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ABSTRACT

As people spend increasingly more time living and working in indoor environments, researching and
developing efficient and precise indoor positioning technology not only presents enormous market po-
tential but also holds significant practical value. Existing Pedestrian Dead Reckoning (PDR) algorithms
typically assume that pedestrians and smartphones maintain a relatively static relationship; however,
this assumption is often unrealistic, as the orientation of smartphones changes with the movement of
pedestrians during walking. Addressing this issue, this research builds on the built-in inertial sensors of
smartphones, aiming to utilize low-cost MEMS sensors to achieve accurate step counting and heading
estimation without imposing constraints on smartphone orientation. Furthermore, the research incorpo-
rates wireless technology to correct the cumulative errors of inertial sensors, thereby achieving higher
positioning accuracy.The main work done in this thesis is as follows:

This research examines extensively the three main components of PDR algorithms.

(1) With regard to the step detection methodology, this study employs a unique step counting technique
that decomposes the measurement data from smartphone IMU sensors (accelerometer, linear accelerom-
eter, gyroscope and magnetometer) into their respective three-axis (x, y, z) components, creating various
combinations of sensors axes to identify the optimal configuration. This method achieves precise and
stable step estimation even without constraining the smartphone’s position, effectively addressing a sig-
nificant limitation in conventional approaches.

(2)Regarding step length estimation methodology, this study implements the Weinberg non-linear step
length estimation model after comprehensive consideration of computational cost and estimation accu-
racy. This model precisely calculates the step length parameters for each pedestrian step, effectively
balancing algorithmic precision with computational efficiency.

(3)This research applies an improved pedestrian heading estimation method that significantly reduces
smartphone orientation constraints. The approach analyzes frequency domain characteristics of accelerom-
eter data to identify characteristic frequency patterns of the walking direction axis, projecting accelera-
tion data onto the geographic coordinate system through coordinate transformation. By combining angle
traversal with digital signal processing techniques, the method achieves reasonably accurate automatic
identification of walking direction, deriving heading angles through integration calculations.This method
maintains good precision levels across various common smartphone holding positions.

Experimental outcomes demonstrate that under posture-unconstrained conditions, the PDR algorithm
proposed in this research achieved excellent positioning results across two common usage scenarios:
pocket mode and reading mode. The PDR system exhibited average positioning errors of 1.94 meters in
pocket mode and 2.51 meters in reading mode. Through integration with WiFi positioning technology,
system localization precision was substantially enhanced, with average positioning errors decreasing to
1.21 meters in pocket mode and 1.59 meters in reading mode, representing an overall average positioning
error reduction of approximately 37%, effectively addressing the cumulative error challenge inherent to
PDR. The system demonstrated remarkable stability and consistency across different carrying configu-
rations, validating the feasibility and effectiveness of this methodology for practical implementations.

Keywords: Pedestrian dead reckoning, indoor positioning, smart phone, inertial sensor, WIFI
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1 Introduction

1.1 Background and Motivation

With the rapid iterative development of modern technology, smart devices such as smartphones, wearable
devices, and smart home systems have not only improved the convenience of daily life but also created
a new era of human-computer interaction and service experience, significantly enhancing social pro-
ductivity and living efficiency. Empirical research shows that modern individuals spend approximately
70% to 90% of their time in various indoor environments[1], encompassing residential spaces, work-
places, commercial centers, and transportation hubs. Against this background, Location-Based Services
(LBS)[2] [3]have demonstrated increasing strategic value, not only optimizing travel efficiency through
precise navigation but also enabling rapid positioning and rescue of trapped individuals in emergency
situations such as natural disasters, providing crucial support for emergency management, asset tracking,
and personalized services.

In open environments, the Global Positioning System has established its technological dominance, pro-
viding precise positioning functions for smart terminals in open areas through direct satellite signal trans-
mission [4], forming the infrastructure foundation for numerous location-dependent applications. How-
ever, when application scenarios shift to indoor environments, GPS technology faces significant chal-
lenges: signal attenuation and multipath interference caused by building structures, interior furnishings,
and electronic devices substantially reduce the accuracy and reliability of positioning systems.

To address indoor positioning challenges, researchers have developed various non-satellite technology
solutions[5]. Wi-Fi positioning technology[6] utilizes access point signal strength indicators to evalu-
ate user spatial position; Bluetooth Low Energy technology[7] achieves fine positioning through beacon
deployment based on its energy efficiency advantages; ultrasonic technology[8] provides high-precision
positioning solutions by calculating spatial distances through signal propagation time differences. Al-
though each technological approach has its characteristics, they generally depend on professional hard-
ware and infrastructure, which not only increases the economic threshold for system implementation but
also limits the widespread adoption of these technologies.

With cost optimization and performance enhancement of inertial sensor technology, Pedestrian Dead
Reckoning (PDR) has gradually become a research focus due to its unique advantages[9]. PDR tech-
nology derives pedestrian position and trajectory information[10] by analyzing sensor data during walk-
ing, combining gait recognition, step length calculation, and direction determination, providing a rela-
tively autonomous technical path for indoor positioning. The array of sensors integrated in contemporary
smartphones, including accelerometers, gyroscopes, and magnetometers[11], provides a solid hardware
foundation for PDR technology implementation, capable of capturing real-time pedestrian dynamic in-
formation and providing necessary data support for precise position calculation.

with the popularity of smart phones[12],PDR technology based on built-in sensors of smart terminals not
onlymeets daily indoor positioning needs but also has the potential to play a key role in diverse fields such
as commercial activities and emergency rescue, holding significant practical importance for promoting
social and economic development and enhancing the quality of public life.
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1.2 Aims and Objectives

Aim:

This research aims to explore an adaptive pedestrian localization solution designed to improve system
responsiveness to smartphone orientation changes and the diversity of user behaviors during movement.
The research methodology combines complementary filtering with multi-source wireless technologies
(such as Wi-Fi signal processing) to enhance positioning performance in complex, dynamic environ-
ments, although current research still focuses on two-dimensional positioning on a single plane. This
study hopes to alleviate, to some extent, existing indoor positioning challenges related to device orienta-
tion limitations and positioning biases caused by pedestrian behaviors.

Objectives:

1.In the current research domain, the step detection component remains constrained by the spatial orienta-
tion of smart terminals, which to some extent impacts the practicality of positioning systems. Addressing
this real-world challenge, this study focuses on exploring step detection methodologies with reduced pos-
ture sensitivity[13], aiming through technical improvements to maintain relatively reliable step counting
capabilities under conditions where device positioning varies. This consideration of adaptability to natu-
ral usage scenarios more closely aligns with the actual requirements of users’ unconscious operations in
daily life, helping to narrow the gap between laboratory environments and practical applications.

2.Since the heading estimation module faces the most severe device posture constraints in traditional
positioning methods, this research, through thoughtfully designed computational approaches, attempts
to achieve effective alignment between smartphone coordinate frameworks and pedestrian movement
characteristics. The algorithm aims to maintain positioning stability across different usage contexts—
including handheld states, pocket carrying, and other common usage patterns—demonstrating good adapt-
ability and enabling relatively accurate estimation of pedestrian heading while reducing dependence on
device orientation that traditional positioning methods require. This provides a more flexible technical
solution for practical application scenarios.

3.The research enhances system adaptability to complex pedestrian movement patterns through opti-
mized technical solutions. For typical walking behaviors such as turning, the study analyzes characteris-
tic change patterns exhibited in inertial sensor data during direction changes, developing corresponding
signal processing strategies to more accurately identify pedestrian turning actions. Based on these feature
recognition results, the system implements targeted algorithm adjustment mechanisms that effectively re-
duce potential trajectory deviations during turning processes, improving trajectory estimation stability in
dynamic walking scenarios.

4.The research objective is to explore and design a framework that attempts to achieve reasonable pedes-
trian heading estimation and step detection across various smartphone carrying positions. For the heading
estimation component, the study references the posture-independent pedestrian heading estimation algo-
rithm proposed by Donghui Liu[14], and building upon this foundation, aims to combine unrestricted
smartphone posture step detection and heading components to construct a comprehensive PDR position-
ing system that is not constrained by smartphone orientation.

5.Exploremulti-source fusion strategies[15] to utilizeWiFi signals for correcting cumulative errors caused
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by Pedestrian Dead Reckoning (PDR), thereby enhancing overall positioning accuracy

1.3 Contribution

This research is based on the step detection and counting method proposed by Constantina[16], which
improves step count estimation through intelligent classification and integration of sensor degrees of
freedom. The study employs sensor integration technology in an attempt to enhance the accuracy and
efficiency of pedestrian step detection.

The research objective is to explore and design a framework that attempts to achieve reasonable pedes-
trian heading estimation across various smartphone carrying positions. For the heading estimation com-
ponent, the study references the posture-independent pedestrian heading estimation algorithm proposed
by Donghui Liu, and builds upon this foundation by identifying pedestrian turning actions through in-
ertial sensor data and implementing specialized processing for turning scenarios to potentially improve
positioning performance.

This framework aims to adapt to individual gait characteristics and demonstrate potential adaptability
in complex scenarios, including turns, stationary periods, and multi-level navigation environments. The
research also considers integrating wireless signals (such as Wi-Fi[17]) in an effort to provide viable
pedestrian positioning solutions in complex and dynamic environments.

1.4 Structure of the Thesis

Chapter 1:

This chapter addresses the research topic, highlighting its practical significance within the field, and sum-
marizes themain direction, research objectives, and expected outcomes of this study. The content outlines
the technical challenges facing pedestrian positioning technologies, establishing the problem background
for the methodological system proposed in subsequent sections. Through this opening portion, readers
can understand the importance of improving existing pedestrian positioning methods at both application
and theoretical levels.

Chapter 2:

This chapter systematically examines the current state of research in pedestrian positioning, focusing on
key components including step recognition techniques, direction estimation methods, wireless position-
ing calibration technologies (such as Wi-Fi and Bluetooth Low Energy), and altitude measurement based
on barometric sensing. Through in-depth discussion of existing research achievements, the content re-
veals several issues and challenges in current studies, providing academic foundations for the theoretical
construction and technical approach selection of this research.

Chapter 3:

This chapter begins with an introduction and explanation of the theoretical foundations of indoor po-
sitioning. It then provides a detailed exposition of the research methodology employed in this thesis,
encompassing the construction process of step detection, heading estimation, step length estimation, and
multi-source data processing algorithms. The content discusses approaches for effectively integrating

3



different types of sensing data (including inertial measurement units, wireless signal characteristics, and
barometric altitude information), and explores technical concepts for comprehensive optimization using
factor graph structures.

Chapter 4:

This chapter details the experimental construction process, including test environment arrangement, data
collection protocols, and evaluation scenario design. The study presents performance test results of the
proposed technical framework and analyzes the differences between this method and existing technolo-
gies across multiple metrics, including positioning accuracy, system stability, and environmental adapt-
ability.

Chapter 5:

This chapter provides an in-depth analysis of the experimental data, exploring the favorable aspects of
system performance, existing limitations, and potential application value. It outlines the limitations of the
current research and proposes directions for future work, providing a foundation for subsequent research
in three-dimensional pedestrian positioning.

4



2 Literature Review

This chapter provides a comprehensive summary and analysis of existing research on smartphone-based
pedestrian dead reckoning (PDR), focusing on four critical modules: step detection, heading estima-
tion, step length estimation, and integration of wireless technologies for error correction. Step detection
identifies and counts pedestrian steps, leveraging variations in sensor signals for accuracy. Heading esti-
mation determines walking direction relative to a global reference frame, incorporating magnetometers,
gyroscopes, and advanced fusion algorithms to minimize drift and magnetic interference. Step length es-
timation translates detected steps into traveled distances, considering individual characteristics and gait
variability. Finally, wireless technology integration—using methods like Wi-Fi, GPS, Bluetooth, and
UWB—aims to correct trajectory drift caused by cumulative PDR errors. By analyzing relevant studies,
this chapter highlights advancements, limitations, and gaps in current research.

1. Step Detection

Step detection is a fundamental module in PDR systems, responsible for identifying walking activities
and counting steps. Common approaches include peak detection, zero-crossing detection, and frequency-
domain analysis. These methods often involve trade-offs between detection accuracy, computational
complexity, and noise resilience.

Literature Analysis:

Kang et al. [18] proposed a gyroscope-based frequency-domain method for step detection and counting,
achieving an accuracy of 93.76% across various carrying modes. The method extracts frequencydomain
features from gyroscope signals to achieve high-precision step detection. However, its reliance on gyro-
scope data limits its applicability to low-cost devices, and its robustness in complex environments remains
insufficiently verified.

Lin and Pan[19] developed a gait recognition technique that enhances system adaptability to various
device carrying methods through horizontal component decomposition of acceleration data. While this
approach achieved certain progress in step detection accuracy, its algorithm design overly relies onmanual
parameter adjustments, resulting in limited generalization performance when facing different users.

A interference-resistant step identification algorithm was constructed by Gu et al.[20] utilizing multiple-
constraint gait feature analysis. Their approach effectively reduced false detection rates and demonstrated
considerable accuracy under relatively consistent walking patterns. The fixed threshold strategy they
implemented, however, showed inadequate performance when confronted with diverse gaits or dynamic
scenarios, resulting in insufficient system robustness.

A multi-phase processing structure integrating signal filtration and walking pattern scoring mechanisms
was developed by Salvi et al.[21], aiming to enhance step recognition precision in complex environments.
Their methodology demonstrated certain advantages when handling challenging activities like running
or stair navigation, yet when confronted with significant variations in gait patterns, there remains room
for performance enhancement.

An enhanced dead reckoning methodology for pedestrian tracking was introduced by Zhao et al.[22],
which incorporated data smoothing techniques and dynamic adjustments of acceleration magnitude to
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strengthen the system’s resistance to abrupt gait variations. Despite demonstrating considerable stability
in experimental settings, the performance of this algorithm remains noticeably susceptible to intense
device oscillations.

Identified Constraints:

• Accommodation of varied walking patterns: Current technologies demonstrate suboptimal perfor-
mance when confronted with unconventional movement forms such as leaping or sudden halts.

• Resilience in kinetic settings: Studies regarding performance under highly dynamic conditions like
sprinting or traversing irregular surfaces remain insufficient.

• Self-adjusting capabilities: Approaches utilizing static thresholds lack dynamic calibration mech-
anisms driven by machine learning principles.

• Impact of device placement: Various methods of device carriage (handheld versus pocket place-
ment) substantially affect detection precision.

2. Heading Estimation

Heading estimation is used to determine the movement direction of pedestrians relative to a global ref-
erence system (typically magnetic north). Such methods generally rely on magnetometers, gyroscopes,
and sensor fusion algorithms (such as Kalman filters) for implementation. However, technical challenges
such as magnetic interference and cumulative drift still exist.

Literature Analysis:

In their smartphone MEMS-IMU pedestrian dead reckoning solution, Kuang et al.[23] implemented zero
angular rate update (ZARU) and static heading update (SHU) technologies to address drift issues. Their
approach effectively reduced heading drift under relatively stable conditions; however, its performance
was constrained when operating in dynamic environments characterized by rapid rotational movements
or irregular motion patterns.

Geng et al.[24] combined magnetometer and barometric sensor data with Kalman filtering techniques in
their three-dimensional indoor localization system utilizing smartphones. Their methodology stabilized
directional estimation and enhanced vertical positioning accuracy, performing particularly well in struc-
tured settings such as predefined stairwells. The approach’s dependence on structured environmental
data, however, restricted its adaptability when deployed in unstructured or dynamic contexts.

Wang et al.[25] integrated magnetic fingerprinting techniques with particle filtering in their magnetic-
based indoor positioning system designed for smartphones. Their approach substantially reduced head-
ing drift through utilization of pre-constructed magnetic field maps. Despite demonstrating notable ef-
fectiveness, the necessity for high-quality magnetic mapping presented implementation challenges when
considering diverse or uncalibrated environmental settings.

Tian et al.[26] incorporated dynamic observation variance adjustment techniques in their pedestrian dead
reckoning system utilizing smartphone MARG sensors to address magnetic interference issues. While
this adjustment enhanced the system’s resistance to magnetic disturbances, it demonstrated restricted
adaptability when confronted with complex walking patterns or significant variations in movement.

Kang and Han[27] created the SmartPDR system, which utilized multimodal sensor integration and deep
learning techniques to dynamically forecast heading variations in smartphone-based pedestrian naviga-
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tion for indoor settings. Their approach enhanced system stability in complex environments; however, it
was constrained by computational demands that limited its real-time application capabilities.

Identified Constraints

• Stability in kinetic settings: Abrupt directional changes and intense device movements diminish
heading reliability.

• Reliance on unchanging surroundings: The majority of approaches depend on static magnetic con-
ditions or predetermined mapping, restricting adaptability.

• Cross-modal data synthesis: Research combining inertial measurements with visual or wireless
information remains insufficient.

• Processing efficiency: Integration and neural network methodologies impose significant computa-
tional requirements.

3. Step Length Estimation

The conversion of identified footsteps into traversed distances is accomplished through step length esti-
mation, a fundamental component within PDR frameworks. Prevalent methodologies encompass para-
metric formulations (such as theWeinberg equation), estimators based on machine learning, and adaptive
models tailored to specific users. The following section examines pertinent studies, evaluating their con-
tributions and inherent limitations.

Literature Analysis:

Principal component analysis (PCA) was utilized by Vezočnik et al.[28] to extract key gait characteristics,
facilitating the development of a lightweight step length estimation model compatible with various device
carrying positions. While their methodology demonstrated adaptability, verification in complex terrain
environments such as stairways remained insufficient, leaving the performance efficacy across diverse
settings inadequately substantiated.

A context-sensitive three-dimensional indoor localization system founded on pedestrian dead reckoning
was proposed by Khalili et al.[29]. Their system achieved step length estimation accuracy of 1.5 meters
through the incorporation of gender-specific parameters and step frequency correlations. The system’s
dependence on demographic inputs, however, constrained its applicability in anonymous settings such as
public spaces.

An enhanced algorithm for pedestrian dead reckoning featuring a three-phase constraint model and dy-
namic drift elimination techniques was introduced by Zhao et al.[22], reducing step length estimation
errors to below 2%. Despite its high precision, the algorithm’s requirement for manual parameter cali-
bration limited its scalability and user-friendliness.

Particle filtering and map matching techniques within a multimodal data integration framework were
employed by Zhao et al.[30] to address cumulative error issues in step length estimation. While demon-
strating excellence in reducing accumulated errors, their approach’s strong dependence on precise indoor
mapping resulted in diminished adaptability in scenarios where maps were unavailable.

An optimized algorithm integrating step frequency with acceleration magnitude to construct an adaptive
model for estimating step length was developed by Salvi et [21]. While their method performed ade-
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quately under normal conditions, significant precision deterioration occurred when encountering rapid
walking pattern variations or dynamic environmental contexts.

Identified Constraints

• Complex movement pattern challenges: Current models struggle with adaptation to dynamic ac-
tivities like running or climbing.

• Real-time adjustment capabilities: Few systems provide step length estimation adjustments in real-
time for unfamiliar users or varied environments.

• Multimodal data utilization: Limited application of pressure sensors, barometric instruments, or
visual information to enhance estimation accuracy.

• Dependency on parameter configuration: Manual calibration requirements impede scalability and
user independence.

4. Integration of Wireless Technologies for Error Correction

Various wireless technologies including Wi-Fi, Bluetooth, and magnetic fingerprinting are frequently
utilized to rectify the accumulating errors in PDR systems. These approaches rely on environmental
characteristics (such as signal intensity or distinctive patterns) to constrain positional deviations. The
following section examines recent research contributions and their inherent limitations.

Literature Analysis:

GPS signals detected near windows were employed as indoor reference points for trajectory adjustment in
the GPS-enhanced pedestrian navigation approach developed by Zhou and Maekawa[31]. Their method-
ology achieved notable accuracy in locations with GPS signal availability; however, it proved ineffective
in providing dependable positioning within completely enclosed indoor spaces where GPS reception was
absent.

Machine learning techniques were employed by Chandra[32] to combineWi-Fi signal strength indicators
with magnetic field measurements for enhanced indoor location estimation. Despite achieving significant
precision, the method’s reliability depended on the presence of multiple Wi-Fi access points, restricting
its scalability in settings characterized by limited Wi-Fi coverage.

A dual-level integration mechanism combining extended Kalman filtering (EKF) with particle filtering
(PF) was implemented by Wang et al.[25] in their magnetic-based indoor positioning framework. Their
approach substantially improved localization accuracy through utilization of high-quality magnetic map-
ping. The system’s reliance on such maps, however, presented implementation difficulties in environ-
ments without pre-established magnetic field data.

Multimodal data integration for three-dimensional indoor pedestrian positioning was accomplished by
Zhao et al.[30] through the application of particle filtering techniques and barometric sensors. Their
methodology effectively minimized cumulative positioning errors but demonstrated inadequate perfor-
mance in dynamic situations where environmental factors, such as sudden movement alterations, com-
promised sensor data reliability.

A method for dynamically modifying magnetic pattern matching weights to accommodate signal varia-
tions in magnetic-based indoor positioning systems was introduced by Ashraf et al.[33]. Their dynamic
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weighting approach enhanced system adaptability to diverse signal conditions; however, performance
deterioration was observed in highly obstructed settings characterized by significant magnetic interfer-
ence.

Identified Constraints:

• Reliance on established infrastructure: Significant dependence on predeterminedmapping or costly
infrastructure restricts scalability.

• Vulnerability to signal fluctuations: Positional correction accuracy is affected by signal variations
resulting from obstructions or interference.

• Scarcity of economical alternatives: Research concerning cost-effective techniques independent of
mapping remains insufficient.

• Underutilized multiple data source integration: Investigation into the collaborative application of
diverse wireless signals (including Wi-Fi, GPS, Bluetooth, and UWB) for positional adjustment
requires further exploration.

5.Summary

Principal challenges present in current functional components of PDR:

1. Step detection: Insufficient adaptability to non-standard walking patterns and dynamic environ-
mental contexts.

2. Heading estimation: Limited stability in kinetic environments and reliance on static surroundings.

3. Step length estimation: Inadequate real-time adjustment capabilities for varying users and move-
ment patterns.

4. Wireless correction: High infrastructure dependency and deficient processing of dynamic signal
variations.

Upcoming research endeavors should emphasize the utilization of artificial intelligence techniques, cross-
sensor data integration, and self-adjusting computational methods to strengthen the modularity and re-
silience of pedestrian dead reckoning frameworks, facilitating their implementation across a wider spec-
trum of practical applications.
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3 Research Methodology

3.1 Relevant theoretical basis

3.1.1 Introduction to Coordinate System

The geographic coordinate system represents a fundamental reference framework for determining po-
sitions on Earth’s surface, utilizing longitude λ and latitude φ angles as key parameters. This system
establishes its origin at Earth’s center, with the Z-axis directed toward the North Pole, the X-axis point-
ing to the intersection of the Prime Meridian and Equator, while the Y-axis follows the right-hand rule to
complete this three-dimensional reference frame. Geographic coordinates serve as the essential founda-
tion for global positioning, navigation control, and geospatial information processing applications.

The local ENU (East-North-Up) coordinate system establishes a tangent plane reference frame at a spe-
cific point on Earth’s surface, providing intuitive directional measurements for localized applications.
East represents the perpendicular direction to the meridian plane pointing eastward, North aligns with
the tangent to the meridian curve northward, and Up extends along the ellipsoidal normal. This localized
framework enables precise relative positioning essential for navigation, surveying, and regional mapping
where Earth’s curvature effects must be minimized.

Figure 3.1: geographic coordinate system

The carrier coordinate system is a local coordinate system that moves with the carrier itself, with its origin
typically set at the center of mass of the carrier, such as aircraft, ships, pedestrians, or smartphones. As
shown in Figure 3.2, using a smartphone as an example, when the phone’s screen faces upward, the y-
axis of the b system is parallel to the phone screen and points forward, the x-axis is perpendicular to the
y-axis and points to the right side of the phone screen, and the z-axis is perpendicular to both the x-axis
and y-axis, pointing upward from the phone screen. This coordinate system setup is particularly suitable
for analyzing and processing dynamic information related to the carrier, such as velocity, direction, and
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orientation, providing a necessary reference framework for precise control and navigation.

Figure 3.2: Carrier coordinate system

The navigation coordinate system, commonly referred to as the n-system, establishes a three-dimensional
spatial framework with its origin at the center of mass of the pedestrian or carrier, related to the tangent
plane of the Earth’s surface. When studying indoor navigation problems, particularly in scenarios involv-
ing rapid positioning, we typically assume the carrier exists in a local environment unaffected by Earth’s
rotation and revolution effects. Consequently, the navigation coordinate system is simplified to match
the geographic coordinate system’s East-North-Up configuration. This arrangement not only complies
with the right-hand rule but also provides a stable and intuitive reference for pedestrian movement within
limited indoor spaces.

3.1.2 Introduction of Coordinate Transformation

Euler angles and rotation matrices

In three-dimensional space, any rigid body’s attitude transformation can be achieved through rotations
around three mutually perpendicular coordinate axes. This sequence of rotations and collection of angles,
known as Euler angles, represents one method for describing object rotations in three-dimensional space
[37]. Euler angles comprise three components: Pitch (denoted as θ), Roll (denoted as γ), and Yaw (de-
noted as ψ). For a smartphone’s body coordinate system (b-frame), pitch represents the angle θ between
the y-axis and the horizontal plane after rotation around the x-axis, roll represents the angle γ between the
x-axis and the horizontal plane after rotation around the y-axis, and yaw represents the angle ψ between
the projection of the y-axis on the horizontal plane and true north after rotation around the z-axis. Each
Euler angle rotation can be represented by a rotation matrix, while the overall rotational state of an object
can be obtained by multiplying these individual rotation matrices according to the rotation sequence. As
shown in Figure 3.3, if the axes rotate according to the Z-Y-X Euler angle sequence, the specific process
is as follows:
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Figure 3.3: The transformation process from the navigation system to the carrier system coordinate
system

First, the navigation coordinate system O − xnynzn (or n-frame) is rotated by ψ degrees around the zn

axis to transform to the coordinate system O − x′y′z′, with the rotation matrix Rz(ψ) as:

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.1)

Next, the coordinate system O − x′y′z′ is rotated by γ degrees around the y′ axis to transform to the
coordinate system O − x′′y′′z′′, with the rotation matrix Ry(γ) as:

Ry(γ) =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 (3.2)

Finally, the coordinate system O− x′′y′′z′′ is rotated by θ degrees around the x′′ axis to transform to the
navigation coordinate system O − xbybzb, with the rotation matrix Rx(θ) as:

Rx(θ) =

1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 (3.3)

The direction cosine matrix Cbn of the b-frame relative to the n-frame is expressed as:
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Cbn = Rz(ψ)Ry(γ)Rx(θ)

=

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 (3.4)

The rotation matrix defines the rotation of one coordinate system relative to another, conforming to the
properties of orthogonal matrices. Therefore, the inverse operation of the rotation matrix, i.e., the inverse
rotation, can be achieved by transposing the rotation matrix. Thus, the direction cosine matrix Cnb of the
n-frame relative to the b-frame is:

Cbn = (Cnb )
T =

 cos γ cosψ cos γ sinψ − sin γ
sin θ sin γ cosψ − cos θ sinψ sin θ sin γ sinψ + cos θ cosψ sin θ cos γ
cos θ sin γ cosψ + sin θ sinψ cos θ sin γ sinψ − sin θ cosψ cos θ cos γ

 (3.5)

Quaternion method

Quaternions are mathematical tools[34] for representing three-dimensional rotations, consisting of one
real and three imaginary parts (w,x,y,z). In navigation orientation, quaternions avoid the gimbal lock
problem that affects Euler angles, offering computational efficiency and numerical stability, making them
ideal for representing object orientation and performing smooth rotations in aerospace and robotics ap-
plications.The general form of quaternions can be expressed as:

q = w + xi+ yj+ zk (3.6)

Quaternions can be used to represent the rotation matrix of coordinate systems. The rotation matrix Cbn
from the n-frame to the b-frame shown in equation (3.4) can be expressed using quaternions as:

Cnb =

1− 2q22 − 2q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2q21 − 2q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2q21 − 2q22

 (3.7)

The form of a quaternion expressed by Euler angles is as follows As shown below:


q0

q1

q2

q3

 =


cos θ2 cos

γ
2 cos

ψ
2 + sin θ

2 sin
γ
2 sin

ψ
2

sin θ
2 cos

γ
2 cos

ψ
2 − cos θ2 sin

γ
2 sin

ψ
2

cos θ2 sin
γ
2 cos

ψ
2 + sin θ

2 cos
γ
2 sin

ψ
2

cos θ2 cos
γ
2 sin

ψ
2 − sin θ

2 sin
γ
2 cos

ψ
2

 (3.8)

The conversion formula for converting quaternions to Euler angles is as follows:
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θγ
ψ

 =


arctan 2(q0q1+q2q3)

1−2(q21+q
2
2)

arcsin(2(q0q2 − q1q3))

arctan 2(q0q3+q1q2)
1−2(q22+q

2
3)

 (3.9)

3.1.3 Attitude update method based on quaternions

The current orientation of the smartphone is represented by quaternions, which, combined with real-time
measurement data from the gyroscope sensor, enables real-time updates of the smartphone’s attitude
angles[35].

The differential equation of a quaternion describes the variation of a quaternion over time. The calculation
formula of its differential equation is:

q̇ =
1

2
q ⊗ ωb (3.10)

where ωb =
[
0 ωbx ωby ωbz

]T
is a pure quaternion with zero real part derived from the angular velocity

measured by the gyroscope in the b-frame. the above expression can be transformed to:

q̇ =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0



0

ωbx

ωby

ωbz

 (3.11)

Since the gyroscope sensor samples at equal time intervals Δt, and the angular velocity changes between
adjacent sampling periods are typically very small, by using Taylor expansion and retaining the first-order
term, the quaternion update equation can be approximated as:

qk ≈ qk−1 +
1

2
∆t · q̇k−1 (3.12)

where, qk−1 is the quaternion at time step k − 1. Substituting equation (3.11) into the above expression
yields:

qk =


q0

q1

q2

q3

+
1

2
∆t


(−q1ωx − q2ωy − q3ωz)

(q0ωx + q2ωz − q3ωy)

(q0ωy − q1ωz + q3ωx)

(q0ωz + q1ωy − q2ωx)

 (3.13)

After each iteration, it should be ensured that the quaternions remain normalized, and the quaternions
need to be normalized:

q =
q√

(q20 + q21 + q22 + q23)
(3.14)

3.1.4 The basic principle of pedestrian navigation position calculation
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”The PDR algorithm includes three components: step frequency detection, step length estimation, and
heading estimation [36]. Smartphone-based PDR technology primarily utilizes the built-in accelerom-
eter, magnetometer, and gyroscope to acquire pedestrian gait characteristic information, estimating the
pedestrian’s step frequency, step length, and forward heading through data analysis and processing, and
calculating the current position based on the position at the previous moment. The basic principle of PDR
is shown in Figure 3.4. Assuming that a pedestrian’s position at a certain initial moment is known, their
position during subsequent time periods can be calculated using formula (3.15).”

Figure 3.4: PDR (Pedestrian Dead Reckoning) Positioning

xk = xk−1 + dk−1 sinφk−1

yk = yk−1 + dk−1 cosφk−1

(3.15)

3.2 Research Methodology Framework

This investigation examines a Pedestrian Dead Reckoning (PDR) system that functions without smart-
phone posture constraints. Figure 3.5 illustrates the comprehensive framework of the research method-
ology. Initially, raw data is collected through the smartphone’s built-in IMU sensors (accelerometer,
gyroscope, magnetometer) and WiFi signals. The research conducts experiments using two representa-
tive smartphone carrying modes: pocket mode and reading mode, to evaluate the algorithm’s adaptability
across different usage scenarios.

The PDR algorithm’s foundation comprises three essential modules: step detection, step length estima-
tion, and heading estimation. The step detection module employs multi-sensor axis fusion techniques to
achieve precise identification of pedestrian step frequency; the step length estimation module is based
on an enhanced Weinberg non-linear model, calculating step length by considering pedestrian height
and dynamic characteristics; the heading estimation module utilizes a posture-constraint-free algorithm,
identifying walking direction through frequency domain analysis to enable reliable heading determination
across various smartphone carrying methods.
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The output information from these three modules undergoes integrated processing to generate PDR tra-
jectories. To address the cumulative error issue in PDR systems, this study incorporates WiFi posi-
tioning technology, implementing a complementary filter to merge PDR and WiFi location information,
effectively improving positioning accuracy. Finally, the system performance undergoes comprehensive
evaluation and comparative analysis through a series of assessment metrics. Through this research frame-
work, this study aims to reduce traditional PDR algorithms’ dependence on smartphone posture, exploring
a method that maintains satisfactory positioning accuracy across different smartphone carrying modes,
providing a more flexible indoor positioning solution for everyday usage scenarios.

Figure 3.5: Flowchart of Research methods

3.3 The research method of Step detection used

3.3.1 Overview

This research implements the step detection methodology proposed by Isaia[16], which leverages multi-
sensor axis fusion technology. Compared with conventional step length detection algorithms, this ap-
proach overcomes the limitations associated with single-sensor dependency by isolating and reconfigur-
ing axis-specific data from various IMU sensors, thereby achieving enhanced gait recognition accuracy.
In this chapter, we focus on elucidating the fundamental principles and technical characteristics of this

16



methodology.

As a critical component of pedestrian dead reckoning systems, step detection accuracy directly affects
overall positioning performance. Conventional methods typically rely on composite data from a single
sensor (such as an accelerometer) to perform peak detection, often overlooking the rich information em-
bedded in each axis component. The method adopted in this study is based on an innovative concept:
treating the axis data from each sensor in smart devices—including accelerometers, linear accelerome-
ters, gyroscopes, and magnetometers—as independent sources of information. By intelligently selecting
and optimally combining these data, the accuracy and robustness of step detection are significantly en-
hanced. This approach not only addresses the limitations of single-sensor solutions but also adapts to
variations in device placement and user walking patterns.

The flowchart of the step detection algorithm is as follows:

Figure 3.6: Flowchart of step detection algorithm

3.3.2 Theoretical basis

3.3.2.1 Signal Characteristic Analysis:

During humanwalking, complexmotion patterns occur inmultiple directions, which are captured by IMU
sensors in different ways. Traditionally, the motion intensity is expressed as the composite magnitude of
three-axis accelerations:

17



Macc(t) =
√
a2x(t) + a2y(t) + a2z(t)

However, this composite approach has two major drawbacks: (1) Motion features along specific axes
may be diminished after fusion, leading to the loss of distinctive directional characteristics; (2) Relying
solely on acceleration makes it difficult to fully capture body rotation and directional changes during
walking.

Biomechanical studies of human gait have identified key periodic characteristics of steps: when the foot
strikes the ground, the vertical axis (typically the Z-axis) exhibits a distinct impact signal, appearing as
a sharp peak in the acceleration magnitude. During the leg-swing phase, the body’s center of gravity
shifts posteriorly (usually along the Y-axis), while lateral sway mainly appears as periodic changes along
the lateral axis (X-axis). Additionally, the body undergoes subtle rotations during walking, which are
primarily captured as angular velocity variations by the gyroscope. Directional changes in walking are
reflected in shifts in the geomagnetic field and are recorded by the magnetometer.

Thesemultidimensional motion features tend to be averaged out or lost when relying on composite signals
from a single sensor, which leads to information degradation. For instance, prominent vertical impact
signals may be misinterpreted as noise in the horizontal direction, while body rotation features detected
by the gyroscope are often overlooked in traditional methods. It is precisely these neglected dimensions
of information that provide the theoretical foundation for multi-sensor axis fusion techniques.

3.3.2.2 Sensor signal separation and spatial expansion:

The first key component of this method lies in transforming fused sensor data into independent axis-wise
vectors. Each sensor provides three orthogonal measurements, forming an expanded feature space:

Sexpanded = {ax, ay, az, lx, ly, lz, gx, gy, gz, mx,my,mz}

Here, ax, ay, az denote the three-axis accelerometer data; lx, ly, lz represent the linear acceleration in three
axes; gx, gy, gz correspond to the gyroscope data; andmx,my,mz are the three-axis magnetometer read-
ings. This separation operation expands the original three-dimensional sensor data into a 12-dimensional
feature space, significantly enriching the informational dimensions available for analysis.

By applying this separation approach, the algorithm can access and utilize specific signal patterns cap-
tured by different sensors along different axes. For example, the Z-axis acceleration is highly sensitive
to vertical impact during foot strikes, while the Y-axis of the gyroscope may better capture body rotation
during walking. These separated signal sources serve as a rich basis for subsequent optimized combina-
tions.

The data flow of the traditional method is illustrated as:

Sensor Data (3-axis)→ Composite Magnitude→ Signal Processing→ Peak Detection

In contrast, the data flow in this method is:

Sensor Data (Multi-sensor, Multi-axis)→ Axis Separation→ Optimal Combination Selection→ Sig-
nal Processing→ Peak Detection
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The fundamental difference in these workflows lies in the timing of dimensionality compression. Tradi-
tional methods perform early-stage fusion, compressing the three-axis data into a single magnitude value.
In contrast, the proposed method preserves the original dimensionality of the signal as much as possi-
ble, deferring dimensionality reduction until the optimal combination stage, thereby allowing for more
flexible and informative signal integration.

3.3.2.3 The theoretical basis of axis combination

The selection of multi-sensor axis combinations is guided by the following theoretical considerations:

Different sensors exhibit complementary strengths in capturing motion characteristics. Accelerometers
are effective in measuring linear acceleration and are sensitive to impacts and gravity; linear accelerom-
eters isolate pure linear acceleration by removing gravitational components; gyroscopes specialize in
angular velocity, capturing rotational motion; and magnetometers offer directional reference relative to
the Earth’s magnetic field. By integrating data from various sensor types, a more comprehensive and
multidimensional representation of motion features can be achieved.

Both theoretical analysis and experimental validation suggest that, for the task of step detection, utiliz-
ing three independent signal sources is generally sufficient to provide the necessary information dimen-
sionality. This ”three-dimensional combination” strategy strikes an effective balance between feature
completeness and computational efficiency.

Signal-to-noise ratios vary across axes depending on walking condition and sensor placement. For in-
stance, when the device is worn at the waist, the vertical (Z-axis) acceleration signal tends to have a higher
signal-to-noise ratio; whereas when carried in a trouser pocket, linear acceleration along the anterior-
posterior direction (Y-axis) may offer clearer step-related features. Selecting the axes with the highest
signal-to-noise ratios can enhance the stability and precision of detection.

To align with computational efficiency and real-world applicability, a pre-screening strategy based on
prior knowledge is employed. According to experimental findings , several representative and high-
potential combinations are pre-selected. These include homogeneous three-axis groupings from a single
sensor type (e.g., X, Y, and Z axes of the accelerometer), as well as heterogeneous combinations across
sensor types (e.g., X-axis of the accelerometer, Y-axis of the linear accelerometer, and Z-axis of the
gyroscope).

3.3.2.4 Signal processing framework

For the selected axis combination, the algorithm follows a systematic signal processing framework, which
includes the following core step:

1. Composite Magnitude Calculation: Compute the fused magnitude from the three chosen signal
sources:

Mfusion(t) =
√
S2
1(t) + S2

2(t) + S2
3(t) (3.16)

Here, S1, S2, and S3 represent the three selected directional signals. A key distinction from tra-
ditional approaches lies in the fact that these signals are not restricted to the three axes of a single
sensor. Instead, they can originate from different axes across multiple sensors, enabling cross-
sensor information fusion.
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2. Multi-stage Signal Filtering: Sensor signals collected during walking often contain various types
of noise and interference across different frequencies. To isolate the meaningful components, this
method adopts a structured three-stage filtering process.

First, a median filter is applied to eliminate spikes and outliers, which are typically caused by
sudden sensor jitter or external disturbances. Second, a low-pass filter is used to suppress high-
frequency noise while retaining the low-frequency components associated with human gait. Fi-
nally, a moving average filter is employed to further smooth the signal waveform, enhancing the
periodic features of walking steps.

This multi-stage filtering strategy effectively reduces diverse noise artifacts and improves the clar-
ity and detectability of gait-related features.

3. Signal Normalization:The signal is centered by subtracting the mean value to eliminate the influ-
ence of static components such as gravitational bias and highlight dynamic variations:

Mnorm(t) =Msmooth(t)− µM

where µM represents the mean value of the smoothed signal. This step is particularly important
because it removes the gravitational offset caused by the sensor’s placement, making the algorithm
less sensitive to the device orientation.

4. Adaptive Thresholding: An adaptive threshold λ is determined based on the statistical properties
of the signal to accommodate different walking styles and signal intensities:

λ = α · σM

where σM is the standard deviation of the signal, reflecting the amplitude of fluctuations, and α is
a scaling factor that adjusts the detection sensitivity. This adaptive method allows the algorithm to
respond dynamically to variations caused by different walking behaviors or device positions.

5. PeakDetection andValidation: Peaks that exceed the threshold are further evaluated using temporal
constraints based on human biomechanics:

Tmin ≤ ∆tstep ≤ Tmax

Here,∆tstep denotes the time interval between adjacent peaks. Tmin and Tmax define the allowable
range, typically set to 0.35 s and 1.8 s, respectively, which correspond to a human walking ca-
dence of approximately 0.5–2.5 Hz. This validation step helps exclude false positives and improve
detection accuracy.

3.3.3 Method characteristics

Based on multi-sensor axis fusion, the proposed step detection method exhibits the following three key
technical features and advantages:

1. Multi-dimensional Information Fusion and Complementarity: By separating and recombining the
axis data from multiple sensors, this method achieves effective integration of multi-dimensional
information. Different sensors capture distinct motion characteristics that are mutually comple-
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mentary: accelerometers reflect linear movement but are affected by gravity; linear accelerations
exclude gravitational components; gyroscopes capture rotational dynamics; magnetometers offer
directional cues. The intelligent combination of these complementary signals enables the algorithm
to extract step features more comprehensively while avoiding the limitations of relying on a single
sensor, thereby enhancing the discriminability and robustness of the signal features.

2. Adaptive and Intelligent Design: The algorithm automatically adjusts detection parameters through
adaptive thresholding based on signal statistics, accommodating variations in walking styles, de-
vice placements, and environmental conditions without requiring manual calibration. In addition,
the incorporation of human biomechanics verification enhances the accuracy of true step detec-
tion and reduces false positives caused by signal noise. This adaptive mechanism significantly
improves algorithmic resilience in complex real-world scenarios.

3. Practicality and Efficiency Optimization: Although theoretically there may be numerous possible
axis combinations, the method selects the most promising ones based on experimental validation
and prior knowledge to ensure high detection accuracy while controlling computational complex-
ity. Furthermore, the algorithm demonstrates strong adaptability across various device placements
(e.g., handheld, pocket, or waist-mounted), making it suitable for diverse mobile usage contexts.
This balance of efficiency and robustness ensures reliable operation on resource-constrained mo-
bile devices in dynamic real-world applications.

3.4 The research method of Step length used

Step length estimation plays a critical role in PDR systems, directly impacting positional calculation
accuracy. This research implements an enhanced Weinberg non-linear model for step length estimation,
which incorporates human biomechanical properties while preserving computational efficiency.

The traditional Weinberg[37] model bases step length estimation on vertical acceleration changes during
ambulation, with its fundamental hypothesis being that vertical displacement of the human body’s center
of mass is proportionally related to step length. This displacement can be indirectly quantified through
the oscillation magnitude of acceleration signals. The mathematical formulation of the conventional
Weinberg model is expressed as:

SL = K × 4
√
(amax − amin) (3.17)

Where SL denotes the estimated step length, K represents a calibration constant typically associated with
pedestrian height, and amax and amin respectively correspond to themaximum andminimum acceleration
signal values within a single gait cycle.

This research utilizes an optimized Weinberg model[38] that enhances estimation accuracy by simulta-
neously integrating height characteristics, cadence variations, and acceleration properties. The improved
framework initially establishes a foundation step length based on pedestrian height:

Base_SL = α×H (3.18)
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where H represents the pedestrian’s height and α denotes the height proportion coefficient.

Subsequently, the model incorporates a comprehensive multi-factor adjustment mechanism:

SL = Base_SL× Faccel × Ffreq (3.19)

Faccel represents the acceleration adjustment factor, derived through normalization of acceleration dif-
ferentials:

Faccel = 0.85 + 0.3× Accel_diff −Accel_diffmin
Accel_diffmax −Accel_diffmin

(3.20)

Ffreq denotes the cadence adjustment factor, determined by comparing current step frequency against
mean step frequency. Finally, to ensure the rationality of estimated stride length, boundary constraints
are implemented:

min_SL ≤ SL ≤ max_SL (3.21)

The optimized Weinberg stride length estimation methodology offers multiple advantages: it accommo-
dates various locomotion states and device carrying configurations through its multi-factor adjustment
framework; the height-based fundamental stride length configuration ensures estimates align with indi-
vidual characteristics; its computational efficiency makes it well-suited for real-time processing on mo-
bile platforms; it eliminates dependency on pre-calibration procedures requiring known total distances,
enabling immediate implementation across diverse environments; furthermore, through normalization
processing and rationality constraints, it effectively mitigates the influence of outliers and noise interfer-
ence.

3.5 The research method of heading estimation used

3.5.1 The basic principle of heading estimation without attitude constraints

Traditional PDR heading estimation approaches typically require smartphones to maintain fixed relative
positioning with respect to pedestrians, significantly constraining system applicability in practical sce-
narios. In everyday contexts, users may place their devices in pockets, hold them while reading, position
them against ears during calls, and so forth, resulting in frequent misalignments between device heading
and actual pedestrian movement direction. This research employs the posture-unconstrained heading es-
timation methodology proposed by Donghui Liu et al.[14], which addresses this challenge by enabling
PDR systems to accommodate multiple device holding configurations. The fundamental concept under-
lying this approach involves coordinate system rotational transformation, whereby the smartphone’s body
coordinate system (carrier coordinate system) undergoes realignment to orient one of its axes with the
pedestrian’s actual progression direction. This coordinate transformation alignment approach enables
heading estimation to function independently of users maintaining particular smartphone orientations,
substantially enhancing system convenience and applicability in practical scenarios.

The key to implementing this methodology lies in utilizing frequency domain characteristics of accel-
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eration signals during pedestrian locomotion. Research has established that during human walking, ac-
celeration signals along the progression direction exhibit prominent peaks at step frequency, resulting
from forward acceleration and deceleration generated with each step; conversely, acceleration signals
perpendicular to the walking direction display significant peaks at half-step frequency, corresponding
to the lateral oscillation pattern where the human body completes one side-to-side movement every two
steps[39][40]. The axis perpendicular to the ground likewise exhibits peaks at step frequency, though
typically with amplitude substantially greater than peaks along the walking direction axis.

Based on these distinctive frequency domain characteristics, this research employs rotational traversal
to identify a novel coordinate system configuration that effectively aligns a specific smartphone axis
with the pedestrian’s actual walking direction. This alignment is accomplished through mathematical
transformation rather than requiring users to physically hold the device in predetermined orientations.

3.5.2 Implementation of Heading Estimation Algorithm

The implementation of this attitude constraint-free heading estimation algorithm includes the following
key steps:

3.5.2.1 Data acquisition and gait detection

Initially, raw data is collected from integrated smartphone sensors (accelerometer, gyroscope, andmagne-
tometer). Although heading estimation primarily utilizes acceleration data, attitude computation requires
information from all three sensor types. The system employs a gait detection module to identify the tem-
poral markers of individual steps, providing reference points for subsequent analysis. The sampling rate
is configured at 100Hz to ensure accurate capture of human locomotion characteristics.

3.5.2.2 Three-axis rotation traversal determines the optimal coordinate system

Following data collection and preprocessing, to identify optimal alignment between the smartphone co-
ordinate system and walking direction, the algorithm executes a three-step rotational angle traversal:

1. X-axis rotation traversal:

• Rotate acceleration data around the X-axis from 0◦ to 90◦

• At each angle, apply low-pass filtration to eliminate high-frequency interference

• Transform data to frequency domain via FFT, identifying the axis with maximum peak at step
frequency

• Record optimal rotation angle θx

2. Y-axis rotation traversal:

• Initially rotate by angle θx around X-axis

• Subsequently rotate around Y-axis from 0◦ to 90◦

• Repeat the aforementioned frequency domain analysis procedure

• Record optimal rotation angle θy

3. Z-axis rotation traversal:

• First rotate around X-axis and Y-axis by angles θx and θy respectively

23



• Then rotate around Z-axis from 0◦ to 90◦

• Calculate peak value ratios at step frequency and half-step frequency for each axis

• Identify walking direction axis based on these ratios

• Record optimal rotation angle θz

To enhance computational efficiency, Donghui Liu employed binary search methodology to rapidly ap-
proximate optimal angles rather than examining all possible values. However, this approach potentially
converges incorrectly to local optima; consequently, this research implements grid search methodology.

3.5.2.3 Coordinate system transformation and filtering processing

After identifying the optimal rotation angles (θx, θy, θz), construct a rotation matrix to transform the
original accelerometer data:

Cβα =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 (3.22)

Where ψ, γ and θ correspond to rotation angles around the Z, Y and X axes respectively.

Following rotation, apply differentiated filtering procedures to distinct axes:

• For walking direction axis: Implement low-pass filtration with cut-off frequency marginally ex-
ceeding step frequency

• For axis perpendicular to walking direction: Apply band-pass filtration to extract components prox-
imate to step frequency

• For axis perpendicular to ground: Utilize matched filtering to extract meaningful signal compo-
nents

This differentiated filtration strategy enhances preservation of relevant information across each axis while
simultaneously eliminating noise interference.

3.5.2.4 Attitude calculation and geographic coordinate system projection

After obtaining coordinate system data aligned with pedestrian walking direction, projection of this data
into the geographic coordinate system becomes necessary. The Attitude Heading Reference System
(AHRS) processes rotated sensor data to calculate the orientation of the transformed coordinate sys-
tem relative to the geographic reference frame. This AHRS framework integrates information from
gyroscope, accelerometer, and magnetometer sensors, representing orientation through quaternions or
direction cosine matrices. The current research implements a QEKF-AHRS methodology—specifically,
an Attitude Heading Reference System based on quaternion extended Kalman filtering—to determine
orientation parameters.

Utilizing attitude information computed by AHRS, construct a transformation matrix Cbn [41]from the
rotated coordinate system to the geographic coordinate system, then project the post-rotation acceleration
data into the geographic coordinate framework:

an = Cbn · abfiltered (3.23)
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Where an represents acceleration within the geographic coordinate system, and abfiltered denotes filtered
acceleration in the rotated body coordinate system.

3.5.2.5 Heading Angle calculation

This methodology does not employ a strategy of calculating heading for each individual step, but instead
performs computation every two steps to eliminate the influence of lateral oscillation movements during
walking. Integration is applied to geographic coordinate system acceleration data between every two
steps:

v(t) =

∫ t2

t1

an(t)dt (3.24)

Where t1 and t2 represent the temporal points of consecutive steps.

Finally, calculate the heading angle from the velocity vector:

ϕ = arctan 2(vE , vN ) (3.25)

Where vE and vN denote eastward and northward velocity components respectively, and ϕ represents the
heading angle relative to true north direction.

Through this implementation process, the posture-unconstrained heading estimation algorithm accom-
modates diverse smartphone holding configurations, endowing PDR systems with enhanced flexibility
and practicality for real-world implementations, enabling effective functionality across varied usage sce-
narios.

3.6 The principle of complementary filtering

In this study, we implemented a Complementary Filter as our methodology for multi-source data fusion
to effectively integrate PDR and WiFi positioning information. The Complementary Filter represents a
streamlined and efficient approach to information fusion, particularly well-suited for combining sensor
data with complementary characteristics.

The fundamental principle of the Complementary Filter leverages the frequency-domain complementary
properties of different sensors. Specifically, one sensor type may perform exceptionally well within cer-
tain frequency ranges while showing diminished performance in others. Conversely, another sensor type
exhibits opposite performance characteristics across different frequency ranges. Through this comple-
mentarity, the filter extracts the most reliable information components from each data source, achieving
optimized fusion.

In the context of PDR and WiFi positioning integration, the PDR system delivers continuous relative
position change information with high short-term accuracy but suffers from long-term cumulative errors.
Meanwhile, WiFi positioning provides absolute position references that, despite potentially lower instan-
taneous precision, do not accumulate errors over time. The characteristics of these two technologies
perfectly complement each other: PDR demonstrates excellent performance over brief intervals, while
WiFi positioning maintains stability over extended time scales.
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The mathematical expression of the Complementary Filter is as follows:

Pf (t) = α · [Pf (t− 1) + PPDR(t)− PPDR(t− 1)] + (1− α) · PWiFi(t) (3.26)

Where:

• Pf (t) represents the fused position estimate at the current time t

• Pf (t− 1) represents the fused position estimate at the previous time t− 1

• PPDR(t) and PPDR(t − 1) respectively represent the PDR position estimates at the current time
and previous time

• PWiFi(t) represents the WiFi position estimate at the current time

• α is the fusion weighting coefficient (0 < α < 1), used to balance the contribution of PDR and
WiFi information

In this formula, the first componentPf (t−1)+PPDR(t)−PPDR(t−1) represents the position increment
update obtained through PDR, reflecting short-term position changes; the second component PWiFi(t)

provides absolute position reference for correcting cumulative errors. The selection of parameter α is
critically important: when PDR performs effectively (such as during straight-line walking), a larger α
value can be assigned; after complex movements or extended walking periods, the α value should be
reduced to increase the influence of WiFi positioning.

Compared to complex algorithms such as Kalman filtering, the Complementary Filter offers advantages
including lower computational burden and simpler implementation, making it particularly suitable for
real-time operation on resource-constrained mobile devices. Through this method, we can effectively
combine the high-precision short-term tracking capability of PDR with the long-term stability of WiFi
positioning, ultimately enhancing overall positioning performance.

3.7 summary of Methodological Framework

This research explores a pedestrian dead reckoning methodology that attempts to mitigate common orien-
tation constraint issues in smartphone-based positioning. The approach integrates three complementary
principal components to form a comprehensive framework:

The gait detection algorithm employs a multi-sensor axis fusion approach, utilizing data from various
sensors embedded within smartphones. By decomposing sensor signals into three-axis components and
examining different combinations of these components, the system endeavors to enhance step recognition
across varying device orientations. This methodology treats each axis of every sensor as an independent
information source, potentially achieving more robust gait identification than conventional approaches
that rely on composite signals from individual sensors.

Regarding stride length estimation, the study implements an enhanced Weinberg model, seeking to bal-
ance computational efficiency with estimation accuracy. This approach establishes a personalized base-
line stride length correlated with user height, adjustable through acceleration differential and cadence
factors. The introduction of adaptive thresholds and boundary constraints may contribute to maintaining
reasonable estimates across different walking patterns.

26



Heading estimation utilizes frequency domain analysis to facilitate walking direction identification, re-
ducing device orientation constraints. Through coordinate transformation and axis rotation traversal,
the system attempts to align smartphone axes with actual walking direction based on characteristic fre-
quency patterns rather than physical orientation. Nevertheless, challenges posed by magnetic interfer-
ence[42][43] in indoor environments warrant attention.

3.8 Experimental Design

3.8.1 Experimental environment and path planning

This investigation utilized corridors within the Cyprus University of Technology (CUT) academic facility
as the experimental location, as depicted in Figure 3.7. This setting exemplifies a representative indoor
environment with defined corridor configurations, homogeneous lighting parameters, and consistent floor
surfaces, rendering it suitable for evaluating pedestrian navigation system efficacy. Furthermore, the
academic facility houses numerous electronic devices and reinforced concrete structural elements that
introduce magnetic field interferences, establishing ideal circumstances for examining the resilience of
the posture-unconstrained heading estimation algorithm.

Figure 3.7: geographic coordinate system

The experimental trajectory designwas conceived to encompass archetypal pedestrian locomotion scenar-
ios, incorporating both rectilinear movement and turning as fundamental motion patterns. The pathway
configuration adopts an inverted “Z” morphology, specifically comprising three discrete segments:

1. Initial segment: Commencing from the origin coordinates (0,0) and proceeding in a direction 50°
northeast for a distance of 32 meters

2. Intermediate segment: Reorienting toward 40° northwest (corresponding to 320° northeast) and
traversing 11 meters

3. Terminal segment: Executing a subsequent directional adjustment to 50° northeast and continuing
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for an additional 11 meters

This tripartite trajectory architecture necessitates that participants execute two pronounced directional
transitions, rigorously challenging the heading estimation algorithm’s capabilities under conditions of
dynamic variation. Furthermore, the incorporation of pathway sections with heterogeneous lengths facil-
itates comprehensive evaluation of step length estimation algorithm reliability and accuracy across varied
ambulatory distances.

3.8.2 Experimental Equipment and Data Acquisition

This investigation employed a OnePlus 10 Pro smartphone as the experimental apparatus, featuring inte-
grated MEMS sensors comprising triaxial accelerometer, triaxial gyroscope, and triaxial magnetometer
components. The AndroSensor application facilitated sensor data acquisition throughout experimental
procedures. This software simultaneously records multiple sensor parameters and synchronously pre-
serves information in analytically compatible formats. To guarantee acquisition fidelity, sampling fre-
quencies for all sensors were configured at 100Hz, enabling detection of subtle variations during human
ambulation processes. The acquired dataset encompasses:

• Acceleration measurements (ax, ay, az)

• Gyroscopic readings (ωx, ωy, ωz)

• Magnetometer values (mx,my,mz)

• Linear acceleration parameters (gravity component excluded)

• Temporal timestamp information

3.8.3 Experimental Procedure and Test Plan

This research designed two distinct smartphone carrying configurations to evaluate the adaptability of
the posture-unconstrained heading estimation algorithm:

1. Pocket Mode: The OnePlus 10 Pro was positioned within trouser pockets, simulating the most
prevalent smartphone carrying method during routine pedestrian movement. Under this config-
uration, the device orientation remains relatively consistent relative to the body but experiences
subtle movements during walking, while the smartphone coordinate system maintains no fixed
relationship with the walking direction.

2. ReadingMode: Test participants held the smartphone with both hands while maintaining the screen
oriented toward themselves, replicating scenarios where users view device content while walking.
In this configuration, the smartphone exists in a comparatively dynamic state, experiencing addi-
tional oscillations and orientation changes resulting from hand movements.

To ensure experimental data consistency and reliability, all trials were conducted by a single test partici-
pant, following this procedural protocol:

1. Initializing the data acquisition system at the starting position

2. Traversing the designated path with natural gait while maintaining relatively consistent walking
speed

3. Terminating data collection upon reaching the endpoint
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4. Repeating the aforementioned test procedure minimum three times for each carrying configuration
to mitigate the influence of random errors

To evaluate the performance of integrated PDR-WiFi fusion positioning, additional WiFi fingerprinting
activities were conducted:

1. Establishing WiFi sampling locations at 2-meter intervals along the experimental trajectory

2. Remaining stationary for approximately 20 seconds at each sampling location to acquire Received
Signal Strength Indicator (RSSI) measurements from surrounding WiFi access points

3. Performing multiple acquisition sessions at identical locations across different temporal periods to
account for signal strength temporal variability characteristics

4. Constructing mapping relationships between spatial coordinates and WiFi fingerprints to facilitate
subsequent development and validation of PDR-WiFi fusion positioning algorithms

3.8.4 Evaluation Indicators and Verification Methods

To comprehensively evaluate the proposed methodology’s performance, this research employs the fol-
lowing metrics for quantitative analysis:

1. Gait detection accuracy: Comparing algorithm-detected step count against actual step count to
calculate detection precision

2. Heading estimation error: Computing average directional deviation between estimated and ground
truth heading values

3. Trajectory reconstruction error: Measuring positional discrepancies between PDR trajectories and
actual paths, encompassing mean positioning error and endpoint deviation

4. Posture adaptability indicator: Examining metric variations across different carrying configura-
tions to assess algorithmic adaptability to diverse orientations

5. Pre-fusion versus post-fusion trajectory error: Conducting comparative analysis of positional de-
viations between PDR trajectories and actual paths before and after WiFi integration, focusing on
mean positioning error

Through these indicators, comprehensive performance assessment of the proposed methodology across
multiple dimensions becomes achievable.
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4 Experimental Results and Discussion

4.1 result of Step detection

Figure 4.1 presents a comparative visualization between unprocessed sensor signals and their filtered
counterparts. During data acquisition, the original signals recorded in pocket mode (represented by blue
lines) exhibited pronounced amplitude variations (ranging from 4 to 20), accompanied by significant
noise characteristics and unstable signal quality. Following application of the multi-stage filtration tech-
niques outlined in Chapter 3, the enhanced signals (depicted by red lines) demonstrated notable smoothing
properties, with amplitude effectively constrained within the 8 to 14 range, while successfully preserving
gait periodicity features, thereby establishing a dependable foundation for subsequent peak detection al-
gorithms. Temporal domain examination revealed that throughout the entire 55.4 seconds experimental
duration, the signal maintained consistently stable periodic fluctuations, closely corresponding with typi-
cal human walking patterns. The processed signal, through mean value reconstruction, comprehensively
retained the fundamental trends of the original data while effectively suppressing random perturbation
factors, thus substantially improving the signal-to-noise ratio performance.

Figure 4.1: The processed signal (pocket mode)

Figure 4.2 illustrates the steps detection results in pocket mode. The optimal sensor axis configuration,
Accel_X-Accel_Y-Lin_Acc_Z, successfully identified 89 steps, which corresponds precisely with the
actual step count. As observable in the figure, the detected peak points (marked by red circles) are
distributedwith remarkable consistency throughout the temporal sequence, demonstrating the algorithm’s
robust capability to recognize stride characteristics across various time intervals. The adaptive threshold
(indicated by a red dashed line) positioned at approximately 0.6 effectively differentiates authentic stride
peaks from background oscillations. During the step identification procedure, the algorithm executed
peak recognition after eliminating the signal’s mean value, thereby directing the detection process toward
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the dynamic fluctuations within the signal rather than absolute magnitudes.

Figure 4.2: steps detection results (pocket mode)

Figure 4.3 displays the signal processing outcomes in reading mode. Compared to pocket mode, the orig-
inal signals in reading mode exhibit a more pronounced amplitude growth trajectory, particularly during
the latter testing phase (40-78.9 seconds), where signal magnitude increases from an initial value of ap-
proximately 7 to roughly 10 in the final stages. This progression indicates that the user’s walking pattern
gradually transitions into a more stabilized state during reading mode, with arm oscillations becoming
increasingly uniform. The processed signal (represented by the red line) effectively preserves this devel-
opmental pattern while simultaneously providing enhanced gait cycle characteristics through filtration
techniques.

Figure 4.3: The processed signal (reading mode)
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Figure 4.4 illustrates the step detection results in readingmode utilizing theAccel_X-Accel_Y-Lin_Acc_Z
sensor axis configuration. Under this arrangement, the algorithm identified 92 steps, which aligns with
the actual step count. Notably, the step signal demonstrates progressively increasing amplitude during
the latter testing phase (30-78.9 seconds), with peak intensity growing from approximately 0.8 in the
initial stages to roughly 2.0 toward the conclusion. The peak detection algorithm, employing an adaptive
threshold (approximately 0.3), successfully accommodated these amplitude variations, demonstrating
the methodology’s excellent adaptability in processing non-stationary walking signals. The detection
outcomes reveal that despite significant amplitude fluctuations, the identified steps maintain uniform
and continuous distribution without evident missed detections or false positives, thereby confirming the
algorithm’s robustness in dynamic environments.

Figure 4.4: steps detection results (reading mode)

The experimental findings reveal significant performance variations among different sensor axis con-
figurations. Conventional methodologies typically employ only the composite three-axis signal from a
single sensor (such as an accelerometer) for step detection, whereas the multi-sensor axis combination ap-
proach developed in this research demonstrates substantial advantages. Notably, the Accel_X-Accel_Y-
Lin_Acc_Z configuration exhibited superior performance in this investigation, ingeniously leveraging the
complementary characteristics of diverse sensors. In contrast, configurations utilizing exclusively single-
type sensors, such as solely accelerometer triaxial or magnetometer triaxial arrangements, demonstrated
diminished effectiveness. Testing results indicate that single-sensor methodologies typically produce step
count discrepancies within the 10-20% range, whereas the cross-sensor axis combination strategy suc-
cessfully constrains error margins to within 3%, thereby validating the efficacy of the integrated sensor
axis approach.
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4.2 result of Step length estimation

Figure 4.5 illustrates stride length variations in pocket mode. The estimation employs an enhancedWein-
berg non-linear model, which integrates human biomechanical properties by simultaneously considering
height, acceleration differentials, and cadence. As depicted, the estimated stride lengths in pocket mode
exhibit pronounced dynamic variability, ranging from 0.52 to 0.76 meters, with an average stride length
of 0.65 meters. The stride length trajectory demonstrates notable fluctuation characteristics, particularly
evidenced by several distinct peaks (approximately 0.75 meters) between steps 30-50, while the 50-70
step interval displays reduced stride measurements (approximately 0.53-0.57 meters). This variation
pattern reflects natural gait adjustments during ambulation and corresponds closely with the oscillatory
characteristics of acceleration signals throughout the walking process.

Figure 4.5: result of steps length estimation (pocket mode)

Figure 4.6 presents the stride length estimation results in reading mode. Compared to pocket mode, stride
lengths in reading mode are generally shorter, with an average value of 0.57 meters and variations ranging
from 0.48 to 0.67 meters. The stride length curve in reading mode exhibits a distinct downward trajectory
during the initial phase (first 5 steps), rapidly declining from approximately 0.67 meters to around 0.55
meters, reflecting the user’s transition from the starting phase to a stabilized walking state. During the
middle and later phases (steps 30-92), stride length fluctuations remain relatively consistent, with most
measurements maintained between 0.54 and 0.60 meters, exhibiting only brief significant reductions
(approximately 0.49 meters) at specific intervals, such as near steps 50-55.
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Figure 4.6: result of steps length estimation (reading mode)

Comparing the stride length estimation outcomes across both modes reveals several key distinctions:
First, the average estimated stride length in pocket mode (0.65 meters) significantly exceeds that of read-
ing mode (0.57 meters), representing an approximate difference of 14%; Second, the standard deviation
of stride lengths in pocket mode (0.048 meters) surpasses that of reading mode (0.032 meters), indicating
greater variability in the former; Third, stride length distribution in pocket mode appears more dispersed,
whereas reading mode demonstrates a relatively concentrated distribution pattern. These observations
suggest that device positioning methodology influences stride length estimation not only in terms of ab-
solute values but also in the dynamic variation characteristics of stride measurements.

4.3 result of heading estimation

Figure 4.7 illustrates the heading angle estimation results generated by the posture-unconstrained heading
estimation algorithm based on frequency domain analysis in pocket mode. This algorithm analyzes accel-
eration signal characteristics in the frequency domain, identifies walking direction, and achieves heading
estimation independent of device orientation constraints by projecting acceleration onto the geographic
coordinate system through coordinate transformation. As depicted, the estimated heading angles (blue
line) maintain consistent overall trends with the ground truth heading angles (red line), effectively captur-
ing directional transitions across three primary phases: the initial straight segment (steps 1-45, reference
value 50°), the turning phase (steps 46-65, reference value 320°), and the final straight segment (steps
66-89, reference value 50°). During the initial phase, heading estimates exhibit considerable fluctuations
ranging from approximately 30° to 100°; during the turning phase, the algorithm successfully recognizes
directional changes albeit with some response latency; in the final phase, estimations display temporary
overshoot phenomena before gradually converging toward reference values. The average heading esti-
mation error in pocket mode measures 22.74°, which, although exceeding values reported in the original
paper, still maintains practical utility considering the posture-unconstrained application scenario.

34



Figure 4.7: result of heading estimation (pocket mode)

Figure 4.8 presents the heading estimation results in reading mode. Compared to pocket mode, head-
ing estimation in reading mode exhibits distinct characteristics: during the initial phase (steps 1-25), the
estimates demonstrate relative stability; however, substantial fluctuations emerge within the step 25-55
interval, with estimates varying approximately 30° above and below the reference value; during the turn-
ing phase (steps 56-75), the algorithm displays exceptional response properties, rapidly tracking heading
variations; in the final phase, estimated values also promptly recover to levels approaching the actual
reference values. Overall, the average heading estimation error in reading mode measures 16.91°, rep-
resenting a significant improvement compared to pocket mode, suggesting that acceleration signals in
handheld conditions potentially provide more distinct directional features.

Figure 4.8: result of heading estimation (reading mode)
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Experimental data indicates that heading estimation errors in this implementation are elevated compared
to those reported in the original paper. This discrepancy may stem from multiple factors: initially, vari-
ations in experimental environments and equipment potentially affected acceleration signal quality; ad-
ditionally, parameter adjustments in the code implementation may not have achieved optimal configura-
tion; finally, differences in walking patterns and velocities could have influenced algorithm performance.
Nevertheless, the current implementation still accurately captures overall heading variation trends in most
scenarios, demonstrating a certain degree of methodological robustness.

Notably, heading estimations exhibit delayed responses at turning points, potentially attributable to the
method’s reliance on two-step integration for heading calculations. When pedestrians initiate turns, the
integration window still contains partial data from linear walking segments, resulting in estimation lag.
Furthermore, estimated values display significant deviations in certain step segments, suggesting that
frequency domain feature identification may lack stability under specific conditions. These observations
provide valuable direction for future algorithmic refinements.

Future enhancements could be pursued along several trajectories: (1) Refining frequency domain feature
extraction methodologies, such as implementing wavelet transformation as an alternative to Fourier anal-
ysis, to more effectively capture non-stationary signal characteristics; (2) Developing adaptive parameter
regulation mechanisms that dynamically optimize filter parameters according to detected locomotion
states; (3) Incorporating machine learning technologies to recognize more sophisticated ambulation pat-
terns and specialized movements (such as directional changes), thereby enhancing adaptability across
diverse users and environmental contexts.

4.4 PDR and wifi integrated positioning

Figure 4.9 presents the PDR trajectory estimation results in pocket mode. As clearly observable in the il-
lustration, the PDR trajectory maintains favorable consistency with the ground truth path during the initial
walking phase; however, as step count increases, particularly after navigating the first turn (approximately
at step 40), the trajectory begins to exhibit notable lateral deviation. This displacement partially recovers
during the third path segment (NE 50°, 11m), ultimately resulting in approximately 1.58 meters of error
between the final position (Step 89) and the actual endpoint. Significantly, while deviations exist in the
pocket mode trajectory, it maintains relatively smooth characteristics overall, indicating that accelera-
tion signals remain comparatively stable when the device is carried in a pocket, facilitating effective step
frequency detection and heading estimation.
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Figure 4.9: PDR trajectory (pocket mode)

Figure 4.10 illustrates the PDR trajectory estimation in reading mode. Compared to pocket mode, the
reading mode trajectory demonstrates significant heading deviation during the first path segment (NE
50°, 32m), causing the entire route to systematically shift rightward. This initial discrepancy likely stems
from subtle hand movements in reading mode interfering with accelerometer and magnetometer sensors,
producing systematic errors in heading estimation. Directional patterns along the second (NW 40°, 11m)
and third (NE 50°, 11m) path segments actually demonstrate considerable resemblance to the authentic
route, indicating that estimations of relative heading changes achieve greater precision than absolute
heading determinations. Nevertheless, due to accumulated deviations originating in the first segment,
the final positional error reaches 5.27 meters, substantially exceeding that observed in pocket mode.
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Figure 4.10: PDR trajectory (reading mode)

Figure 4.11 presents the localization performance of PDR integrated with WiFi positioning in pocket
mode. The fused trajectory demonstrates remarkable enhancement, particularly in turning regions and
segments following extended walking distances. The integration algorithm effectively mitigates PDR’s
cumulative errors through periodic WiFi reference coordinates, resulting in trajectories that more ac-
curately correspond with ground truth values across the second and third path segments. Particularly
noteworthy is the system’s performance at the second turning point, where the fusion algorithm suc-
cessfully captures directional transitions and accurately rectifies trajectory orientation, demonstrating the
integrated system’s exceptional adaptability to walking dynamic characteristics.
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Figure 4.11: PDR and wifi integrated trajectory (pocket mode)

Figure 4.12 illustrates the fusion effects in reading mode, which appear particularly pronounced. The
integration algorithm successfully diminishes systematic directional deviations in the initial segment,
bringing the entire trajectory into closer alignment with the actual path. Notably, despite substantial
divergence in the first segment of the original PDR trajectory, the fusion system progressively redirects
the path toward proper orientation through WiFi reference coordinates. Throughout the second and third
path segments, the integrated trajectory maintains excellent correspondence with ground truth values,
achieving substantial corrective improvement.
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Figure 4.12: PDR and wifi integrated trajectory (reading mode)

Quantitative evaluation further validates the effectiveness of the fusion methodology. In pocket mode,
the integration substantially diminishes average positioning error from 1.94 meters to 1.21 meters, rep-
resenting an enhancement magnitude of 37.5%; in reading mode, mean error decreases from 2.51 meters
to 1.59 meters, yielding a 36.6% improvement. This consistent enhancement magnitude demonstrates
that the fusion algorithm exhibits robustness and adaptability across various device carrying configu-
rations. The complementary filter-based integration strategy not only delivers substantial performance
benefits but also offers advantages in computational efficiency and implementation simplicity, making it
particularly appropriate for real-time applications on mobile devices with constrained resources.

Comprehensive analysis indicates that the complementary filter-based PDR-WiFi fusion methodology
successfully integrates the strengths of both technologies, enhancing positioning accuracy across diverse
usage scenarios while maintaining algorithmic elegance and computational efficiency.
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5 Conclusion and Recommendations

5.1 Research Objectives and Abstract

This research addresses a significant technical challenge in smartphone-based Pedestrian Dead Reck-
oning (PDR) systems: conventional PDR algorithms typically require smartphones to maintain specific
orientations for effective operation, substantially limiting their practical utility in everyday scenarios, as
users naturally carry devices in various positions. The primary objective of this investigation is to develop
and evaluate an adaptive pedestrian localization solution capable of functioning effectively across diverse
smartphone carrying configurations without requiring users to maintain particular device orientations.

To accomplish this objective, the investigation explored three critical PDR components. Initially, a multi-
sensor axis fusion methodology for step detection was implemented and evaluated, leveraging comple-
mentary information across various sensor types and axes. Subsequently, an enhanced Weinberg model
was applied for stride length estimation, incorporating individual biomechanical characteristics while
maintaining computational efficiency. Thirdly, a posture-unconstrained heading estimation algorithm
based on frequency domain analysis was implemented, aligning the smartphone coordinate system with
actual walking direction through mathematical transformation rather than physical constraints. Addi-
tionally, the research examined WiFi positioning technology integration to mitigate cumulative errors
inherent in standalone PDR systems.

The experimental design evaluated system performance under two prevalent smartphone carrying config-
urations (pocket mode and reading mode) while navigating predetermined trajectories incorporating mul-
tiple directional transitions. This methodological approach enabled comprehensive assessment of system
adaptability across diverse usage contexts and its capacity to maintain localization precision throughout
complex movement patterns.

5.2 Main Results

1. Step Detection Performance: The multi-sensor axis fusion methodology demonstrated robust gait
detection capabilities across different smartphone carrying configurations. The optimal sensor axis ar-
rangement (Accel_X-Accel_Y-Lin_Acc_Z) achieved nearly perfect step count accuracy in both tested
carrying modes, identifying 89 steps in pocket mode and 92 steps in reading mode, precisely correspond-
ing to actual step counts. This cross-sensor integration approach significantly outperformed conven-
tional single-sensor methodologies and operated independently of smartphone orientation, constraining
error margins within 3%, representing substantial improvement compared to the 10-20% error typically
observed with traditional approaches.

2. Heading Estimation Performance: The posture-unconstrained heading estimation algorithm success-
fully captured directional transitions across both carrying configurations, albeit with varying degrees of
precision. Average heading estimation deviation measured 22.74° in pocket mode, compared to 16.91° in
reading mode. Although these values exceed ideal parameters, the system maintained sufficient accuracy
for practical navigation applications, particularly considering the absence of orientation constraints and
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other influential factors.

3. Trajectory Reconstruction: The PDR system exhibited differential trajectory reconstruction capabili-
ties contingent upon carrying configuration. Pocket mode generated a terminal positioning deviation of
1.58 meters, while reading mode resulted in a substantially more pronounced displacement of 5.27 me-
ters. This disparity underscores the susceptibility of heading estimation to hand movements in reading
mode, which introduces systematic errors that propagate throughout the trajectory.

4. WiFi Integration Benefits: The incorporation of WiFi positioning technology with PDR substantially
enhanced aggregate system effectiveness. The integration methodology reduced mean positioning error
by approximately 37.5% in pocket mode (decreasing from 1.94 meters to 1.21 meters) and by 36.6%
in reading mode (diminishing from 2.51 meters to 1.59 meters). The complementary filter-based fu-
sion algorithm demonstrated consistent performance improvements across both carrying arrangements,
validating its resilience across heterogeneous utilization contexts.

5.3 Conclusion

Several significant conclusions can be drawn from experimental findings and subsequent analysis:

1. Viability of Posture-Unconstrained Navigation: This investigation validates that effective pedes-
trian positioning can be accomplished without imposing rigid smartphone directional constraints
through appropriate algorithmic implementations. By exploiting frequency domain properties and
coordinate system transformations, the framework operates across conventional carrying arrange-
ments without necessitating users to maintain predetermined device orientations.

2. Multi-Sensor Fusion Benefits: The exceptional efficacy of multi-sensor axis integration methodol-
ogy in gait detection underscores the significance of considering individual sensor axes as discrete
information channels rather than relying on aggregated signals from singular sensor categories.
This approach successfully captures complementary locomotion characteristics across various di-
mensions, strengthening detection resilience and precision.

3. Imperative for Wireless Technology Integration: Despite enhancements in autonomous PDR al-
gorithms, incorporating absolute positioning references (exemplified by WiFi) remains essential
for longitudinal accuracy. The uniform error diminution observed across both carrying configura-
tions demonstrates that sensor fusion effectively counteracts the progressive drift inherent in purely
inertial navigation methodologies.

5.4 Research Limitations

There are several limitations that should be acknowledged in this study:

1. Environmental Constraints: Experiments were conducted within controlled corridor settings char-
acterized by relatively uniform illumination, floor surfaces, and structural attributes. This config-
uration may insufficiently represent the heterogeneity and intricacy of authentic indoor environ-
ments, such as commercial centers, aviation terminals, or residential structures featuring diverse
flooring materials, obstructions, and spatial arrangements.
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2. Limitations of Stride Length Estimation: While the enhanced Weinberg model implemented in
this study incorporates height characteristics and acceleration variations, it nevertheless represents
a comparatively simplified approach to stride length estimation. The framework exhibits certain
constraints when confronting varied walking velocities, terrain types (such as inclines or textured
surfaces), and inter-individual biomechanical variations. Particularly during highly dynamic am-
bulation states (such as rapid walking or running) or under conditions of fatigue, the model may
inadequately capture stride length variations. Furthermore, the static nature of model parameters
results in limited real-time adaptive capability to sudden changes in locomotion state, potentially
generating cumulative errors in specific scenarios.

3. Carrying Configuration Limitations: Although this investigation examined two prevalent smart-
phone carrying arrangements (pocket and reading modes), it did not explore additional frequently
utilized scenarios, such as call positioning (device adjacent to ear), bag/purse placement, or spe-
cialized mounting configurations (arm straps, waist attachments). The system’s efficacy across this
broader spectrum of carrying methodologies necessitates additional examination.

4. Turn Detection Requirements: While the research framework acknowledges the significance of
identifying and specifically addressing turning maneuvers, a comprehensive turn detection and
processing mechanism has yet to be implemented and evaluated. Consequently, the current sys-
tem’s performance during complex movement patterns (abrupt directional changes, cessation of
movement, retrograde locomotion) remains incompletely assessed.

5. Vertical Positioning Constraints: Although research objectives encompassed investigation of baro-
metric sensing for altitude determination, this component has not been thoroughly developed or
incorporated into the experimental framework. The present implementation remains confined to
two-dimensional localization on a singular plane, leaving unaddressed the complexities associated
with multi-level indoor navigation.

5.5 Future Research Plans

Based on research findings and identified limitations, several ideas for future directions :

1. Three-Dimensional Indoor Positioning: A natural extension of this work involves developing com-
prehensive three-dimensional indoor localization systems that incorporate vertical movement de-
tection and floor identification capabilities. Future research should integrate barometric sensing to
detect elevation changes and develop algorithms capable of accurately recognizing floor transitions
during stair climbing, elevator utilization, or escalator traversal.

2. Advanced motion Pattern Recognition: Developing specialized detection frameworks for identify-
ing complex movement patterns represents a crucial future research trajectory. This encompasses
automated recognition of directional changes, stairway navigation, elevator transport, escalator
utilization, and stationary intervals. Machine learning methodologies, particularly deep learning
architectures trained on annotated Inertial Measurement Unit (IMU) datasets, could facilitate clas-
sification of these mobility categories, enabling tailored processing for individual scenarios and
enhancing localization precision during transitional movement phases.
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3. Enhanced Heading Estimation: Further refinement of frequency domain heading estimation tech-
niques is essential to minimize observed directional deviations. Subsequent research should inves-
tigate wavelet transformation as an alternative to Fourier analysis for superior characterization of
non-stationary signal properties during pedestrian locomotion. Additionally, dynamic parameter
optimization frameworks could automatically recalibrate filtration variables according to identified
movement conditions.

4. Expanded Fusion Architecture: Extending the sensor integration framework to incorporate sup-
plementary localization technologies such as Bluetooth Low Energy beacons, ultrasonic distance
measurement, or visual-inertial odometry would further enhance system resilience. Factor graph
optimization methodologies could efficiently consolidate these heterogeneous information sources
with appropriate uncertainty modeling constructs.
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APPENDIX I

Title of Appendix

If you have material that cannot be included within your document, you must include an appendix. You
may include one appendix or a number of appendices. If you have more than one appendix, you would
number each accordingly (i.e., Appendix I, Appendix II, etc.). Write your appendix headings in the same
manner as your chapter headings.
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