range is [−1, 1], where r = 1 indicates a perfect positive linear correlation, meaning the two variables
increase or decrease together in a perfectly linear fashion; r = −1 indicates a perfect negative linear
correlation, meaning one variable increases while the other decreases in a perfectly linear fashion; and
r = 0 indicates no linear correlation, meaning there is no linear relationship between the variables.
One of the key advantages of the Pearson correlation coefficient is its sensitivity to linear relationships,
making it highly effective for detecting linear dependencies between variables. Additionally, the value
of r provides a clear and intuitive measure of the strength and direction of the linear relationship, and
it is widely used in various fields such as statistics, machine learning, and social sciences. However, it
has some limitations: it is sensitive to outliers, which can significantly affect the value of r and lead to
misleading conclusions, and it assumes a linear relationship, meaning it may fail to capture nonlinear
relationships between variables.

In this study, the Pearson correlation coefficient is used to evaluate the linear relationship between em-
beddings generated by the different methods (i.e., the Poincare model, the Lorentz model, and the D-
Mercator method). Specifically, for each method, nodes with degrees exceeding a certain threshold, i.e.,
those that are more central, are selected, and the hyperbolic distances between node pairs are calculated
using their hyperbolic coordinates. The Pearson correlation coefficient is then computed between the
distance matrices of different methods. A high r value (close to 1 or −1) indicates a strong linear re-
lationship, suggesting that the methods capture similar structural properties of the graph data. A low r

value (close to 0) indicates little to no linear relationship, suggesting that the methods capture different
structural properties of the graph data.

3.4 Summary

This chapter focuses on the metrics we used to quantitatively compare the embedding quality of the
considered hyperbolic embedding methods and to investigate whether the hyperbolic distances between
node pairs, across embeddings obtained by embedding the same dataset using different methods, exhibit
linear or nonlinear relationships. The dataset used in this study is the AS (Autonomous System) dataset,
where nodes represent AS entities and edges represent connections between them. The types of methods
compared are: (1) network science methods, represented by the D-Mercator method, and (2) machine
learning methods, represented by the Poincare model and the Lorentz model.

First, we overviewed the specific process of greedy routing. If the embedding quality is good, the success
rate of greedy routing will be high. Therefore, we used the embedding results of the dataset obtained by
the three methods to quantify the embedding quality through greedy routing, thereby identifying which
method performs best. Next, we described the process of predicting missing links. By plotting ROC and
PR curves, calculating AUC and AUPR values, we quantified the quality of missing chain prediction,
which further reflects the embedding quality.

The first two parts of the chapter focused on comparing the embedding quality of the three methods but
did not explore whether the embeddings generated by these methods capture similar structural properties
of the dataset, such as whether the hyperbolic distances exhibit linear or nonlinear relationships. To

29



address this, we used the Pearson correlation coefficient to investigate the linear relationships between the
embeddings generated by the three methods. However, due to the limitations of the Pearson correlation
coefficient—such as its sensitivity to outliers, inability to capture nonlinear relationships, and potential
issues with inconsistent scales in the hyperbolic spaces of different methods—we also introduced rank
correlation coefficients (Spearman’s rank correlation) to explore nonlinear but monotonic relationships.
Additionally, we plotted rank correlation scatter plots based on the rankings of nodes to visually assess
the similarities and differences between the methods.
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4 Results

4.1 Setup

Before presenting the results, let us first describe the graph dataset used. We use the data set of the
autonomous system AS, which contains 10259 different nodes, indicating that there are actually 10259
different autonomous systems. There are still 27027 edges, which means that 10259 autonomous systems
make up 27027 connections and information exchanges. The following results were obtained by applying
the three embedding methods (D-Mercator, Poincare, Lorentz) onto this dataset and analyzing them. In
the embedding phase, since the parameters in D-Mercator are automatically calculated within the pro-
gram, we will not provide further explanation. In the embedding configuration stage of the Poincare and
Lorentz models, we systematically evaluated multiple configurations, among which the optimal choice
was to set the learning rate to 0.1, the number of negative samples to 100, the importance weight coeffi-
cient of negative samples to 1.8, the training period to 5000, the warm-up period to 100, and the margin
to 0.2. Due to space constraints and in order to keep the main text concise, the full hyperparameter
configurations for both the Poincaré and Lorentz embeddings are listed in Appendix I.

The three embedding methods all use three-dimensional hyperbolic space, which is an optimized choice
based on the strong hierarchical characteristics of the autonomous system. The D-Mercator method au-
tomatically infers three dimensions as the optimal dimension through likelihood maximization, and its
curvature parameter can be adapted to the hierarchical depth of the AS graph dataset; For Poincare and
Lorentz methods, three-dimensional hyperbolic space can balance the completeness of hierarchical ex-
pression and model complexity, preventing overfitting.

4.2 Greedy Routing Results

We first present the greedy routing results. We calculate the success rate, the average hop count and the
highest success rate of three greedy routing methods with 5000, 8000, and 10000 greedy routing attempts.
Success rate, refers to the proportion of successful routing; the average hop count refers to the number
of nodes that pass from the source node to the destination node when the route is successful; The highest
success rate refers to the highest proportion of successful routing across different runs. Each greedy
attempt is executed 50 times.

This table compares the performance of three models (D-Mercator, Poincare, and Lorentz) under different
greedy routing attempts (5000, 8000, and 10,000), with key metrics including success rate, average hops,
and highest success rate. From the results, the Lorentz model performs the best, achieving the highest
success rate (approximately 0.9247–0.9260), the lowest average hops (approximately 4.8368–4.8736),
and the highest peak success rate (approximately 0.9310–0.9336), making it suitable for scenarios re-
quiring efficient routing. The Poincare model ranks second, with a success rate of 0.9234–0.9246 and
average hops of 5.0407–5.0889, indicating competitive performance but slightly inferior to Lorentz in all
metrics. The D-Mercator model ranks third, with a success rate of 0.8770–0.8794 and an average hop
count of 5.5011–5.5346, suggesting limitations in local path optimization. Overall, as the number of at-
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Table 4.1: Greedy routing performance

Greedy Routing Attempts Model Success rate Average hops Highest success rate

5000 D-Mercator 0.8794 5.5011 0.8852
Poincare 0.9236 5.0407 0.9276
Lorentz 0.9247 4.8736 0.9310

8000 D-Mercator 0.8783 5.5346 0.8837
Poincare 0.9246 5.0484 0.9285
Lorentz 0.9260 4.8368 0.9336

10000 D-Mercator 0.8770 5.5248 0.8829
Poincare 0.9234 5.0889 0.9280
Lorentz 0.9254 4.8523 0.9326

tempts increases, the performance of all models shows minimal variation, indicating algorithmic stability
at larger attempt counts, with the Lorentz model consistently outperforming others.

From the differences in routing success rate and average hop count observed in greedy routing among
the three methods, we can analyze and conclude the following: Greedy routing inherently relies on local
neighbor selection for path planning, a mechanism that prioritizes adaptability to local network struc-
tures. In this context, the D-Mercator method, based on the geometric model SD, generates embeddings
by maximizing network growth likelihood. While this approach ensures global topological coherence,
its emphasis on global optimization limits its ability to capture fine-grained local structural details, re-
sulting in routing efficiency slightly lower than machine learning methods (e.g., Lorentz). Nevertheless,
D-Mercator maintains a relatively high success rate (0.8770–0.8794), underscoring its robustness in pre-
serving global topology.

For machine learning methods (Lorentz/Poincare), both utilize the exponential growth property of hy-
perbolic space, placing high-level nodes near the center of the embedding space and leaf nodes near the
boundary, thus preserving the hierarchical structure. By maximizing the proximity of similar nodes, both
can effectively capture local topological relationships and support efficient greedy routing. However, the
slight routing differences between them are due to the numerical instability caused by the boundary when
calculating the Poincare distance, while the Lorentz model avoids such problems by calculating closed
geodesics, making gradient updates smoother, especially for convergence in low dimensional scenarios.

Based on the experimental results and analysis, we conclude that in greedy routing tasks relying on local
neighbor selection, the Lorentz model, with its high-dimensional hyperspherical embedding characteris-
tics, can more accurately capture hierarchical relationships in complex networks, making it the optimal
choice for complex path planning tasks. In comparison, although the Poincare model also performs well
in hyperbolic space, its two-dimensional disk model has limitations in representing high-dimensional
complex relationships, resulting in slightly lower routing efficiency than the Lorentz model. Meanwhile,
as a physics-inspired global geometric model, D-Mercator maintains good topological consistency but
sacrifices optimization of local structural details, leading to a noticeable trade-off in routing performance.
Overall, these three models are suitable for different scenarios: Lorentz excels in high-dimensional
complex networks, Poincare performs well in low-dimensional tasks requiring interpretability, and D-
Mercator is more suitable for theoretical analysis tasks prioritizing global topological fidelity.
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4.3 Missing Link Prediction Results

Next, we present the results of the missing link prediction. As shown in the figure below, the ROC
curves for the three hyperbolic embedding methods (D-Mercator, Lorentz, and Poincare) are displayed
for missing link rates of 10%, 20% and 30%. We observed that the ROC curves in the nine graphs
were significantly higher than the diagonal, indicating that in all cases, geometric link prediction was
significantly better than chance. This indicates that even if 10%, 20%, and 30% of the links are missing,
the three embedding methods can maintain high embedding quality. This shows their strong ability to
predict missing links. Furthermore, for the same missing link rate, the ROC curves of the different
embedding methods are very close to each other, suggesting that not only is the missing link prediction
quality high, but the performance of the three methods is also remarkably similar.

(a) D-Mercator (10% missing) (b) Lorentz (10% missing) (c) Poincare (10% missing)

(d) D-Mercator (20% missing) (e) Lorentz (20% missing) (f) Poincare (20% missing)

(g) D-Mercator (30% missing) (h) Lorentz (30% missing) (i) Poincare (30% missing)

Figure 4.1: ROC curves for D-Mercator, Lorentz, and Poincare embeddings under different missing
rates (10%, 20%, and 30%).

However, by merely comparing the ROC curves, it is difficult to discern subtle differences due to the
strong performance of all methods, and we cannot further explore the relationships between them. There-
fore, to more precisely quantify the embedding quality, we calculated the Area Under the Curve (AUC)
based on the aforementioned ROC curves. The AUC value provides an intuitive measure of the model’s
predictive performance: the closer the AUC is to 1, the better the model’s performance.
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Table 4.2: AUC Values for Different Models and Missing Link Rates

Model Lose10% Lose20% Lose30%
D-Mercator 0.9707 0.9690 0.9665
Poincare 0.9742 0.9702 0.9693
Lorentz 0.9752 0.9702 0.9666

From Table 4.2, it can be observed that the AUC values of all the methods are close to 1, indicating
their excellent predictive performance. We find that as the missing link rate increases, the AUC val-
ues of all methods decrease, suggesting a slight decline in predictive performance. However, even at
a missing link rate 30%, the ROC curves of the three methods remain significantly above the diagonal
line, demonstrating their strong robustness to high missing link rates. Across all missing link rates, the
AUC values of Lorentz and Poincare are mostly higher than those of D-Mercator, indicating that their
predictive performance is slightly better.

The marginally higher AUC of Lorentz could be attributed to its closed-form geodesic formula and ef-
ficient Riemannian optimization in hyperbolic space, as demonstrated by Nickel & Kiela (2018) [15].
Their work showed that the Lorentz model’s ability to avoid numerical instabilities and precisely com-
pute geodesics leads to more stable embeddings—especially in low dimensions. If this geometric advan-
tage holds for link prediction tasks, it suggests that Lorentz may better preserve hierarchical relationships
when global topology is less disrupted (e.g., at low missing rates), though further ablation studies are
needed to isolate its impact.

Poincare achieves competitive AUC (0.9741 at 10% missing rate), consistent with prior findings that
hyperbolic geometry naturally captures hierarchical relations (Nickel & Kiela, 2017). This might be
explained by its conformal distance metric, which induces exponential volume growth—a property the-
oretically suitable for tree-like structures. If the observed data indeed exhibits latent hierarchies (e.g.,
clear parent-child relationships at low missing rates), the Poincare model could leverage this geometry to
position root nodes near the origin and leaves near the boundary, potentially enhancing link prediction.
However, the specific contribution of this geometric property requires further ablation studies.

In contrast, D-Mercator has a slightly lower AUC of 0.9707 at low missing rates. This is primarily
because D-Mercator employs a multidimensional hyperbolic space (D+1 dimensions) for modeling, re-
quiring the balancing of more parameters (e.g., hidden degrees and inverse temperature). The multidi-
mensional space necessitates simultaneous optimization of the radial coordinates (popularity) and angular
coordinates (similarity) of nodes. At low missing rates, minor noise can disrupt the fine-tuning of local
community structures. However, by iteratively adjusting hidden degrees and remapping angular coordi-
nates, D-Mercator partially offsets the impact of data loss. As a result, its AUC decline is the smallest,
dropping only 0.43% from a missing link rate of 10% to 30%, the lowest among the three methods.
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(a) D-Mercator lose10% (b) Lorentz lose10% (c) Poincare lose10%

(d) D-Mercator lose20% (e) Lorentz lose20% (f) Poincare lose20%

(g) D-Mercator lose30% (h) Lorentz lose30% (i) Poincare lose30%

Figure 4.2: These nine figures represent the Precision-Recall (PR) curves for three hyperbolic embed-
ding methods—D-Mercator, Lorentz, and Poincare—with missing node pairs corresponding to 10%,
20%, and 30% recall rates, respectively.

Next, we present the results of the PR (Precision-Recall) curves and related metrics such as AUPR (Area
Under the Precision-Recall Curve). The AS (Autonomous System) dataset used in our experiments con-
tains 27,027 actual links and a total of 10,259 nodes. When forming all possible pairs of nodes, this results
in more than 50 million pairs of nodes. If we follow the conventional approach for link prediction by
computing and ranking all unconnected node pairs to generate the PR curve, we encounter a severe class
imbalance between positive and negative examples. According to the definition of Precision in Equation
(3.4), when the number of negative samples vastly exceeds that of positive ones, even a small number of
false positives (FP) can significantly inflate the denominator. As a result, even if all true positives (TP)
are correctly predicted, the overall Precision value remains low. This, in turn, negatively affects the PR
curve and AUPR metrics. Our experimental observations confirm that the AUPR results are indeed poor
under such extreme imbalance.

To address this issue, we sample from the negative examples to maintain a reasonable balance between
positive and negative samples. Specifically, the following PR curves and AUPR results are obtained
based on a 1:100 positive-to-negative sample ratio. Grover and Leskovec (2016) [49] and Zhang and
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Chen (2018) [50] also adopted a 1:100 negative sampling ratio in their evaluations of link prediction
tasks, demonstrating that this setting can still effectively reflect the predictive performance of models.

Similar to the ROC curves above, the PR curves here also consist of nine plots, showcasing the Precision-
Recall (PR) curves of three hyperbolic embedding methods for missing link rates of 10%, 20%, and 30%.
Each row corresponds to a missing link rate and contains three plots. The horizontal axis represents
Recall, while the vertical axis represents Precision. The closer the curve is to the top-right corner, the
better the model’s predictive performance. Random guessing corresponds to a horizontal line parallel to
the Recall axis, where the Precision is approximately equal to the ratio of the number of connected pairs
to the total number of node pairs. In the figure, the ”chance” value represents this baseline performance
of random guessing; PR curves above the baseline suggest that the model’s predictive performance is
superior to random guessing.

In Figure 4.2, all models exhibit a general trend: precision gradually decreases as recall increases. This
is a common phenomenon in link prediction tasks, as higher recall regions typically involve predictions
with lower confidence. The corresponding evaluation metric, AUPR (Area Under the Precision-Recall
Curve), consistently shows that the D-Mercator method achieves the highest values across all missing
data scenarios, followed by Poincare, and then Lorentz.

Specifically, under the 10% missing rate scenario, the AUPR of D-Mercator reaches 0.6113, higher than
0.6096 for Poincare and 0.5414 for Lorentz. This trend remains consistent under the 20% and 30%
missing rates. Moreover, across all three missing ratios (10%, 20%, and 30%), the D-Mercator model
demonstrates the smallest decline in precision, indicating that it exhibits greater robustness and consis-
tency in the link prediction task. Even under higher levels of missing data, D-Mercator continues to
achieve strong predictive performance.

In contrast, the PR curves of the Lorentz and Poincare models exhibit noticeable fluctuations or sharp
drops in their early segments (i.e., low-recall regions) under the 10% and 20% missing link scenarios.
Specifically, precision drops rapidly at the very beginning as recall starts to increase, before gradually
stabilizing. This phenomenon suggests that the models produce a relatively high false positive rate among
the top-ranked predictions, thereby reducing initial precision. A possible explanation is that both Lorentz
and Poincare rely on optimization-driven embedding methods, making them more sensitive to missing
links—especially in areas where the local network structure changes significantly. This sensitivity can
lead to inaccurate estimations of inter-node distances, which in turn affects the ranking of high-confidence
prediction samples.

4.4 Rank Correlation And Pearson Coefficient Results

We now investigate how much correlated are the hyperbolic node distances across the three different
embeddingmethods. We now present the results of the embedded rank correlation coefficient (Spearman)
and Pearson correlation coefficient generated by the three methods, as well as scatter plots. Initially, after
embedding the original graph dataset into a hyperbolic coordinate system using the three methods, the
hyperbolic distances of node pairs were directly calculated from the original graph dataset. Subsequently,
the distance correlation coefficient was calculated. We observed that the values of distance correlation
coefficients were very low, which may be attributed to the inclusion of all node pairs - particularly low-
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degree nodes whose coordinate inference tends to be noisier. This indicates that directly comparing the
hyperbolic distances between node pairs cannot effectively capture whether there is a linear or nonlinear
relationship between embeddings of different methods.

To further investigate whether linear or nonlinear relationships exist, we separately calculated the hyper-
bolic distances for node pairs with degrees exceeding 6, 10, and 20 (i.e., nodes with more than 6, 10, or 20
neighbors) and then computed the rank correlation coefficients and Pearson correlation coefficients. This
step was primarily aimed at filtering out nodes with low degrees, i.e., peripheral nodes, and exploring
whether the three methods exhibit common structural characteristics when embedding high-degree core
nodes into hyperbolic space.

Table 4.3: Correlation Coefficients for Different Degrees

Degree Model Spearman (rank coefficient) Pearson

6 D-Mercator and Poincare 0.6710 0.7114
D-Mercator and Lorentz 0.6878 0.7196
Lorentz and Poincare 0.8870 0.8983

10 D-Mercator and Poincare 0.7050 0.7440
D-Mercator and Lorentz 0.7241 0.7509
Lorentz and Poincare 0.8962 0.9081

20 D-Mercator and Poincare 0.7622 0.7850
D-Mercator and Lorentz 0.7729 0.7811
Lorentz and Poincare 0.9068 0.9152

From the results in Table 4.3, it is evident that the embedding correlation for high-degree nodes is signif-
icantly higher than that for low-degree nodes. Specifically, the Pearson coefficient between Lorentz and
Poincare for high-degree nodes reaches 0.915, and the Spearman coefficient is 0.9068, indicating a strong
consistency in capturing the embeddings of core nodes using these two methods. In contrast, the Pearson
coefficient between D-Mercator and Poincare for low-degree nodes is 0.7114, and the Spearman coeffi-
cient is 0.6710, showing a noticeably lower correlation. The overall trend reveals that as the node degree
increases, the correlation coefficients for all method pairs exhibit an upward trend, suggesting that the
embedding results for high-degree nodes tend to converge across different methods, while the embedding
results for low-degree nodes show greater variability due to differences in method assumptions.

One possible explanation for the higher correlation among high-degree nodes is their central position
in the network topology. These nodes often play a dominant role in shaping hierarchical relationships
and global structures. As a result, different embedding methods may converge in their representations of
these nodes, leading to more consistent embeddings. In contrast, low-degree nodes, typically residing on
the network periphery, are less structurally constrained and may be embedded differently depending on
each model’s assumptions and optimization strategy.

Additionally, Lorentz and Poincare embeddings consistently show the highest pairwise correlations among
all model combinations. This may be attributed to their shared foundation in hyperbolic geometry, which
could result in similar interpretations of network structure. Notably, their embedding results are espe-
cially close for high-degree nodes, as reflected in the Pearson and Spearman coefficients. Interestingly,
D-Mercator also shows relatively high correlations with them, despite relying on different modeling as-
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sumptions. These results suggest that the three methods exhibit a certain degree of alignment, particularly
when representing structurally prominent nodes.

(a) D and P (degree6) (b) D and L (degree6) (c) P and L (degree6)

(d) D and P (degree10) (e) D and L (degree10) (f) P and L (degree10)

(g) D and P (degree20) (h) D and L (degree20) (i) P and L (degree20)

Figure 4.3: Three rows of pairwise rank scatter plots for degrees 6, 10, and 20 across the three embed-
ding methods.

Due to the different spatial mapping scales of the three hyperbolic embedding methods, even if the same
dataset is embedded into the hyperbolic space, the hyperbolic distance between the same node pairs in
the dataset cannot be directly compared. So, we calculate the rank correlation coefficient and draw a
rank scatter plot, which calculates the relative distance between nodes. Because we can explore whether
different hyperbolic embedding methods have correlation in capturing the structural characteristics of the
same dataset by obtaining the hyperbolic distance ranking of node pairs in various spaces and comparing
the ranking of the same node in three hyperbolic spaces. Figure 4.3 presents the pairwise rank scatter
plots for the AS dataset under the three embedding methods, where higher consistency in rank positions
indicates greater similarity in structural representation.

Figure 4.3 shows the rank correlation scatter plots of pairwise embedding results for three methods (D-
Mercator, Poincare and Lorentz) for node pairs with degrees larger than 6, 10, and 20, respectively. Each
row contains three graphs, showing the rank correlation scatter plots of D-Mercator and Poincare, D-
Mercator and Lorentz, and Poincare and Lorentz, respectively.

In the scatter plots, the horizontal and vertical axes represent the ranks of node pairs in the two embed-
ding methods, respectively. The diagonal line indicates perfect correlation, meaning that the rankings
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of the two methods are completely consistent. We can observe that most points are distributed around
the line y = x. Among the methods, Lorentz and Poincare exhibit the highest rank correlation across
all degree thresholds, especially for high-degree nodes (core nodes), where their embedding results are
almost identical. In contrast, D-Mercator shows moderate correlation with the other methods, which
gradually improves as the degrees of nodes increase. Overall, the embeddings of high-degree nodes
demonstrate strong consistency across different methods, while the embeddings of low-degree nodes
(peripheral nodes) are more susceptible to the choice of embedding method.

4.5 Summary

In this chapter, we conducted a detailed analysis and comparison of the performance of three hyperbolic
embedding methods (D-Mercator, Poincare, and Lorentz) on autonomous system (AS) datasets through
a series of experiments. The experiment covers multiple aspects such as greedy routing, missing link
prediction, and rank correlation and Pearson correlation of node embedding. Through these experiments,
we have drawn the following main conclusions:

• Greedy Routing Performance In the greedy routing task, the Lorentz model demonstrates the best
performance, achieving the highest success rate and the lowest average hop count. As discussed
in Section 4.2, its relatively strong performance may be attributed to its ability to more effectively
represent hierarchical proximity. The Poincare model ranks second, with success rates and hop
counts close to those of Lorentz, though slightly lower. Its two-dimensional disk model effectively
captures both local and hierarchical structures, but numerical instability near the boundary may
lead to some loss in routing efficiency, particularly in high-dimensional or complex networks. The
D-Mercator model ranks third, primarily because its design emphasizes global structural optimiza-
tion, making it less sensitive to local connection patterns. While this approach preserves overall
topological consistency, it results in some performance trade-offs in routing tasks that rely heavily
on local information.

• Missing Link Prediction The results of the missing link prediction task demonstrate that all three
hyperbolic embedding methods(D-Mercator, Lorentz, and Poincare)achieve strong overall perfor-
mance, as indicated by high ROC curves and AUC values across varying missing link rates (10%,
20%, and 30%). Although the AUC scores of all methods are close to 1, Lorentz and Poincare con-
sistently achieve slightly higher AUC values than D-Mercator, suggesting a marginal advantage
in preserving predictive signal under moderate link sparsity. Lorentz, in particular, benefits from
efficient Riemannian optimization and a closed-form geodesic formula, which may contribute to
its stability and performance in low-dimensional settings.

However, when evaluated using Precision-Recall (PR) curves and AUPR, the performance rank-
ing changes. D-Mercator outperforms the other two methods across all missing rates, achieving
the highest AUPR and demonstrating the smallest drop in precision across recall levels. Its PR
curves remain more stable, even under high levels of missing data, highlighting its robustness and
consistency in predictive tasks. This may be due to its design, which emphasizes global structural
preservation through a multidimensional hyperbolic embedding framework.

In contrast, both Lorentz and Poincare exhibit a steep decline in precision at the early stages of
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their PR curves, especially at 10% and 20% missing rates. This suggests a higher false positive
rate among top-ranked predictions, potentially caused by increased sensitivity to local structure
disruptions in their optimization-driven embeddings. Although they recover and stabilize at higher
recall values, the initial drop affects their overall AUPR scores and highlights potential limitations
in link prediction when high-confidence estimation is required.

Taken together, these results suggest that while all threemodels are capable of robust link prediction
under missing data conditions, D-Mercator offers better stability and overall ranking performance,
particularly in imbalanced scenarios where precision is critical.

• Rank Correlation and Pearson Correlation For high-degree nodes, the embedding results of
the three methods exhibit high correlation, especially between the Lorentz and Poincare models,
indicating strong consistency in capturing the embeddings of core nodes. This is because both
Lorentz and Poincare models rely on the inherent properties of hyperbolic geometry to efficiently
model hierarchical structures, and they are essentially different parameterized forms of hyperbolic
space that can be transformed into each other through differential homeomorphism mapping. The
mathematical equivalence leads to geometric consistency in the embedding space. They all sample
Riemann optimization methods, so they have convergence similarity in manifold structure.

In contrast, for low-degree nodes, the correlation between methods is significantly lower. This re-
flects greater variability in how peripheral nodes are represented, likely due to differences in how
each method models local structures. D-Mercator, for instance, optimizes in a multidimensional
hyperbolic space and involves simultaneous estimation of radial (popularity) and angular (similar-
ity) coordinates. This global modeling perspective might reduce sensitivity to fine-grained local
connectivity patterns. On the other hand, while Lorentz and Poincare also preserve hierarchy, their
optimization procedures appear to yield less consistent embeddings for low-degree nodes across
methods, potentially due to noise amplification or reduced structural constraints at the network
periphery.

These observations highlight a general trend: as node degree increases, the structural roles of nodes
become more pronounced and consistently represented, resulting in higher embedding agreement
across different methods. Conversely, low-degree nodes—being more sparsely connected—are
more prone to divergence in embeddings, reflecting the influence of method-specific assumptions.

Overall, the overall trend reflected by the above experimental results is that as the degree of nodes in-
creases, the embedding results of the three methods tend to be consistent, indicating that the dominant
position of high degree nodes in the network topology makes different methods exhibit high similarity in
capturing the embeddings of these nodes. The embedding results of low degree nodes show significant
differences due to different methods, mainly because these nodes are located at the edge of the network,
with diverse and irregular local connection patterns.

In general, the Lorentz model performs best in greedy routing tasks, making it suitable for scenarios
that require efficient routing, such as Internet routing optimization. In complex Internet topologies, the
Lorentz model can effectively plan packet routes, reduce hop counts and latency, and improve overall
network transmission efficiency. The D-Mercator model demonstrates the best overall performance in
missing link prediction, making it more suitable for tasks with high demands on global topology, such
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as Internet topology modeling. D-Mercator is capable of accurately capturing the global structure of the
Internet, making it ideal for constructing global Internet maps and assisting network engineers in under-
standing and optimizing large-scale network layouts. The Poincare model exhibits stable performance
across multiple tasks. Although it ranks slightly below Lorentz in greedy routing and below D-Mercator
in missing link prediction, its overall performance across both tasks is well-balanced. Moreover, it shows
a high degree of embedding consistency with Lorentz for high-degree nodes. With its robustness and abil-
ity to represent hierarchical structures, the Poincare model is well-suited for complex network analysis
tasks that require stable embeddings and effective hierarchical representation.
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5 Future Work

Although the current study conducts a comprehensive set of experiments—covering greedy routing, miss-
ing link prediction, and correlation analysis—on the Autonomous System (AS) network, relying on a sin-
gle network type may limit the generalizability of the findings. As a primary direction for future work,
it is essential to replicate the same comparative experiments across diverse types of complex networks,
to thoroughly evaluate the adaptability and robustness of the three representative embedding methods:
D-Mercator, Poincare, and Lorentz. For example, citation networks tend to exhibit strong hierarchical
structures and sparse connectivity, collaboration networks often show dense community structures, and
infrastructure networks like power grids or transportation systems are typically characterized by low re-
dundancy and high structural constraints. Applying the same evaluation pipeline to such structurally
diverse networks would enable a more comprehensive assessment of each model’s strengths and limita-
tions, and provide valuable guidance for selecting embedding methods across different domains.

In addition to expanding the evaluation to a broader range of network types, another important future
direction is to include more hyperbolic embedding models from both the network science and machine
learning communities, to enable a more comprehensive comparison between the two methodological
paradigms. The current study focuses on representative models, D-Mercator for network science and
Poincare and Lorentz for machine learning. But these do not fully capture the diversity of approaches
within each category. For example, models such as HyperMap, H2, and HyperTree represent alternative
network science strategies, while deep learning-based methods such as HGCN, HGNN, or Hydra exem-
plify recent developments in machine-learned hyperbolic embeddings. Including a broader set of models
will not only improve the robustness of conclusions, but may also help uncover systematic differences in
how each methodological family captures network structure.

In addition to the comparison of static embedding models, another key direction is to explore the poten-
tial of hyperbolic embeddings in dynamic graph modeling. Existing hyperbolic embedding methods pri-
marily focus on static networks, whereas real-world network topologies often evolve dynamically over
time. For instance, in Autonomous System (AS) networks, nodes and connections frequently change
due to routing policy adjustments, hardware failures, or malicious attacks. Traditional static embedding
methods struggle to capture these dynamic properties in real-time. Additionally, domains such as social
networks (with real-time updates to user relationships) and biological networks (involving dynamic re-
construction of protein interactions) necessitate dynamic modeling of graph data. Exploring the potential
of hyperbolic space for processing dynamic graph data thus holds significant practical value. Future re-
search could delve into leveraging hyperbolic neural networks to efficiently model dynamically updated
graph data, enabling adaptive embeddings that reflect temporal evolution while preserving hierarchical
and geometric properties inherent to hyperbolic representations.
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APPENDIX I

Parameter settings

To ensure the reproducibility of the results in this study, we provide the official implementation link
of the embedding models used: https://github.com/facebookresearch/poincare-embeddings (Nickel and
Kiela, Poincare Embeddings for Learning Hierarchical Representations, 2017). It is worth noting that
the Lorentz model is also included in this repository. Specifically, the implementation of the Lorentz
manifold can be found in the hype/manifolds directory of the project. This study is based on that version
to conduct the hyperbolic space embedding experiments.

For both models, we input the AS-level Internet topology dataset in .csv format into the embedding
scripts. Minor adjustments were made to the input data format to meet the requirements of each frame-
work, but the core code remained unchanged. All modified hyperparameters used during the embedding
stage are provided below; all other parameters were kept at their default values. It is worth noting that,
apart from the model type and checkpoint path, most of the parameter settings for the two models are
identical. The output of the embedding is a .pth file containing node IDs and their corresponding co-
ordinates. After format conversion, the resulting hyperbolic coordinates of each node are directly used
for downstream tasks such as greedy routing and correlation analysis, with no additional post-processing
required.

Table I.1: Embedding hyperparameters used for the Poincare model

Parameter Value
Learning Rate 0.1
Negative Samples 100
Neg. Multiplier 1.8
Epochs 5000
Burn-in 100
Margin 0.2
Embedding Dimension 3
Batch Size 64
Evaluation Frequency 1 (every epoch)
Learning Rate Type Constant
Max Norm 100000
Model Type Distance-based
Manifold Poincare ball
Dataset l_lose10.csv
Checkpoint Filename poin-lose10-5k.pth
Training Threads 2
Number of Processes 2
Fresh Start Yes (fresh flag)
Sparse Optimization Enabled (sparse)
Evaluation Task Reconstruction
Symmetric Enabled (sym)
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The parameters listed in the table define the embedding configuration used throughout the training pro-
cess. Specifically, the Learning Rate determines the step size for optimization updates, while Negative
Samples and Neg. Multiplier control the sampling and weighting of negative examples during con-
trastive learning. Epochs refers to the total number of complete passes over the training data, and Burn-
in specifies the initial stabilization period. TheMargin is used in the loss function to separate positive
and negative samples. Embedding Dimension defines the dimensionality of the hyperbolic space, and
Batch Size indicates the number of samples processed at once. Evaluation Frequency determines how
often the model’s performance is evaluated during training, whileLearning Rate Type specifies whether
the learning rate remains constant. Max Norm constrains the norm of embeddings to prevent numerical
instability. Model Type and Manifold define the structure and geometry of the embedding space, re-
spectively. Dataset and Checkpoint Filename identify the data and save paths. Training Threads and
Number of Processes control parallelism during data loading and model updates. Fresh Start indicates
that training begins from scratch, Sparse Optimization enables memory-efficient operations, and Eval-
uation Task specifies the task used for validation. Finally, Symmetric indicates whether the graph is
treated as undirected.

Table I.2: Embedding hyperparameters used for the Lorentz model

Parameter Value
Dimension 3
Learning Rate 0.1
Epochs 5000
Negative Samples 100
Burn-in 100
Data Loading Processes 1
Model Distance
Manifold Lorentz
Dataset l_lose30.csv
Checkpoint Filename lorentz-lose30-5k.pth
Batch Size 64
Evaluation Frequency 1 (per epoch)
Fresh Start Yes
Sparse Optimization Enabled
Training Threads 1
Learning Rate Type Constant
Negative Sample Multiplier 1.8
Max Norm 100000
Margin 0.2
Symmetric Yes
Evaluation Task Reconstruction
GPU -1 (disabled)
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