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ABSTRACT

Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is an advanced medical treatment technol-
ogy that combines focused ultrasound with MRI imaging. It enables real-time monitoring of temperature
changes in the treatment area, assisting physicians in evaluating the effectiveness of tumor ablation and
tissue treatment. However, heat map images are often affected by noise and temperature profiles may
exhibit fluctuations, which can impair the accurate assessment of treatment outcomes during treatment.
To address this issue, this paper proposes a heatmap image denoising method that combines GrabCut with
automatically detects and adaptively modifies phase variations algorithm (GB-DMPV) and applies the
Hampel–Gaussian algorithm to smooth the temperature profiles. GB-DMPV combines GrabCut segmen-
tation with consistent region analysis and replaces high-variation areas using baseline images for effective
denoising. Hampel–Gaussian combines a Hampel filter to detect outliers with a Gaussian trinomial model
for temperature profile smoothing. The dataset used in this study was collected using the SiemensMagne-
tom Vida system. Experimental results demonstrate that the proposed denoising and temperature profile
smoothing methods perform effectively under current conditions. These successfully remove noise from
heat map images, reduce short-term fluctuations in the temperature profiles and preserve target areas in
the images, thereby enhancing the accuracy and reliability of treatment outcome evaluations.

Keywords: MRgFUS, Heat map denoising, Temperature profile smoothing, GrabCut, Hampel filter,
Gaussian trinomial model
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1 Introduction

1.1 Research background

As the trend of younger onset of diseases intensifies, thermal therapy is gradually emerging as a signif-
icant treatment modality for hyperplasia, tumors and malignancies, alongside traditional surgical pro-
cedures. Common thermal treatment techniques include radio-frequency ablation, microwave therapy,
laser ablation and focused ultrasound. Among these, focused ultrasound has garnered significant atten-
tion due to its non-invasive nature and has been successfully applied in various clinical fields[1] [2].
Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a non-invasive therapeutic technology.
It integrates Magnetic Resonance Imaging (MRI) for precise localization with High-Intensity Focused
Ultrasound (HIFU) to induce thermal effects, enabling the precise ablation of diseased tissues without
the need for surgical incisions. This technology eliminates the inherent invasiveness of traditional surgi-
cal procedures while enabling real-time MRI monitoring. This dual capability ensures precise treatment
and enhances procedural safety, providing patients with a superior therapeutic alternative.

1.1.1 Principle of MRgFUS

When a voltage difference is applied across the two poles of a piezoelectric material (ceramic materials,
mainly lead zirconate titanate), it undergoes deformation. When a sine wave excitation signal, with a
frequency exceeding the human hearing range (above 20 kHz), is applied to the piezoelectric material, the
material deforms either by stretching or compressing according to this frequency, generating vibrations.
These vibrations are then radiated into the surrounding medium and formed ultrasonic waves.

Ultrasonic waves are a type of mechanical longitudinal wave. During propagation, they cause variations
in the density of the medium’s molecules, allowing energy to spread. Mechanical waves attenuate during
propagation as a result of scattering and absorption by the medium with the absorbed mechanical energy
mostly converted into heat. Soft tissues have a low absorption rate for ultrasound, so the sound field
can reach deeper tissues [3]. When ultrasound waves encounter boundaries between tissues of different
densities or sound velocities, it will loss energy such as reflection, refraction or diffraction. This loss is
especially significant when the impedance difference between the two media is large. Gaseous tissues
and bones have significant impedance differences compared with soft tissues, so ultrasound must avoid
areas such as the lungs, digestive tract and brain, where gas, bone and soft tissues are mixed.

When the piezoelectric transducer is made in a spherical shape, it can focus the sound energy in one
region (near the center of the sphere). In this region, the sound intensity is high, while the other areas
experience minimal influence from the sound field. This allows for high-intensity exposure of specific
tissues (such as diseased tissues) for thermal therapy. The size of the focal zone is determined by the
geometry of the piezoelectric material and the ultrasound frequency [4]. The focal point can be moved
to treat the target area. Focused ultrasound therapy can control the focus position using an acoustic lens
or a phased array transducer.

The treatment with focused ultrasound is based on the thermal and mechanical effects of ultrasound
on biological tissues. The latter is typically manifested through the interaction between ultrasound and
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micro-bubbles. Micro-bubbles can be generated from small gas nuclei in tissues or injected artificially
into the treatment area. When ultrasound acts on the micro-bubbles, cavitation occurs. During the acous-
tic wave cycle, the micro-bubbles are compressed in the positive half-cycle and expand in the negative
half-cycle. When the sound intensity is high, the strong compression in the positive half-cycle can cause
the micro-bubbles to collapse, generating intense shock waves and high-speed jets that cause tissue dam-
age. Cavitation effects can be stable or transient and both processes can be used for ultrasound therapy
[5]. Cavitation also improves the thermal effect of ultrasound.

In the tissue, the absorbed sound energy is converted into heat, causing the tissue to heat up. Thermal
therapy can be divided into two categories: mild hyperthermia and thermal ablation. The temperature
range for mild hyperthermia is typically between 43-45°C, maintained for several minutes. This temper-
ature is used to directly kill tumor cells or to significantly increase their sensitivity to drugs or radiation
[6]. The temperature range for thermal ablation is between 50-80°C and it can cause protein denaturation
within a few seconds, leading to tissue coagulation necrosis. During treatment, the surrounding healthy
tissue outside the lesion is minimally affected, ensuring safety and accuracy. Furthermore, focused ul-
trasound eliminates the need for surgical incisions, with sound wave energy transmitted entirely through
the exterior, significantly reducing the risk of infection and postoperative complications. This provides
patients with a safe and effective treatment option. However, in practical scenarios, acoustic and ther-
mal parameters cannot be known with high precision, and tissue conditions are complex. Therefore, the
temperature of tissue needs to be monitored to ensure the safety of the treatment process. Additionally,
due to the presence of blood perfusion, a single heating process cannot be prolonged for too long and
must achieve the required thermal dose within a short time (usually 1-30 seconds) [7]. Thus, monitoring
the treatment process is crucial. MRI plays a key role in MRgFUS by providing precise localization of
the treatment area and real-time temperature monitoring. This ensures accurate visualization of tissue
distribution and dynamic temperature changes, providing reliable guidance to doctors to adjust treatment
parameters in real time. This combination ensures the effectiveness and safety of the treatment.

1.1.2 Development of MRgFUS

In the 1960s, Lele clarified the principles of high-intensity ultrasound for therapeutic use and introduced
several related parameter concepts[8]. Building on this theory, focused ultrasound was gradually applied
to treat a variety of organs and diseases[9] [10]. However, the clinical application of focused ultrasound
progressed slowly, mainly due to challenges in preoperative planning, intraoperative monitoring and
postoperative evaluation. It was not until the 1990s that the MRgFUS treatment system emerged, pro-
viding an effective technological solution to these issues. The first MRgFUS device was manufactured
by GE, which used an automated system to control a single-element transducer within the MRI chamber
for the treatment[11]. It was proven that the MRgFUS treatment process is feasible and the first clinical
treatment was successfully performed—the ablation of breast cancer[1] [12]. With the development of
technology, a phased-array transducer compatible with MRI was successfully developed. By adjusting
the excitation signal phases of individual transducer elements, the position and size of the focus can be
precisely controlled. This innovation significantly expanded the heating area of the transducer at a fixed
position, facilitating precise control of the treatment process and shortening the treatment duration. The
combination of MRI guidance and phased-array technology greatly enhanced the clinical practicality of

2



the focused ultrasound system. On this basis, the ExAblate 2000 MRgFUS treatment system, developed
by InSightec, was approved by the FDA for the treatment of uterine fibroids. The system integrates the
ultrasound transducer with a precision-controlled mechanical device inside the MRI examination bed and
is used in conjunction with the GE 1.5T MRI system. After successfully providing a solution for uterine
fibroid treatment, this device was expanded to treat additional clinical indications, such as pain relief
for bone tumors. Currently, a system for brain treatments, the ExAblate 4000, has also been success-
fully developed, enabling the treatment of brain tumors, neuroregulation and blood-brain barrier (BBB)
opening[13] [14].

1.2 Technical challenges and significance

The rapid advancement of medical imaging technology has facilitated the widespread adoption of MRg-
FUS as an advanced treatment modality for tumors and tissue ablation. This technique combines focused
ultrasound with MRI imaging, enabling real-time monitoring of temperature changes in the treatment
area. This capability provides physicians with crucial data to accurately assess the effectiveness of tumor
ablation and tissue treatment. However, despite its considerable promise in clinical practice, significant
challenges remain, particularly with respect to temperature monitoring. As shown in Figure 1.1, artifacts
and noise should be reduced as much as possible in Magnetic Resonance (MR) temperature monitoring.
Because the presence of noise can cause fluctuations in the temperature distribution, it may affect the
accuracy of treatment evaluation and clinical decision making. As a result, improving image denoising
and smoothing temperature profiles have become key factors in enhancing the precision and reliability
of MRgFUS treatments.

Temperature 

Precision (°C) 
 Scanning Time (s)

Spatial Resolution: 

Volume (mm³)
Artifacts and Noise

Figure 1.1: Properties of MR temperature images which have to be balanced to achieve an efficient
temperature monitoring.

1.3 Main contributions

To overcome the limitations of existing traditional methods and deep learning-based models, this study
proposes amethod called GB-DMPV,which combines GrabCut with automatically detects and adaptively
modifies phase variations. GrabCut is a segmentation-based method that exploits global image informa-
tion and boundary features to effectively separate target regions from the background, thereby enabling
noise removal. Unlike traditional denoising methods, GrabCut minimizes the blurring of critical details,
making it especially well-suited for preserving intricate structures in medical images. The innovative
phase denoising method DMPV that automatically detects and adaptively modifies phase variations. The
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method mainly detects consistent regions and then use baseline to replace identifies changes within those
regions. It can remove noise that Grabcut fails to eliminate. Additionally, to enhance the accuracy of
temperature evaluation during treatment, this study introduces the Hampel–Gaussian method for tem-
perature profile smoothing. This method combines a Hampel filter for outlier detection with a Gaussian
trinomial model to smooth and repair the temperature profile.

1.4 Structure of the paper

The structure of this paper is organized as follows: Chapter 2 provides a comprehensive review of the
current research landscape in related fields, including the application and development of MR thermom-
etry, image denoising technologies, and profile smoothing methods. Chapter 3 offers a detailed descrip-
tion of the theoretical foundations and algorithmic implementation of MR thermometry, GB-DMPV, and
Hampel–Gaussian. Chapter 4 presents the experimental results, while Chapter 5 offers a discussion to
validate the effectiveness of the proposed methods. Finally, Chapter 6 concludes the paper.
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2 Literature Review

2.1 MR thermometry

Thermal ablation therapy is currently a very important treatment method for tumors in clinical practice.
However, during the process of inactivating tumor tissue, thermal ablation can easily damage surrounding
healthy tissues. Since the shape and size of the tumor during thermal treatment are related to the internal
thermal distribution of the tissue, real-time temperature monitoring technology can help doctors properly
adjust the parameters of the heating equipment [15], while simultaneously observing tissue temperature
changes and controlling the heating time points, thereby reducing the side effects of thermal therapy.
MRI thermometry is a non-invasive and efficient temperature detection technology. Research has shown
that many magnetic resonance parameters are sensitive to temperature. Next, we will explain the specific
principles of these temperature measurement methods.

2.1.1 Proton Resonance Frequency Shift Method

In 1966, Hindman first discovered the sensitivity of proton resonance frequency (PRF) to temperature
changes, which laid the theoretical foundation for MRI-based temperature measurement techniques[16].
Later, Ishihara and De Poonter, among others, first applied it to magnetic resonance temperature moni-
toring [17].

The resonance frequency of a nucleus is determined by the magnitude of the local magnetic field it is in.
The local field surrounding a nucleus can be expressed as:

Bloc = B0 −Bos = (1− s)B0 (2.1)

where s is called the shielding constant, and its value depends on the chemical environment of the nucleus.
Due to nuclear shielding, the resonance frequency is:

ω = γB0(1− s) (2.2)

In water molecules, hydrogen nuclei (protons) are shielded by the electrons in themolecule. The shielding
of 1H nuclei in free water molecules is more significant than in water molecules with hydrogen bonds.
Hydrogen bonds can bind electrons and reduce the shielding effect. When the temperature changes, the
structure and number of hydrogen bonds also change. An increase in temperature causes the hydrogen
bonds to break, resulting in more water molecules in the hydrogen bond structure, ultimately increasing
the shielding effect of electrons, which decreases the local magnetic fieldBloc and reduces the resonance
frequency.

The relationship between the shielding constant and temperature can be described by the following for-
mula:

s(T ) = αT (2.3)
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where the temperature range of -15°C to 100°C, the coefficient α is −1.03 + 0.02 × 10−3/◦C. This
temperature range encompasses the temperature requirements for interventional treatments. With further
advancements, PRF-based spectroscopic imaging and phase imaging methods for temperature measure-
ment have emerged.

2.1.1.1 PRF-based spectroscopic imaging

PRF-based spectroscopic imaging primarily measures temperature by comparing the frequency shifts of
PRF data in the target region [18]. This method excels in accurately mapping the spatial and temporal
distribution of temperature changes, particularly in detecting local temperature variations within spe-
cific tissues. However, due to the technical complexity of spectroscopic imaging and the high hardware
requirements, its applications are mainly confined to experimental research environments. Further op-
timizations in real-time performance and operational simplicity are needed to extend its use in broader
clinical temperature monitoring scenarios.

2.1.1.2 PRF-based phase imaging

PRF-based phase imaging employs gradient echo (GRE) sequences to quantify temperature changes by
measuring phase shifts in the target region. The core principle is that temperature induced PRF shifts
result in phase deviations, which are linearly related to temperature changes, as described by the for-
mula[17]:

∆T =
ϕ(T )− ϕ(T0)

γαB0TE
(2.4)

where ϕ(T ) and ϕ(T0) represent the current and reference temperature phase shifts, γ is the gyromagnetic
ratio, α is the temperature sensitivity coefficient, B0 is the main magnetic field strength, and TE is the
echo time.

The key advantage of PRF-based phase imaging is that it does not require additional calibration using
reference peaks, thereby simplifying the measurement process and enabling efficient detection of tem-
perature changes. However, this technique requires precise imaging sequences and a highly uniform
magnetic field environment, making it challenging to implement in complex scenarios.

2.1.2 T1 relaxation time method

The relationship between T1 relaxation time and temperature was first proposed by Bloembergen in 1948
and later applied toMRI thermometry by Park in 1984[19] [20]. However, the sensitivity of T1 relaxation
time to temperature changes is not consistent across different tissue types. For instance, T1 relaxation
time exhibits low sensitivity to temperature changes in fat-rich tissues but higher sensitivity in water-rich
tissues such as muscle or blood. Due to its complexity and dependence on experimental conditions, T1
thermometry still requires further optimization for use in clinical environments.
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2.1.3 T2 relaxation time method

In 1987, Nelson and Tung discovered that the T2 relaxation time of aqueous solutions increases with rising
temperature[21]. However, the relationship between T2 relaxation time and temperature is influenced by
several factors in tissues other than pure water. Studies of ex vivo tissues have shown that the relationship
between T2 relaxation time and temperature is nonlinear, limiting the use of T2 thermometry in clinical
settings[22].

2.1.4 Proton Density

According to the Boltzmann distribution ( Equation 2.5 ) [23], proton density (PD) is linearly related to
the equilibrium magnetization vectorM0:

PD ∝ M0 =
Nγ2h2I(I + 1)B0

3µ0kT
= χ0B0 (2.5)

where N is the number of spins per unit volume, γ is the magnetic ratio, h is Planck’s constant, I is the
spin quantum number (for atoms, I = 1/2), B0 is the magnetic flux density, µ0 is the permeability of
free space, T is the absolute temperature of the sample, and χ0 is the magnetic susceptibility.

Since the magnetization M0 depends on the Boltzmann thermal equilibrium, proton density-weighted
images can be used to assess changes in temperature. By calculating the changes in proton density, we can
determine the relative temperature. In fact, it is the magnetic susceptibility that changes with temperature,
not proton density itself. Magnetic susceptibility reflects the ratio of protons aligned with and against the
magnetic field. The change inM0 is inversely proportional to temperature, and the change inM0 per unit
temperature is approximately -0.30 ± 0.01% [24]. This subtle temperature dependence requires images
with a very high signal-to-noise ratio (SNR). For instance, a temperature error of 3°C requires an SNR of
100 [25]. To eliminate the influence of T1 relaxation time changes on proton density-based temperature
measurements, a relatively long echo time (around 10 seconds) is typically required during scanning.

2.1.5 Diffusion-weighted imaging method

The temperature-dependent diffusion coefficient (D) in Diffusion-weighted imaging method (DWI) de-
scribes the Brownian motion of all molecules in a medium. The relationship between temperature and
diffusion coefficient is given by [26]:

D ≈ e−
Ea(D)

kT (2.6)

Where Ea(D) is the activation energy for the diffusion of water molecules, k is the Boltzmann constant,
and T is the absolute temperature. The temperature dependence can be expressed as:

dD

DdT
=

Ea(D)

2kT
(2.7)

The temperature sensitivity is approximately 2%/◦C.
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The random Brownian motion of molecules causes a random distribution of displacements. In a strong
magnetic field gradient, the diffusion of water molecules in tissues leads to the phase dispersion of the
signal, with signal attenuation proportional to the distribution of water molecules along the diffusion
gradient direction. In the case where the temperature T is unknown and the reference temperature Tref is
known, and the diffusion coefficients D and Dref are obtained, the temperature change is expressed as:

∆T = T − Tref =
kT 2

ref
Ea(D)

(
D −Dref

Dref

)
(2.8)

where k is a constant and Ea(D) is the function related to the diffusion coefficient.

Assuming the temperature change is small (∆T ≪ Tref), the activation energy E can be considered
temperature-independent. Thewater molecule diffusionmethod has beenwidely applied for non-invasive
temperature measurement in vivo. This method offers high temperature sensitivity but requires longer ac-
quisition times and is susceptible to motion artifacts. Using echo-planar imaging and line scan techniques
can shorten scan times and reduce sensitivity to motion. Another issue is that the relationship between
diffusion coefficient and temperature can change non-linearly when tissue conditions change in vivo.
This is because the diffusion of water molecules in tissues is hindered by various factors, such as cell
structure, proteins, and cell membranes. Protein coagulation due to heating can cause significant changes
in the diffusion coefficient. Furthermore, non-lethal physiological effects, such as cerebral ischemia, can
also alter the diffusion coefficient.

In anisotropic tissues (such as muscle fibers), the movement of water protons depends on the direction of
diffusion. To precisely measure temperature, calculating the complete diffusion tensor is often necessary.
However, these methods tend to increase scan time compared to single-direction diffusion coefficient
measurements. Since diffusion coefficient changes in fat differ from those in water, fat suppression is
also required. The phase dispersion effect caused by temperature gradients is much greater than in the
T1 method, as the diffusion coefficient method requires longer echo times. Therefore, using spin-echo
imaging is more suitable.

2.1.6 Magnetization transfer

Magnetization transfer (MT) techniques use selective radio frequency (RF) pulses in a specific spectral
range to target particular water molecules or macromolecules[27]. The temperature-dependent magne-
tization transfer effect indirectly reflects tissue temperature through changes in MRI signals. The MT
effect modifies the relaxation properties of protons in response to RF pulses, enabling indirect tempera-
ture measurement.

Although MT techniques can theoretically provide highly sensitive temperature measurements, their ac-
curacy is highly dependent on tissue-specific characteristics. This poses challenges in practical appli-
cations, especially in tissues with complex structures or high heterogeneity, where nonlinear signal re-
sponses may affect temperature estimation. Consequently, MT thermometry is primarily used in basic
research or non-clinical thermal therapies.

8



2.1.7 Chemical shift method

The chemical shift method is based on the differences in resonance frequencies caused by the magnetic
shielding effects of nuclei in different chemical environments. In water and fat molecules, hydrogen nu-
clei experience distinct chemical environments, leading to a significant chemical shift. MRI can simulta-
neously detect resonance signals fromwater and fat peaks and the relative position changes between them
can be used to infer temperature variations. The Water and fat shift chemical shift (WASSC) is linearly
correlated with temperature changes, allowing for precise temperature measurement through chemical
shift monitoring:

∆ν = νwater − νfat (2.9)

where∆ν represents the chemical shift difference, while νwater and νfat denote the resonance frequencies
of water and fat peaks, respectively. Temperature variations can be calculated using the linear regression
relationship of the chemical shift difference:

This method is highly sensitive to temperature changes and provides accurate temperature estimates with-
out requiring external calibration. However, it depends on the water-to-fat ratio, requiring a measurable
proportion of both components in the region of interest. Low or absent fat content may limit its applica-
tion. Furthermore, it is sensitive to magnetic field homogeneity, and signal interference from complex or
uneven tissue structures may affect its accuracy in temperature measurement.

2.2 Heat map images denoising

2.2.1 Denoising based on traditional methods

Traditional denoising methods can be broadly classified into three main categories: filtering methods,
regularization methods, and statistical modeling-based methods. Among these, filtering methods are
further divided into those that operate in the spatial domain and those that operate in the transform domain.

2.2.1.1 Denoising based on filtering

The core principle behind spatial domain-based filtering methods is the reduction of noise by smooth-
ing local pixels within the spatial domain of the image. This typically involves calculating the mean
or median value of pixels within a local region of the image to eliminate noise. Gaussian filter aims
to reduce high-frequency noise in an image by applying a Gaussian kernel, which performs smoothing
operations[28]. However, it is important to note that while Gaussian filter effectively removes noise, it
also causes blurring of the image details [29]. To address this issue, bilateral filter was developed as a
method to preserve edge information by considering both spatial distance and greyscale differences be-
tween neighboring pixels [30]. Compared with Gaussian filter, bilateral filter proves to be more effective
in denoising, as it preserves edge details better. However, this method comes at a higher computational
cost, and the processing speed is relatively slow [31]. In addition, Adaptive Bilateral Filter(ABF) is an
emerging denoising method that enhances image clarity by increasing edge slopes while simultaneously
reducing noise. Research has demonstrated that ABF can enhance image edges and texture while ef-
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fectively denoising, showing superior performance compared to traditional filter methods[32]. Another
notable method is Non-Local Means (NLM), which removes noise by performing weighted averaging
of similar blocks within the image [33]. In 2014, Zhang et al. proposed an improvement to NLM, the
Robust Non-Local Means (RNLM)method, which combines block and pixel filtering strategies to further
enhance denoising performance[34].

The fundamental concept of transform domain filter involves transforming the image from the spatial
domain to a transform domain (such as the frequency domain or multiscale domain). By leveraging the
distinct distribution characteristics of noise and image signals in the transform domain, this approach
enables more effective separation and suppression of noise. Song et al. (2014) proposed the wavelet
shrinkage method which is an effective technique for removing gaussian noise. However, when dealing
with stronger noise levels, it may still lead to a loss of texture information[35]. In response to these
limitations, Anandan P et al. proposed a medical image denoising method that combines the fast discrete
curvelet transform with an adaptive thresholding algorithm. This approach begins by decomposing the
image into curvelet coefficients using the fast discrete curvelet transform. Then noise is removed through
the adaptive thresholding algorithm, which helps preserve important image features. Finally, the image
is reconstructed using the inverse curvelet transform achieving the desired denoising effect[36].

2.2.1.2 Denoising based on regularization

MRI regularization denoising methods have been shown to be highly effective in preserving image de-
tails while suppressing noise. Rudin, Osher, and Fatemi (1992) proposed Total Variation (TV) regulariza-
tion[37]. Its main idea is to achieve denoising by minimizing the total variation of the image. However,
the standard TV model tends to introduce block artifacts in smooth regions (such as uniform areas within
tissues), resulting in the appearance of artifacts in these regions. Moreover, TV denoising tends to lose
details when high noise levels are present. To address these limitations, several improvements to TV
regularization have been proposed. For example, Chambolle proposed a rapid projection algorithm that
significantly accelerates the optimization process of TV regularization [38]. Furthermore, higher-order
TV regularizationmodels (such as second-order and third-order TV) incorporate higher-order derivatives,
which help mitigate the blocking effects and improve the visual quality of smooth regions [39]. Another
approach to regularization denoising is sparse representation. This technique is based on the theory of
sparsity, which suggests that an image can be sparsely represented in a particular domain (such as wavelet,
curvelet, or dictionary representations). The goal is to denoise the image by constraining the sparse co-
efficients. Elad et al. Proposed the K-SVD algorithm[40] which is a typical implementation of sparse
representation, where features are extracted from image data through dictionary learning. This method
has been shown to outperform traditional filter techniques, particularly in handling complex textures and
structures. However, while sparse representation techniques have demonstrated superior denoising ef-
fects, they are computationally more intensive andmay require significant resources for large-scale image
processing.

2.2.1.3 Denoising based on statistical model

Statistical modeling methods [41] [42] are fundamentally designed to separate noise and signal by lever-
aging the statistical properties of images and noise through the construction of probabilistic models.
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However, these methods often suffer from high computational complexity, strong dependency on noise
models, and poor adaptability to real-world complex scenarios.

2.2.2 Denoising based on deep learning methods

With the rapid development of deep learning technology, deep learning methods have gradually become
a hotspot in MRI denoising research. An increasing number of deep learning architectures, such as CNN
[43], Generative Adversarial Networks (GAN) [44], and DIP, have been proposed for image denoising.

2.2.2.1 Convolutional neural networks

Convolutional Neural Network is a commonly used deep learning model with strong image feature ex-
traction capabilities. CNN can extract local features from images through convolutional layers and reduce
the dimensionality of feature maps through pooling layers while preserving important features. Classical
CNN denoising models include DnCNN, U-Net, and others.

(1) DnCNN

In 2017, Kai Zhang initially proposed DnCNN, a deep convolutional neural network designed for image
denoising. A residual learning strategy is employed to implicitly remove noise by predicting the residual
image (noise), thus circumventing the explicit learning of the image a prior model [45]. Subsequently,
Wenjing Wang endorsed the DnCNNmodel and proposed an enhanced convolutional neural network im-
age denoising model DnCNN2 in 2021. This was done with the objective of addressing the shortcomings
of conventional denoising techniques and the prolonged convergence time of the algorithm. The pro-
posed model incorporates a channel attention mechanism in the penultimate layer, based on the DnCNN
model, which enhances the signal-to-noise ratio and optimizes the noise reduction effect. The algorithm
achieves a shorter convergence time compared with traditional deep learning image denoising algorithms.
Additionally, it demonstrates improved noise reduction performance and operational efficiency offering
significant advantages[46].

(2) U-Net

The U-Net [47] is another CNN structure that is somewhat similar to a self-encoder. It passes information
from the encoder to the decoder through jump connections, which better preserve image details. In MRI
image denoising, U-Net has the capacity to remove noise while maintaining high resolution. Through
intensive research, ResU-Net employs a Residual Block in place of the standard convolutional block
in U-Net, thereby accelerating convergence and enhancing feature transfer in deep networks. Gurrola-
Ramos J proposed an image denoising method based on a deep residual dense network called RDUNet.
This method leverages densely connected convolutional layers to repurpose feature maps and circum-
vent the gradient vanishing issue, while accelerating the learning process through local residual learning
and global residual learning [48]. Subsequent research by Zhang H. led to the proposal of RatUNet,
an attention mechanism-based residual U-Net framework for image denoising. The proposed approach
enhances the U-Net architecture by integrating residual blocks to increase network depth, refining the
downsampling and upsampling processes, and optimizing skip connections. Additionally, It employs
depth-separable convolutions and polarized self-attention mechanisms to effectively capture and process
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edge information in images.This results cause an enhanced denoising effect and SSIM metrics, as evi-
denced in the experimental results[49].

2.2.2.2 Generative adversarial network

GAN is a generative model comprising a generator and a discriminator. Through adversarial training
of the two, the generator is continuously improved to generate more realistic, clean images. GAN has
demonstrated strong generative ability and excellent denoising effect in MRI image denoising. Notable
examples of classical GAN denoising models include Cycle-Consistent Generative Adversarial Network
(CycleGAN) and Wasserstein Generative Adversarial Network (WGAN).

(1) CycleGAN

CycleGAN is an unpaired GAN structure that achieves mapping from noisy images to noise-free images
through cycle-consistency loss, and still achieves a satisfactory denoising effect in the absence of paired
data[50].

(2) WGAN

In 2017, Arjovsky and Bottou [51] pointed out that training GAN is challenging because when the dis-
criminator D is fixed, Equation 2.10 may lead to vanishing gradients for the generator.

min
G

max
D

L(D,G) = Ey∼pr [logD(y)] + Ex∼pz [log(1−D(G(x)))] (2.10)

In order to solve this problem, two authors proposed an enhanced variant of GAN, called Wasserstein
GAN in the same year [52]. The benefit ofWGAN in image denoising isWasserstein distance (also known
as the Earth mover’s distance), which is capable of providing effective gradients when the generator
output does not align with the real image distribution. Nevertheless, it still provides an effective gradient.
The feedback to the generator is more gradual than in traditional GAN, resulting in an image that is closer
to a noise-free image. Furthermore, Gulrajani et al. proposed an enhanced version of WGANW called
Gradient Penalty, which circumvents the limitations of weight clipping through the incorporation of a
gradient-paradigm penalty term into the discriminator loss function, thereby guaranteeing the Lipschitz
constraint [53][54].

2.2.2.3 Deep image prior

The DIPmethod enables image recovery by training neural networks to represent image prior information
eliminating the need for data labeling. However, the training process is relatively slow, requires signif-
icant computational resources, and demonstrates limited generalization ability when handling diverse
types of noise or real-world applications.
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2.3 Smoothing of temperature curves

2.3.1 Statistical smoothing methods

2.3.1.1 Moving average smoothing filter

The moving average (MA) method is one of the most fundamental and intuitive techniques for smooth-
ing data curves. It involves calculating the average of data points within a sliding window to smooth
curve. Hyndman (2011) provides a detailed exploration of the underlying principles of the moving av-
erage method[55]. This method offers flexibility in controlling the degree of smoothing by adjusting
the window size. Shorter windows are more sensitive to fluctuations, while longer windows are more
effective at capturing long-term trends and cyclical changes.

Despite its simplicity, the moving average method has certain limitations. One notable issue is that it
assigns equal weight to all data points within the window, which may result in inadequate smoothing
when there are abrupt changes in the signal. Additionally, the method is prone to boundary effects,
where the smoothing process yields significant deviations at the beginning and end of the series due to
insufficient data points available for averaging. This boundary effect can lead to inaccuracies at the edges
of the series, ultimately compromising the overall reliability of the smoothed curve.

2.3.1.2 Savitzky-Golay Filter

The Savitzky-Golay filter (SG filter) is a smoothing method based on polynomial fitting, first introduced
by Savitzky and Golay in 1964 [56]. This method uses weighted least squares fitting of a polynomial
within a sliding window, replacing the original data points with the results of the polynomial fit. The
formula can be expressed as:

yi =
k∑

j=−k

cj · xi+j (2.11)

Where yi is the smoothed data point, xi+j is the original data point, cj is the polynomial regression
coefficient, and k is the window size.

Compared with the moving average filter, the Savitzky-Golay filter effectively preserves high-frequency
components of the data and can better maintain the details of the original signal. However, this method
is more sensitive to abrupt changes and fluctuations, and its performance depends on the appropriate
selection of window size and polynomial degree. A window that is too large may lead to over-smoothing
of the signal, while a window that is too small may fail to remove noise effectively.

2.3.1.3 Hampel Filter

The Hampel filter is a denoising method based on the median and the absolute deviation, proposed by
Hampel et al. [57]. The Hampel filter calculates the median and the absolute deviation of data points
within a sliding window. If the deviation of a data point from the median exceeds a certain threshold, the
data point is considered an outlier and is replaced by the median of the window.

The mathematical formula for the Hampel filter is typically:
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x′i =

xi if |xi −median(window)| ≤ k ·MAD

median(window) if |xi −median(window)| > k ·MAD
(2.12)

Where xi is the original data point, x′i is the corrected data point, median(window) is the median of the
window, MAD is the median absolute deviation, and k is the threshold coefficient.

The Hampel filter has strong robustness against outliers, effectively removing abrupt changes and fluctu-
ations while preserving the main features of the data. Compared with traditional moving average filters,
the Hampel filter performs better when dealing with data containing extreme noise. However, the Ham-
pel filter typically requires proper selection of window size and threshold. A window that is too small
may affect the filtering effect, while a window that is too large may lead to over-smoothing of the signal.

2.3.2 Fitting smoothing methods

Fitting smoothing methods are primarily concerned with the process of data smoothing, whereby a math-
ematical model is constructed in order to fit the data. Such methods typically include local polynomial
regression, local weighted regression, spline interpolation and B-splines.

2.3.2.1 Local polynomial regression

Local polynomial regression(LPR) is a common fitting method initially proposed by Fan and Gijbels
(1996) [58]. The method operates by fitting a low-order polynomial (linear or quadratic) within the vicin-
ity of each data point. Subsequently selecting a window of neighboring data points and fitting them using
weighted least squares. This approach enables more accurate capture of the local structure and trends
of the data. LPR is more effective than simple moving average methods in addressing boundary effects.
Avery (2013) provides further insight into the key parameter choices in the LPR method, including the
weighting function, neighborhood size and polynomial fitting order. In particular, the study emphasizes
the influence of bandwidth (neighborhood size) selection on the degree of smoothing, whereby an ap-
propriate bandwidth is essential to achieve an optimal balance between data smoothing and local detail
preservation. An excessively large bandwidth may result in over-smoothing, which suppresses local vari-
ations in the data. Conversely, an insufficiently large bandwidth may fail to effectively remove abrupt
changes in the curves, leading to insignificant smoothing effects[59].

2.3.2.2 Local weighted regression

The LOESS method fits the surrounding neighborhood of each data point through a locally weighted re-
gressionmodel, employingweighted least squares to estimate the smoothed value for each point [60]. The
method is effective in capturing the local structure of the data and is not susceptible to global trends. More-
over, LOESS is capable of handling non-linear relationships and can flexibly adjust the fitting model. The
method assigns greater weight to the data points in closer proximity to the current point through the ap-
plication of a weighting function, thereby facilitating the more accurate capture of the local trend and
details. Furthermore, LOESS is capable of effectively reducing the boundary effect through the utiliza-
tion of local weight.
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2.3.2.3 Spline interpolation

Spline interpolation [61] is a technique that employs low-degree polynomials, typically cubic polynomi-
als, to fit data within individual segments. Among thesemethods, cubic spline interpolation is particularly
popular due to its ability to produce smooth curves at data points while maintaining continuity in both
the first and second derivatives. However, when data points are sparsely distributed or contain outliers,
this approach can lead to oscillations or unnatural curve shapes. Furthermore, in scenarios with signif-
icant data variability, it may be prone to overfitting. Bertolazzi et al.(2020) proposed an algorithm for
smoothing noisy data using cubic spline curves. The algorithm begins by clustering data points into
overlapping groups, with each group approximated by a single cubic curve. Then, weighted least squares
combined with a Tikhonov regularization term is applied to fit a cubic curve for each cluster, controlling
the smoothness and curvature of the resulting curves. Finally, the overlapping cubic curves are merged
through weighted averaging, and spline interpolation is applied to the reconstructed smooth points to
construct the final curve [62]. Azizan et al. (2018) investigated two cubic spline interpolation methods
for curve smoothing: natural splines and “non-knot” splines. Their study found that “non-knot” splines
outperformed natural splines in terms of accuracy for interpolating missing data and produced visually
superior results [63].

2.3.2.4 B-splines

B-splines [64] are a widely used smoothing method. The core principle is to represent a curve using
a set of basis functions, each associated with a control point in the dataset. This approach provides
flexible control over the shape of the curve without the reliance on global constraints typical of traditional
polynomial interpolation. Compared to high-degree polynomial interpolation methods, such as Lagrange
interpolation, B-splines effectively mitigate oscillations caused by high-degree polynomials. However,
selecting appropriate knots is crucial, as poorly chosen knots can significantly affect the curve’s shape and
fitting accuracy. AmirW. A. F.W. et al. (2024) proposed a data smoothing method based on Beta Splines.
Beta Splines are flexible curves with two shape parameters, enabling more accurate capture of intricate
details in complex datasets and better adaptability to outliers. The study integrates the roughness penalty
method and Generalized Cross-Validation (GCV) into the Beta Spline smoothing process to identify the
optimal fitting curve and refine the shape parameters. By analyzing the GCV colormap, the best curve
can be determined. This approach offers greater flexibility compared to traditional methods, effectively
handling various types of time series data and improving the accuracy [65].

2.3.3 Wavelet transform smoothing method

Wavelet transform is a multi-scale analysis technique that enables decomposition across various scales
to extract low-frequency components while effectively removing high-frequency noise. Mallat (1989)
proposed the Discrete Wavelet Transform (DWT) [66], which decomposes a signal into multiple sub-
signals corresponding to different frequency bands. By analyzing the characteristics of each frequency
band, DWT can selectively remove abrupt changes while preserving the main structure of the signal. This
method offers excellent time-frequency localization properties, allowing feature extraction at multiple
scales [67]. Compared to traditional smoothingmethods, wavelet transformmore precisely retains critical
details within the signal while eliminating high-frequency components. However, wavelet transform also
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has limitations, particularly in selecting appropriate wavelet basis functions and scales, which require
meticulous tuning. Different wavelet basis functions exhibit varying levels of adaptability to signals, and
improper selection may lead to ineffective feature extraction or even information loss.

Dai X. et al. (2019) proposed a novel method based on DWT to remove abrupt changes in data. The
core concept of this method is to preserve coefficients essential for reconstructing the signal while setting
all other coefficients to zero. Numerical simulations revealed that the first eight detail coefficients at
each decomposition level are crucial for signal reconstruction. Additionally, curve fitting techniques and
correlation analysis were introduced as supplementary measures based on the dataset’s characteristics to
further enhance the effectiveness of removing abrupt changes [68].

2.3.4 Deep learning smoothing methods

With the rapid advancement of deep learning, data smoothing methods based on deep learning have
increasingly attracted attention of researchers. By training a model to learn the underlying patterns in
data, deep learning approaches can achieve more flexible and accurate smoothing. For instance, CNN
have demonstrated significant success in smoothing applications. These methods excel in automatically
learning the nonlinear relationships within data, eliminating the need for manually predefined smoothing
rules. Particularly when dealing with complex nonlinear data, deep learning methods can better reveal
the intrinsic structure of the dataset. However, these methods typically require large amounts of training
data, and the model training process is complex with high computational costs.
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3 Research Methodology

3.1 MR thermometry

In this study, the Proton Resonance Frequency Shift (PRFS) method is employed. The PRFS method
utilizes the sensitivity of Proton Resonance Frequency (PRF) to temperature, enabling real-time, non-
invasive and precise temperature measurements. This is particularly beneficial in treatments such as
tumor thermal ablation, where it assists physicians in monitoring temperature changes during the proce-
dure, thereby ensuring the safety and efficacy of the treatment.

Our team develops a software for processing and analyzing thermal imaging data during MRgFUS treat-
ments. First, the software loads the MRI magnitude and phase images and the GB-DMPV method pro-
posed in this paper is applied to optimize the images to reduce noise interference. Next, the temperature
distribution of the target area is calculated based on phase changes (using the PRF principle in MRI)
and a heat map is generated to monitor real-time temperature changes in the treatment area. Based on
these temperature data, the thermal dose is calculated. Typically, cumulative equivalent minutes at 43°C
(CEM43) is used as a standard to assess whether sufficient heat has been delivered for tissue ablation
during the treatment process. The formula used is as follows:

CEM43 =
∑(

t

exp
(T−43)

α

)
(3.1)

where t is the duration (in minutes). T is the temperature at each time point (in °C). α is the thermal
sensitivity coefficient of the tissue, typically ranging from 0.5 to 1.

In addition, the software tracks the changes in the acoustic focal point (AFP) location to monitor real-
time dynamic changes in the treatment area. This ensures that the energy of the focused ultrasound is
accurately delivered to the target area, thereby maximizing the treatment effect and avoiding damage to
surrounding healthy tissues. The temperature data of the treatment area is also compared with known
tissue necrosis thresholds to determine which regions have reached sufficient temperatures for effective
tissue ablation. To assist clinicians in real-time monitoring of dynamic changes during the treatment
process, the software generates animations that display the spatial distribution of temperature changes
and thermal dose during the treatment.

At the same time, the instantaneous temperature changes of each pixel are calculated through the MRI
phase images to generate a heat map. The highest temperature value within the rectangular region is
extracted, and the time is retrieved from the DICOM imagemetadata, which is then stored in an Excel file.
The Hampel-Gaussian method proposed in this paper is used to detect and repair outliers and fluctuations
in the temperature data.

In terms of temperature mapping, the calculated temperature values were color-coded to generate heat
maps. This approach visually displays the temperature distribution within the tissue, typically using blue
to indicate low-temperature regions and red for high-temperature areas. Heat maps not only reflect the
temperature distribution in real-time during the treatment process but also assist physicians in evaluat-

17



ing the effectiveness and safety of thermal ablation therapy, preventing overheating or overcooling. To
better observe the trend of temperature changes over time, a time series of heat maps was generated at
2.4s intervals. This allows physicians to monitor temperature changes in real-time during the treatment,
promptly adjust treatment parameters, and ensure the precision and safety of the therapy[69] [70].

The software interface is shown in Figure 3.1. As shown in Figure 3.1, in parameter settings of the
software, users can input the ”Time on” and ”Time off” values, which can be adjusted based on the
experimental scenario to set the on and off times. Additionally, users can configure other parameters
related to the temperature data processing algorithm, such as the ”Alpha” value and ”T Tolerance” for
temperature tolerance, which help refine the temperature data repair and calibration. Furthermore, users
can specify the number of reference points with the ”Number Of Reference” setting. Additionally, the
”Sonication Area Margin X” and ”Y” parameters can be adjusted to modify the margins of the sonication
area.

In terms of image loading and processing, the interface provides two main functional buttons: one for
loading the Magnitude Digital Imaging and Communications in Medicine (DICOM) images and another
for loading the Phase DICOM images. By loading these images, further image analysis can begin. Ad-
ditionally, the interface offers an option to load the Region of Interest (ROI).

Figure 3.1: The custom software interface.

3.2 GB-DMPV

Due to the unique characteristics of noise in the dataset, we propose a denoising algorithmGB-DMPV that
combines the GrabCut with automatically detects and adaptively modifies phase variations in the image.
The flowchart illustrating the noise removal process which consists of magnitude image denoising (GB)
and phase image denoising (DMPV), is shown in Figure 3.2.
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Figure 3.2: The flowchart for noise removal. The left part is magnitude image denoising and the right
part is phase image denoising.
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3.2.1 Magnitude image denoising (GB)

As shown in Figure 3.2, the magnitude image denoising begins by extracting consistent regions ( Fig-
ure 3.3) to identify stable areas across multiple images. These regions are then used for linear scaling
normalization and converted from grayscale to RGB for GrabCut-based foreground segmentation. The
segmentation process includes mask initialization, using the consistent regions as the initialization area,
iterative optimization and foreground extraction. After segmentation, the extracted foreground is mapped
to unit 16-bit format, and the mask is dilated to refine the region of interest. The final denoised magnitude
image serves as a cleaner version of the original image, reducing background noise.

3.2.1.1 Canny detection

Canny edge detection is a classical edge detection algorithm that identifies edges in an image through
multiple stages in order to assist in extracting coherent regions. First, the algorithm applies Gaussian
filter to the image to remove noise. Then, it calculates the gradient of the image to detect areas with
significant intensity changes (with thresholds set at 40 and 160 for edge detection). Next, non-maximum
suppression is performed to precisely locate the edge pixels, followed by double thresholding to determine
which edges are considered valid. Finally, the algorithm connects edge pixels to generate the final edge
map of the image.

3.2.1.2 Consistent regions

In magnitude image denoising, Canny edge detection is applied to each magnitude image to extract con-
tours and calculate the minimum bounding rectangle as the bounding box. Then, the frequency of oc-
currence of all bounding boxes is counted and the most frequent bounding box is selected as the repre-
sentative. This indicates the corresponding region is consistent across different images. By removing
duplicates, the most stable region is identified as the consistent region. As shown in Figure 3.3 (a) and
(b) represent consistent regions at different times in the magnitude image. The red box highlights the
ROI in both images.

(a) (b)

Figure 3.3: The results of consistent region detection marked in red: (a) and (b) represent consistent
regions at different times in the magnitude image.
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3.2.1.3 Preprocessing

In order to make the image suitable for GrabCut processing, linear scaling normalization is used to nor-
malize the image from the uint16 type to the range of [0, 255]. This method automatically calculates the
minimum and maximum values of the image and scales the pixel values proportionally to the specified
range. After normalization, the image is converted to the uint8 type, allowing each pixel value to conform
to the standard 8-bit image format, making it easier for image processing.

Since GrabCut expects a three-channel color image as input, but the experimental data is a single-channel
grayscale image, it also needs to be converted to a three-channel format.

3.2.1.4 GrabCut

(1) Introduction to the GrabCut

The GrabCut algorithm [71] is a graph-based image segmentation method that transforms the image seg-
mentation problem into aminimum cut problem in graph theory, enabling efficient and precise foreground
extraction. Specifically, the image is represented as a graph, where each pixel corresponds to a node, and
the edges represent the similarity or proximity between pixels. By defining a source node (foreground)
and a sink node (background), as well as assigning weights to the edges, the algorithm seeks the minimum
cut of the graph to separate it into foreground and background regions.

To evaluate and optimize segmentation quality, GrabCut defines an energy function consisting of two
components: the data term and the smoothness term. The data term typically uses features such as the
color model to estimate the probability of each pixel belonging to the foreground or background. In
contrast, the smoothness term promotes similar labels among adjacent pixels, ensuring smooth and nat-
ural segmentation boundaries. Minimizing this energy function allows GrabCut to accurately separate
foreground objects from complex backgrounds, achieving effective noise removal.

In practical operation, GrabCut begins by constructing color models for the foreground and background,
often using Gaussian Mixture Models (GMM) to describe their color distributions. An initial rectangular
region is used to mark parts of the pixels as foreground or background, initializing the GMM and esti-
mating its parameters. The algorithm then uses the Expectation-Maximization (EM) procedure. In the
Expectation Step, the GMM is used to compute the probability of each pixel belonging to the foreground
or background. In the Maximization step, these probabilities are used to re-estimate the GMM param-
eters. Once these steps are complete, the Boykov-Kolmogorov algorithm [72] is utilized to efficiently
solve the minimum cut problem, yielding the optimal segmentation of foreground and background. This
process is iteratively optimized, refining the segmentation results until the energy function converges or
the maximum number of iterations is reached.

(2) GrabCut Implementation details

The GrabCut is illustrated in Figure 3.2. Following the preprocessing steps, which include scaling the
16-bit DICOM image to 8-bit and converting it to a three-channel blue, green and red (BGR) format, the
GrabCut algorithm is applied for foreground segmentation. After initializing the required parameters, the
segmentation process is executed to remove noise from non-consistent regions. Through multiple itera-
tive optimizations, the segmentation result is progressively refined, enhancing both accuracy and detail
preservation. Once completed, the GrabCut algorithm outputs a mask labeling each pixel as foreground,
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background, or probable foreground/background. By filtering these labels, background pixels (values 0
or 2) are set to 0, and foreground pixels are set to 1, forming a binary mask (mask2). This mask is then
applied to the original 16-bit image, extracting the foreground pixel values while setting the background
to 0, thereby achieving effective foreground extraction based on the segmentation result.

3.2.1.5 Dilate the Foreground Mask

To expand the boundaries of the target region in the image, we use the dilation operation. It works by
applying a structuring element (set as a 3x3 matrix) to the image, which extends the edges of the target
region, fills small gaps and connects broken parts, thereby helping to extract a more complete foreground.

3.2.2 Phase image denoising (DMPV)

As shown in Figure 3.2, the phase image denoising process uses the different extracted consistent re-
gions( Figure 3.4) from the magnitude image ( Figure 3.3) and records their positions. The position of
target region’s position is identified as a rectangle with a length of 14 and a width of 10, and the pixel
values within this region are recorded. The dynamic thresholding process classifies the top 40% of the re-
gions with the highest mean differences as high-variation regions. The mean difference with the baseline
is calculated, and the regions where the difference exceeds a dynamic threshold (shown in Equation 3.7
to Equation 3.10) are replaced with the baseline image. Finally, target position pixels are restored, re-
sulting in a denoised phase image. This approach effectively removes noise while preserving essential
phase information.

3.2.2.1 Consistent regions

In phase image denoising, the same preprocessing steps as those for the magnitude image denoising
are applied first. Then, the position differences between different bounding boxes are compared and a
threshold (tolerance = 2) is applied to determine which bounding boxes are close to each other in the
magnitude image. If a bounding box is located near bigger than 20 other bounding boxes, it is considered
part of the consistent region. This indicates that this region frequently appears in multiple images. These
positions are then mapped to the phase image. As shown in Figure 3.4 (a) and (b) represent consistent
regions at different times in the phase image. Duplicating bounding boxes are removed and the final
consistent region positions are obtained in the image. The red box highlights the consistent regions.
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(a) (b)

Figure 3.4: The results of consistent region detection marked in red: (a) and (b) represent consistent
regions at different times in the phase image.

3.2.2.2 Extract target region

To identify the target region that needs to be protected, the coordinates of the center points of the ROI are
first obtained from the magnitude image, and the first ROI is selected as the reference center point. Then,
the boundaries of the rectangular region are determined, and the maximum and minimum coordinates of
the rectangle are calculated. Finally, all pixel coordinates within the region are recorded and saved to a
global list. Based on the coordinates saved in the magnitude image, the corresponding points are marked
in the phase image. As shown in Figure 3.5, the results of the target region extraction.

(a) (b)

Figure 3.5: The results of target region extraction: (a) consistent region and target region in the magni-
tude image with the consistent region marked in red and the target region marked in blue. (b) consistent
region and target region in the phase image with the consistent region marked in yellow and the target
region marked in green.

3.2.2.3 Baseline

(1) Objective evaluation metrics

The Peak Signal-to-Noise Ratio (PSNR) represents the ratio between the maximum signal value and the
power of distortion noise that affects the image quality [73], which can be used to assess the SNR of
images. The formula for PSNR is as follows:
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PSNR = 10 log10

(
MAX2

i

MSE

)
(3.2)

where MSE represents the Mean Squared Error and MAXi represents the maximum pixel value in the
image. A higher PSNR value means better denoised image quality.

The Structural Similarity IndexMeasure (SSIM) not only focuses on the structural information of images,
but also considers brightness, contrast, and fine details in its evaluation [74]. The formula used is as
follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.3)

where µx and µy represent the mean pixel values of the images x and y. σ2
x and σ2

y represent their
variances. σxy is the covariance between x and y while C1 and C2 are constants. Greater similarity
between images is indicated by a higher SSIM value, which corresponds to improved denoised image
quality.

(2) Implementation details

The flowchart illustrating the baseline is shown in Figure 3.6.

Start

Multiple sets of magnitude and 

phase images

Use SSIM and PSNR assess the similarity 

between magnitude images

Calculate weights based on 

similarity

Record the magnitude images and their corresponding 

phase images, and normalize the weights

Choose weights greater than 

or equal to 30

Fuse using the recorded phase images and 

weights

End

Output the fused image in 

DICOM format

Figure 3.6: The flowchart for the baseline process.
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The first three magnitude and phase images are captured in the off-state. First, the first three magnitude
images are normalized. Then, SSIM and PSNR are used to assess the similarity between images. The
formulas used are as follows:

Similarityweight1 =
ssim12 + ssim13

2
+
psnr12 + psnr13

2
(3.4)

Similarityweight2 =
ssim12 + ssim23

2
+
psnr12 + psnr23

2
(3.5)

Similarityweight3 =
ssim13 + ssim23

2
+
psnr13 + psnr23

2
(3.6)

where Similarityweight1 is the similarity between image1 and image2, and between image1 and image3.
ssim12+ssim13

2 is used to calculate the average SSIM between image1 and image2, and between image1 and
image3. psnr12+psnr13

2 is used to calculate the average PSNR between image1 and image2, and between
image1 and image3. The explanation for the other formulas follows the same pattern.

During the weight calculation, magnitude images with weights greater than or equal to 30 are selected
for preservation, and their corresponding phase images are also retained. Next, based on the selected
weights, the weight of each magnitude image is recorded and normalized. These normalized weights
and corresponding phase images are then used to fuse the phase image. The fused image is used as the
baseline to replace the noisy areas in the phase images. The result of baseline is shown in Figure 3.7.

(a) Original phase images

(b) Fused image (baseline)

Figure 3.7: The results of baseline: (a) The first three phase images are captured in the off-state. From
left to right, they are image1, image2 and image3. (b) Fused image (baseline).
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3.2.2.4 Dynamic threshold

This design is based mainly on the mean differences in the consistent regions of the image, applying a
dynamic threshold to highlight areas of high variability and denoise by replacing those regions. First, the
pixel difference and mean pixel difference between the baseline image and the current image within the
consistent regions are calculated. The formulas used are as follows:

diff(x, y) = |baseline(x, y)− current(x, y)| (3.7)

where baseline(x, y) is the pixel value in the baseline image. The current(x, y) is the pixel value in the
current image. The diff(x, y) is the difference value at that point.

meanofregion =
1

N

N∑
i=1

diff(xi, yi) (3.8)

whereN is the number of points in the region being analyzed. The diff(xi, yi) represents the absolute dif-
ference in pixel values between the baseline and current images at each point (xi, yi). The meanofregion
is the mean of the difference values.

Then, the top 40% of the mean differences across all regions are computed, serving as a threshold to
distinguish between high and low variation regions. For each region, if the mean difference is greater
than or equal to the top 40% value, it indicates a significant change in that region. Next, the standard
deviation of the region is calculated and a dynamic threshold is determined. The formula used is as
follows:

stddiff =

√√√√ 1

N

N∑
i=1

(diff(xi, yi)−meanofregion)2 (3.9)

where diff(xi, yi) represents the absolute difference in pixel values between the baseline and current
images at each point (xi, yi). The meanofregion is the mean of the difference values. The N is the
number of points in the region being analyzed. The stddiff is the standard deviation of the differences.

dt = meanofregion+ stddiff (3.10)

where the dynamic threshold is dt. The mean difference of the region is meanofregion and stddiff is the
standard deviation of the differences.

The region is then binarized, setting parts with differences greater than the threshold to white (high varia-
tion regions) and others to black. For regions with smaller mean differences, indicating minimal change,
no modification is made. Finally, the binarized dynamic thresholding identifies the areas that need to be
modified using the baseline. As shown in Figure 3.8, all detected changed regions within the consistent
regions are marked in yellow.
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(a) (b)

Figure 3.8: All detected changed regions within the consistent regions are marked in yellow.

3.2.2.5 Replace and restore

To extract the contours from the image and update specific regions of the image based on the bounding
boxes of the contours, replacing them with corresponding parts from the baseline and protecting target
regions. First, external contours are extracted from the image using contour detection. The minimum
bounding rectangle for each contour is calculated, obtaining the top-left coordinates, width and height of
the rectangle. Next, using this bounding box information, the corresponding regions within the consistent
region are replacedwith the pixel values from the baseline image, thus updating the region of image. After
the replacement is completed, the pixel values of previously protected target region are restored in the
image. Specifically, the pixels that need to be protected are first recorded along with their original values.
Then, after the image replacement, the stored protected pixels are iterated over and their original values
are restored. This ensures that these regions remain unaffected by the replacement operation, thereby
maintaining their integrity and accuracy.

3.3 Hampel–Gaussian

To further assess the temperature state of the target tissue and reduce misjudgments caused by errors, this
paper proposes a Hampel–Gaussian method, which combines a Hampel filter for detecting outliers with
a Gaussian trinomial model for temperature profile smoothing to repair them.

As shown in Figure 3.9, the flowchart describes the process of outlier handling. First, outliers are detected
using the Hampel filter. Next, Gaussian trinomial model is applied to repair individual outliers. Then,
segments containing more than three outliers within 20 seconds are detected and processed. Furthermore,
special treatment is applied to outliers in the peak area. The entire method fits the data using the Gaussian
trinomial formula and corrects any detected outliers.
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Figure 3.9: The flowchart of the temperature profile smoothing process.

3.3.1 Gaussian trinomial model

3.3.1.1 Gaussian trinomial

We define a Gaussian trinomial function. The formula used is as follows:

f(x) = a1 exp
(
−(x− b1)

2

2c21

)
+ a2 exp

(
−(x− b2)

2

2c22

)
+ a3 exp

(
−(x− b3)

2

2c23

)
(3.11)

where the a1, a2 and a3 represent the amplitudes of the respective Gaussian components. The b1, b2 and
b3 represent their means. The c1, c2 and c3 represent their standard deviations.

To achieve accurate and rapid fitting of theGaussian trinomial model in subsequent steps, we useK-means
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clustering to obtain initial parameter estimates which is introduce in subsubsection 3.3.1.2. Nonlinear
least squares fitting to fit the temperature profile.

3.3.1.2 Initialize the fitting parameters

The K-means clustering algorithm is used to cluster the given data and initialize the fitting parameters for
a Gaussian trinomial model. By applying the K-means algorithm to the input dataX , the data is divided
into three clusters and the centroids of each cluster are determined. Each centroid represents the center
of a cluster and is used to estimate the initial parameters of the Gaussian distributions.

After clustering, the amplitude a1 of the first Gaussian distribution is calculated by determining the range
of the temperature data, which is the difference between the maximum and minimum values of the data.
Meanwhile, a2 and a3 are scaled by preset factors of 0.8 and 0.5.

Next, the centroids obtained fromK-means clustering are used to estimate themeans of the three Gaussian
distributions. The centroids provide the central positions of the clusters, so the values from the first
column of the centroid matrix are assigned to b1, b2 and b3, which serve as the initial means for the three
peaks.

Additionally, the standard deviation of the temperature data is calculated and used to estimate the volatility
of each Gaussian distribution. The standard deviation indicates the dispersion of the data. A larger
standard deviation means the data is more spread out, while a smaller standard deviation indicates that
the data is more concentrated. By multiplying the standard deviation by different preset factors ( 0.2, 0.5
and 0.9), the initial standard deviations (c1, c2 and c3) for each Gaussian distribution are obtained.

3.3.1.3 Nonlinear least squares fitting

To adjust the model parameters, we use nonlinear least squares fitting to ensure that the predictions of
Gaussian trinomial model are as close as possible to the actual data, thereby finding the optimal model
parameters. This method primarily works by minimizing the squared error between the predicted values
of model and the actual data to find the best-fit parameters. We set the maximum number of function
evaluations to 10,000 to improve the optimization performance in complex fitting processe. To assess
the precision of parameter estimates, we use the parameter covariance matrix, which provides uncertainty
information about the fitted parameters. When using nonlinear least squares fitting, we usually need
to provide some initial guess values ( subsubsection 3.3.1.2), which serve as the starting point for the
optimization algorithm. A reasonable initial guess plays a crucial role in the convergence speed and final
accuracy of the optimization process.

Figure 3.10 shows the result of the Gaussian trinomial model fitting profile in (a) and (b). The blue line
represents the original profile while the red line represents the fitted profile.
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(a) (b)

Figure 3.10: The result of Gaussian trinomial model fitting profile in (a) and (b). The blue one repre-
sents original and the red one is fitted profile.

3.3.2 Hampel outlier detection

Based on the Hampel filter for outlier detection, the method traverses the data using a fixed sliding win-
dow of size 7. For each window, the median and the median absolute deviation (MAD) are computed.
A data point is classified as an outlier if its deviation from the median of the window exceeds a preset
threshold. The preset threshold is defined as:

Threshold = σ · 1.4826 ·MAD (3.12)

where σ typically denotes the threshold factor and we set it to 0.01. The constant 1.4826 is used to
approximate the conversion between MAD and the standard deviation. MAD is generally calculated
from a data window by first determining the median of the values in that window, then taking the absolute
difference of each point from that median and finally computing the median of these absolute differences.

Figure 3.11 shows the result of Hampel outlier detection applied to the original data. (a) displays the
temperature profile drawn using the original data, while (b) highlights the detected outliers in the original
data with red dots.
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(a) (b)

Figure 3.11: The result of the Hampel outlier detection: (a) use original data to draw a profile. (b)
outliers detect in original data.

3.3.3 Outlier data fixing

3.3.3.1 Handle Individual outliers

The optimal parameters obtained are passed as individual arguments to the Gaussian trinomial model. By
using these optimal parameters, the model computes the predicted temperature value for each individual
outlier.

3.3.3.2 Handle continuous outlier segments

To eliminate abnormal fluctuations, we traverse each outlier and search for consecutive outlier segments
within 20 seconds. If a segment contains more than two outliers, the original data of that segment is
replaced with the Gaussian trinomial model fitted data.

3.3.3.3 Handle outliers in the peak area

To avoid incorrectly modifying the peak region, the peak position is first detected and determined. Then,
outliers within 16 seconds before and after the peak are identified. If the number of outliers is less than
or equal to 2, the original data values are used to replace the outliers in this segment, thereby preventing
erroneous adjustments to the peak region. As shown in Figure 3.12, it is the results of peak area outlier
handling.
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(a) (b)

(c) (d)

Figure 3.12: The results of peak area outlier handling.(a) displays the original data along with the
Gaussian trinomial model. (b) highlights the outliers, which are marked with red dots. (c) shows the
result after applying the peak area outlier handling method and (d) shows the result without using the
method.

3.4 Custom methods developed for comparison

3.4.1 Heat map denoising

Figure 3.13 shows the process and the result of custom heat map denoising. We use the YOLO model to
detect the target areas and apply Hue, Saturation and Value (HSV) to remove noise and use inpainting in
the non-target regions. This method effectively preserves the target areas in the image as well as the color
bar. First, the pretrained YOLO model is loaded which is used to predict and generate bounding boxes
around the target areas( Figure 3.13 (a)). Then, for the regions outside the target areas, the red and yellow
ranges in the HSV color space are defined to create a mask that removes these color noise ( Figure 3.13
(b)) while ensuring that the color bar area is excluded from the processing. As shown in Figure 3.13 (c),
we use diffusion-based inpainting method to inpaint the image.
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(a) (b) (c)(a) (b) (c)

Figure 3.13: The process and the result of custom heat map denoising: (a) the image shows the YOLO
model detecting target areas. (b) use HSV to extract noise. (c) the result of heat map denosing.

3.4.2 Temperature profile smoothing

3.4.2.1 The first comparative method

The first comparative method involves extracting blue profile data from images, detecting outliers and
correcting them. The process begins by loading the input image, segmenting blue regions using the HSV
color space and extracting the pixel coordinates of the profile, which are then mapped to actual time
and temperature data. Subsequently, multiple anomaly detection methods are applied for comprehensive
analysis, including global anomaly detection based on Z-scores, local anomaly detection using multi-
scale sliding windows and special point detection based on zero slopes. These methods complement one
another, collectively identifying anomalies within the temperature profile. The detected anomalies are
corrected using interpolation to ensure smoothness and continuity in the profile data.

As shown in Figure 3.14, this shows the results of the first custom temperature profile smoothing process.
In (a), the left images in each row display the original temperature profiles, where noticeable fluctuations
or abrupt changes occur at certain moments. In (b), the temperature data is corrected using the first
comparative method and the resulting smoothed profiles exhibit a more stable trend. In (c), the detected
outliers are marked on the original data profile with red dots.
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(a) Original temperature data (b) Corrected temperature data (c) Detect outliers

Figure 3.14: The process and the result of the first custom profile smoothing: (a) the image shows
original temperature data. (b) use the first comparative method to correct. (c) the result of outliers
detection.

3.4.2.2 The second comparative method

The second comparative experiment uses a profile fitting method. MATLAB is used to fit a profile that
aligned closely with the observed trend. Figure 3.15 is MATLAB fitted profile aligned with the observed
trend.

Figure 3.15: MATLAB fitted profile aligned with the observed trend.

Based on this experiment, the following formula is determined:

f(x) = a1 exp
(
−(x− b1)

2

c21

)
+ a2 exp

(
−(x− b2)

2

c22

)
+ a3 exp

(
−(x− b3)

2

c23

)
(3.13)
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where a1-a3 represent the amplitude of each Gaussian distribution, determining the peak height. The b1-
b3 represent the peak position, defining the center of the Gaussian peak. The c1-c3 indicate the standard
deviation, controlling the width and shape of each Gaussian peak.

As shown in Figure 3.16, it shows the results of the second custom profile smoothing process with Gaus-
sian model fitting method.

(a) Original temperature data (b) Fitted temperature data (c) Detect outliers

Figure 3.16: The process and the result of the second custom profile smoothing: (a) the image shows
original temperature data. (b) use the second comparative method to correct. (c) the result of outliers
detection.
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4 Experimental Results

4.1 Setting and Description

MRgFUS imageswere captured using the SiemensMagnetomVida systemwith 3Tmagnetic field strength
(Siemens, Limassol, Cyprus). The therapeutic transducer was developed in-house using non-magnetic
materials selected based on simulation results to ensure optimal focusing at sufficient tissue depth. It
features a compact, ergonomic design with a single piezoelectric element (2.75MHz, 50mm diameter,
65mm curvature radius) housed in a custom ABS case. The transducer is driven by a tuned RF amplifier
(AG1016, T&C Power Conversion, Inc.) for maximum power gain, achieving an average efficiency of
approximately 30% [75].

To evaluate the effectiveness of the proposed denoising method, we compare it with traditional denoising
methods and deep learning model. Traditional methods include Gaussian filter [28], Bilateral filter [30],
NLM [33] and TV [38]. Deep learning model includes YOLO-HSVwhich is a custommethod developed
for comparison.

To evaluate the effectiveness of the proposed temperature profile smoothing method, we compare it with
traditional methods. Traditional methods include LOESS [60] and two custom method developed for
comparison in subsection 3.4.2.

The experiments are conducted on a cloud server equipped with an Intel(R) Xeon(R) Platinum 8336C
CPU and dual RTX 2080 Ti GPUs (22GB).

4.2 GB-DMPV

For the denoising experiments, the HIFU acoustic parameters are configured as follows: for the first,
third and fourth images in Figure 4.1 and Figure 4.2, power = 300W, time on = 60s, time off = 60s and
frequency = 2.75MHz. For the second image, the parameters are: power = 200W, time on = 30s, time off
= 60s and frequency = 2.75MHz.

4.2.1 Visual Effects

Figure 4.1 illustrates the results of heat map denoising, with the first row showing the noisy heat maps
and the second to seventh rows showing the denoised heat maps, which are processed using Gaussian
Filter (b), Bilateral Filter (c), Non-Local Means (NLM) (d), Total Variation Denoising (TV) (e), Cus-
tom methods developed for comparison (YOLO-HSV) (f) and the method proposed(GB-DMPV) (g). As
shown in (a), the noisy images exhibit significant color interference, which severely affects the recog-
nition and analysis of target areas, especially the third image. These interferences could be caused by
instrument noise or environmental factors. The noise creates a chaotic appearance, making it difficult to
distinguish real heat spots from irrelevant random disturbances. In some cases, particularly low thermal
doses and the edges of the tissue, large patches of noise further obscure the smooth transition layers of
thermal diffusion. In contrast, the denoised results in (b), (c), (d) and (e) show minimal improvement,
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with many remaining disturbances that still affect the accuracy and could lead to mislead clinical analy-
sis. In comparison, the YOLO-HSVmethod shown in (f) effectively removes interference color blocks in
non-target areas by combining the YOLO model to detect the target areas and performing noise removal
in the HSV space, preserving the target information while effectively reducing background noise. The
denoised heat maps show a significant reduction in background noise, resulting in smoother and more
uniform backgrounds. Many of the red or yellow noise spots visible in the noisy heat maps are eliminated,
and the high-dose areas in the denoised images are more prominent and clearly defined. However, some
interference is introduced. Finally, GB-DMPV (g) shows the results of the proposed method, which can
effectively remove noise while preserving the target areas. This method performs more stably in complex
noisy backgrounds and can highlight the target areas more effectively.

(a) Noisy image

(b) Gaussian filter 

(c) Bilateral filter 

(d) NLM 

(e) TV 

(f) YOLO-HSV

(g) GB-DMPV

Figure 4.1: The results of heat map denoising:(a) Noisy image, (b) Gaussian filter, (c) Bilateral filter,
(d) NLM, (e) TV, (f) YOLO-HSV and (g) GB-DMPV.
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4.2.2 Ablation Study

Figure 4.2 shows the ablation experiment results of heat map denoising. (a) is the noisy heat map, (b)
is fixed GB, (c) is fixed DMPV, and (d) is GB-DMPV. To validate the effectiveness of the GB-DMPV
method in heat map denoising, (b) Fixed GB and (d) GB-DMPV are compared to verify the role of DMPV,
while (c) Fixed DMPV and (d) GB-DMPV are compared to verify the role of GB.

As shown in Figure 4.2, (a) is the original noisy heat map, which contains a significant amount of
interference noise, especially in low thermal areas and at the edges of the tissue. These noises are typically
caused by instrument errors, environmental interference, and other factors, resulting in random color
spots areas in the image, which complicates heat map analysis. In this image, we can clearly observe the
chaotic noise in the background, which affects the identification of the high thermal regions, especially
the third image in noisy image (a). As the transition layers around the thermal spots are covered by this
noise, making it difficult to observe the smooth transition of thermal diffusion. Fixed GB (b) shows
the background noise has been removed, but some larger noise remains, especially in the third image.
Fixed DMPV (c) shows some noise has been removed, there are still noticeable noise in the background,
particularly in low thermal areas. GB-DMPV (d) significantly reduces the background noise in the image,
especially in the thermal spot and low-dose areas. The noise removal effect is particularly noticeable. The
image becomes smoother and more uniform, with the contours of the thermal spots being more distinct
and prominent. This method effectively removes all unnecessary noise while preserving the details of
the target areas, demonstrating a clear advantage in denoising.
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(a) Noisy image (d) GB-DMPV(b) Fixed GB (c) Fixed DMPV

Figure 4.2: Visual comparisons of heat map denoising methods in ablation study: (a) Noisy image, (b)
Fixed GB, (c) Fixed DMPV, (d) GB-DMPV.

4.2.3 The Effect of Denoising on the Temperature Profile

Figure 4.3 consists of two columns. (a) shows the temperature profile before denoising and (b) shows
the temperature profile after denoising. As shown in Figure 4.3 (a), before denoising, the temperature
shows significant fluctuations at certain moments. In Figure 4.3 (b), after denoising, large fluctuations
are removed, profiles become smoother and make overall trend more coherent. The profiles in the right
column have smaller fluctuations compared to those in the left column, and the number of outliers is sig-
nificantly reduced. In the first row of Figure 4.3, the original data presents a declining fluctuation. After
applying the denoising algorithm, the profile becomes much smoother, with the temperature changes
becoming more stable and without sharp spikes, trending towards a steady change. In the second row,
fluctuations still appear, especially in the rising temperature portion, where temperature undergoes abrupt
changes within a certain range. After denoising, the data tends to be smoother, abnormal fluctuations are
reduced and noticeable jump points are removed. In the third row, the original data shows significant
sharp fluctuations, with temperature changing in a long time and the profile exhibits noticeable jumps
with prominent outliers. After denoising, the temperature profile become smoothing. However, there are
still some fluctuations remain. In the fourth row, the profile before denoising shows large fluctuations,
with dramatic changes in the temperature profile. After denoising, the profile becomes relatively smooth,
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with the fluctuations significantly suppressed, making the overall trend more coherent.

(a) Before denoising (b) After denoising

Figure 4.3: The result of the effect of denoising on the temperature profile. (a) the temperature profile
before denoising and (b) the temperature profile after denoising.

After denoising, the temperature profile becomes relatively smooth and no longer shows obvious spikes
or fluctuations except the third one. In fact, the third temperature profile reduces fluctuations to some
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extent and restores part of the values affected by interference. This indicates that the denoising algorithm
effectively removes external interference and noise, making it easier to identify important temperature
changes during the treatment process. This provides doctors with more reliable decision-making sup-
port. With the denoised temperature data, it becomes clearer to observe the heating trend of the target
tissue, ensuring precise control of the treatment area and avoiding tissue damage caused by excessive or
insufficient heating.

4.2.4 Summary

The results of the heat map denoising experiments demonstrate a comparison of various denoising meth-
ods. From the visual comparison of different methods, it is evident that traditional methods such as
Gaussian filter, bilateral filter, NLM and TV show limited denoising effects. The YOLO-HSV method,
by combining object detection and noise removal in the HSV color space, performs better in preserving
target information while removing non-target noise. However, the proposed GB-DMPV method signifi-
cantly outperforms all other methods in terms of preserving target areas and removing background noise.
This method excels in complex noisy environments and highlights the target regions more clearly and
stably.

The ablation study further confirms the superiority of the GB-DMPV method. Compared with Fixed GB
and Fixed DMPV, the GB-DMPVmethod performs excellently in noise removal. This method effectively
preserves the contours of thermal spots while eliminating background noise, making it the most effective
denoising method in this study.

Additionally, the denoising process significantly improves the temperature profiles. The comparison
of temperature data before and after denoising shows smoother and more stable trends, reducing some
outliers and fluctuations. The enhanced stability of temperature data helps accurately identify key tem-
perature changes during treatment, ensuring precise control of heating in target tissues, thus reducing the
risk of tissue damage caused by overheating or underheating.

4.3 Hampel–Gaussian

4.3.1 Comparison of Visual Effects in Experiment

Figure 4.4 shows the comparison of different temperature profile smoothing methods. The original
temperature data (a) shows unprocessed profiles that fully preserve the fluctuations and abrupt changes
in the data. The LOESS (b) smoothing method uses a locally weighted regression model by applying
weighted least squares to fit each data point and its neighborhood, thereby achieving temperature profile
smoothing. The figure shows that LOESS removes most abrupt changes, making the overall temperature
profile smoother. However, this method also has some issues: (1) After smoothing, the originally sharp
peaks need be protected are lowered. (2) In some images, the peak positions shift relative to the original
data. In particular, in the fourth image, where the original data shows only one peak, LOESS produces two
peaks with significantly reduced heights. The first comparison method (c) fits results generally match
the original data in the first three temperature profiles, despite some repeated fitting. However, in the
fourth image, the peak position becomes abnormal and the vertical axis readings do not correspond with
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those of the original temperature profile. The second comparison method (d) uses a Gaussian model for
fitting, which achieves smooth transitions. However, it also shows problems in the fourth image, the peak
height is significantly reduced, resulting in excessive smoothing and a loss of some details. The Hampel–
Gaussian method (e) effectively removes outliers while better preserving the details of the temperature
profile. The overall profile exhibits moderate smoothness that more closely reflects the true trend of the
original data. This method achieves a good balance between smoothing abrupt changes and fluctuations
while retaining important details.

(a) Original 

temperature data

(b) LOESS

(c) First 

comparative method 

(e) Hampel–Gaussian

(d) Second 

comparative method 

Figure 4.4: The result of temperature profile smoothing. (a) original temperature data, (b) LOESS, (C)
the first comparative method which is introduced in subsubsection 3.4.2.1, (d) the second comparative
method which is introduced in subsubsection 3.4.2.2 and (e) Hampel–Gaussian.

4.3.2 Outliers with different data repairing

Figure 4.5 shows the results of an ablation study in the data repair process, demonstrating the impact
of different processing methods on the data repair effect through four different images. Remove outlier
segments process compares with Hampel–Gaussian to demonstrate the effect of retaining the treatment
for anomalous segments. Remove peak region process compares with Hampel–Gaussian to demonstrate
the effectiveness of retaining the treatment for the peak region.

As shown in Figure 4.5 (a), the original temperature data is displayed, which shows significant fluctu-
ations. Figure (b) effectively removes most of the anomalies and makes the temperature profile appear
much smoother and more in line with expectations. In figure (c), the effect of repairing the data after
removing the outlier segments is shown. Compared with method (b), the repaired temperature profile
still shows fluctuations and anomalies, particularly in the first image of (c), where a downward trend is

42



observed. Finally, figure (d) displays the effect of repairing the data after removing the treatment of the
peak region. Actually the peak is not an anomaly in the second image of (d), and the failure to retain the
smoothing leads to a temperature loss.

(a) Original temperature data (d) Remove peak region process(b) Hampel-Gaussian (c) Remove outlier segments process

Figure 4.5: The result of outliers with different data repairing: (a) Original temperature data, (b)
Hampel–Gaussian, (C) Remove outlier segments process and (d) Remove peak region process.

4.3.3 Summary

The experimental results in Figure 4.4 and Figure 4.5 highlight the advantages of the Hampel-Gaussian
method in temperature profile smoothing. In Figure 4.4, the Hampel-Gaussian method combines Ham-
pel filter with Gaussian trinomial smoothing, effectively removing most outliers while preserving the
details of the temperature profile. This allows the temperature profile to smooth out abrupt changes and
fluctuations while still reflecting the overall trend of the original data. Compared with other methods,
the Hampel-Gaussian method balances fluctuations removal and detail preservation while retaining key
data features.

The Outliers with different data repairing in Figure 4.5 further validates the effectiveness of the Hampel-
Gaussianmethod. Comparedwith other data repairmethods, theHampel-Gaussianmethod better smooths
the data, removes outliers and results in a temperature profile that more closely matches expectations.

Overall, the Hampel-Gaussianmethod demonstrates superior performance in temperature profile smooth-
ing.
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5 Discussion

The two methods proposed in this study, GB-DMPV for heat map denoising and Hampel-Gaussian for
temperature profile smoothing, significantly improve the accuracy and reliability of temperature mea-
surements in MRgFUS therapy.

5.1 Effectiveness of GB-DMPV in Heat Map Denoising

The GB-DMPVmethod combines the GrabCut with automatically detects and adaptively modifies phase
variations to address noise issues in heat map images. By using GrabCut to segment target regions while
preserving structural details, this method effectively reduces noise without blurring critical features. The
integration of dynamic thresholding and baseline fusion further optimizes the denoising process, espe-
cially in high-variation regions. Experimental results ( Figure 4.1) show that GB-DMPV outperforms
traditional filters (such as Gaussian, bilateral filters, NLM and TV) and deep learning-based methods
(such as YOLO-HSV). For example, GB-DMPV not only removes noise but also retains sharp thermal
dose contours, which is crucial for real-time clinical decision-making.

5.2 Advantages of Hampel-Gaussian in Temperature Profile Smoothing

The Hampel-Gaussian method addresses the fluctuations caused by outliers in temperature data. By
combining Hampel filter for outlier detection and a Gaussian trinomial model for temperature profile
smoothing, this method achieves a good balance between fluctuations removal and trend preservation.
As shown in Figure 4.4, Hampel-Gaussian outperforms LOESS and other comparison methods by effec-
tively reducing peak distortion and preventing over-smoothing. This is particularly important inMRgFUS
therapy, where abrupt temperature changes must be accurately monitored to avoid tissue damage.

The improved denoising and smoothing techniques remove noise in heat map images and stabilize tem-
perature profiles, clinicians can better assess treatment effectiveness and adjust parameters in real time.
Despite the many advantages of this study, there are still some limitations. While GB-DMPV shows
promising results, its computational complexity (iterative GrabCut optimization) may limit real-time pro-
cessing capabilities in high-throughput clinical environments. The Gaussian trinomial model assumes a
specific distribution, which may not fully capture the heterogeneity of in temperature fluctuations.
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6 Conclusion

This study addresses the challenges of noise interference in heat map images and fluctuations in temper-
ature profiles during MRgFUS therapy. Two novel methods are proposed to enhance the accuracy and
reliability ofMR thermometry: GB-DMPV for heat map denoising andHampel-Gaussian for temperature
profile smoothing. The GB-DMPV method combines the GrabCut algorithm with automatically detects
and adaptively modifies phase variations, effectively removing noise while preserving critical target areas
in the heat map. It outperforms traditional denoising methods and deep learning-based technique, espe-
cially in complex noisy environments. In terms of temperature profile smoothing, the Hampel-Gaussian
method combines Hampel outlier detection with a Gaussian trinomial model, effectively identifying and
repairing anomalies in the temperature profile, while avoiding over-smoothing of critical temperature
trends. This method achieves a good balance between fluctuations removal and detail preservation.

Experimental results show that GB-DMPV significantly improves the clarity of heat maps, removes noise
and enhances the visibility of high thermal dose regions. Ablation study confirms the importance of
GB-DMPV for optimal performance. The Hampel-Gaussian method effectively removes outliers while
preserving the physiological relevance of temperature trends. It can handle continuous outlier segments
and peak regions, ensuring the reliability of the data, making it suitable for clinical decision-making.

The proposed methods provide effective technical support for real-time temperature monitoring during
MRgFUS treatments, enabling precise control of thermal ablation and reducing the risk of over-treatment
or under-treatment. By smoothing temperature profiles and providing clearer heat maps, these methods
offer more reliable clinical data, improving treatment safety and efficacy. However, the performance of
GB-DMPV is still influenced by the consistent region detection and may degrade when the target tissue is
visually similar to the surrounding background. The Hampel-Gaussian method assumes the parameters
of the Hampel filter (such as window size and threshold) are manually set. Future work could integrate
deep learning methods to detect consistent regions, achieve automatic parameter adjustment in dynamic
environments and validate the approach with larger clinical datasets.
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