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ABSTRACT

Link prediction is a key area in network science, focusing on predicting unobserved or potential future
connections in a network based on the existing topology and known links. Link prediction has wide
applications in fields such as social networks, recommendation systems, bioinformatics, computer net-
works, and financial networks. However, it faces challenges such as the lack of a unified mathematical
framework and the complexity of modeling real-world network dynamics influenced by various factors.
Recent advancements in network geometry have revealed that real networks can be meaningfully mapped
(or embedded) into hyperbolic space. In these spaces, each node is represented by its radial (popularity)
and angular (similarity) coordinates, r and θ, and nodes that are closer in hyperbolic distance are more
likely to be connected. This uses the popularity-similarity model combined with the Transformer neural
network to predict the radial and angular coordinate trajectories of nodes. The experimental results indi-
cate that neural networks have stronger predictive capabilities in terms of details compared to traditional
methods.

Keywords: Link Prediction, Network geometry, Time series analysis, Transformer
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1 Introduction

Link prediction is an important research in network science. It aims to predict unobserved connections
(links) in a network based on its given topology and known connection information. This prediction
typically relies on the information about nodes and edges in the network, using existing network data
to infer future potential links or restore missing connections. The primary goal of link prediction is to
uncover hidden structural relationships in the network, particularly when certain links cannot be directly
observed. By inferring their existence, it provides effective predictions for network evolution. Link
prediction not only enhances the understanding of the network’s underlying structure but also supports
network optimization and decision-making.

Link prediction has significant applications in various practical domains. In social networks, it is widely
used to predict potential relationships between users, such as friend recommendations, community detec-
tion, or group division. In recommendation systems, it can suggest products, movies, or music based on
users’ historical behavior, thereby improving personalized recommendations. In bioinformatics, it helps
discover interactions between proteins or genes, advancing disease research and drug development. In
computer networks, link prediction aids in optimizing network topology, improving stability and commu-
nication efficiency to ensure efficient system operation. In financial networks, it reveals hidden market
risks, identifies potential financial relationships, or tracks money flows, thus providing decision-making
support.

Despite its broad applications, link prediction faces significant challenges. A major issue is the lack of a
unified mathematical framework to explain the dynamics of network behavior, particularly for modeling
and predicting the complex temporal evolution and structural changes in real-world networks. Specifi-
cally, there is no comprehensive theory to describe the dynamic mechanisms of node linking and unlink-
ing. The central issue lies in determining whether network evolution is predictable and, if so, to what
extent. The network evolution process is influenced by multiple factors, such as node attributes, external
environments, and interaction patterns, and the specific rules governing these changes remain unclear,
making it difficult to describe them using existing mathematical models.

To address this issue, it is essential to first determine whether predictable components exist within the net-
work and analyze their regularities in depth. Once these components are identified, mathematical models
can be used for effective description and prediction. Therefore, the research focus of link prediction lies
in identifying the predictable components of network evolution, exploring their underlying patterns, and
modeling and validating them over time. The core task is to develop models capable of capturing network
evolution patterns, which may require integrating methods from graph theory, probability theory, time
series analysis, and machine learning, thereby providing theoretical foundations and practical tools for
link prediction.

In summary, the challenges of link prediction not only stem from the complex topology and dynamic
evolution of networks but also from the difficulty in identifying and modeling the predictable components
within them. Future research in this field will focus on addressing these challenges by exploring how to
extract regular patterns from dynamic network evolution and employing effective mathematical tools and
computational methods for modeling, thus improving the accuracy and applicability of link prediction.
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The objective of this study is to embed network data with discrete topological structures into hyperbolic
space to uncover the underlying evolutionary patterns of the network. Each node’s spatial coordinates are
represented based on its similarity and popularity [1], thereby constructing a geometric representation of
the network. Hyperbolic geometry offers a novel perspective by transforming network problems into time
series prediction problems. In hyperbolic space, the evolutionary trajectory of nodes can be viewed as a
time series. If the evolution of node coordinates exhibits significant predictability, time series analysis
can reveal the mathematical rules governing these processes, providing a unified description of network
dynamics.

To further validate these predictable components, we applied time series modeling techniques combined
with neural network methods, to model the evolutionary trajectories of node popularity and similarity.
Neural networks can capture the long-term dependencies in node behavior, further uncovering the under-
lying patterns in network evolution and providing robust support for link prediction.

1.1 Main contributions

The main contributions of this research are:

(1) The trajectory analysis and predictionmethod using fractional Brownianmotion from the paper ”Fun-
damental dynamics of popularity-similarity trajectories in real networks,” [1] this study employs
neural network models to model and predict time series data. This method places greater emphasis
on predicting the fluctuations and detailed patterns of the time series. Building upon the original
trajectory analysis, it further investigates the predictability of these trajectories in long-term trends,
resulting in predictions that are more nuanced and sensitive to temporal variations.

(2) The paper evaluates the prediction results from multiple dimensions, primarily including prediction
accuracy, sequence similarity, trend matching, and detail capture. In addition to assessing predic-
tion accuracy, the study further examines the model’s ability to maintain sequence shape similarity,
capture long-term trend changes, and fit local details. These multi-faceted evaluations help compre-
hensively reflect the model’s performance in different aspects, providing a more accurate measure of
its actual application effectiveness, especially in the context of complex network data prediction.

1.2 Structure of the Thesis

The second chapter reviews the main research progress in the field of link prediction and analyzes the
advantages and disadvantages of various methods. The third chapter details the methodology, describing
the architecture of the popularity-similarity model and Transformer neural network, as well as their ap-
plication in predicting the radial and angular coordinates of nodes. The fourth chapter presents the results
and discussion, comparing the experimental results with traditional method and analyzing the advantages
of neural networks in detail prediction, as well as their limitations. Finally, the fifth chapter summarizes
the research findings, discusses the effectiveness of the proposed method, and discusses future research
directions.

Code is available at this repository:https://github.com/19857115450/Trajectory-Prediction
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2 Literature Review

Link prediction is a core problem in the field of complex network science, aiming to predict connections
that may exist but haven’t been observed yet, as well as those that might form in the future— all based on
the current structure and links within the network. Currently, the theories and methods for link prediction
primarily focus on approaches such as node similarity-based methods, maximum likelihood models, di-
mensionality reduction techniques, and machine learning algorithms.Specifically, the first three methods
are mainly designed for predicting missing links within existing networks, whereas the fourth method
enables the prediction of future links.

2.1 Node similarity

Node similarity-based link prediction algorithms play a critical role in the study of link prediction in
complex networks. Their core assumption is that the more similar two nodes are, the more likely they are
to form a connection. Based on this assumption, many similarity metrics relying on connection mecha-
nisms were proposed in the early stages of link prediction research. For instance, the classical Common
Neighbors (CN) metric [2] posits that if two unconnected nodes share more neighbors, they are more
likely to establish a connection. The formula for the CN metric is given as:

CN(x, y) = |N(x) ∩N(y)| (2.1)

where N(x) and N(y) represent the neighbor sets of nodes x and y, and the formula counts the number
of common neighbors between the two nodes.

Building upon this, the Adamic-Adar (AA) metric further adjusts for the impact of node degree on sim-
ilarity calculation, reducing the weight of high-degree nodes [3]. The AA metric is represented by the
formula:

AA(x, y) =
∑

z∈N(x)∩N(y)

1

log |N(z)|
(2.2)

where N(x) and N(y) are the neighbor sets of nodes x and y, and N(z) is the neighbor set of node z.
The logarithmic term in the formula reduces the impact of nodes with higher degrees on the similarity
calculation.

On this basis, Zhou Tao et al. introduced the Resource Allocation (RA) metric from the perspective of
resource allocation [4][5][6], treating nodes as mediums for resource transmission and assigning values
to nodes using the reciprocal of their degrees. The formula for the RA metric is:

RA(x, y) =
∑

z∈N(x)∩N(y)

1

d(z)
(2.3)

where d(z) is the degree of node z, representing the resource transmission capacity of node z. Both RA
and AA metrics consider the attenuation effect of neighboring nodes, but they differ in how they assign
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weights to common neighbor nodes. The AAmetric applies logarithmic attenuation to high-degree nodes,
whereas the RA metric applies linear attenuation to the degree, reducing the impact of high-degree nodes
on the similarity calculation.

Based on the CN metric, several derived similarity metrics have been introduced to account for the in-
fluence of node degrees, such as the Hub Depressed Index (HDI) [5], Hub Promoted Index (HPI) [6],
Salton metric [7], Leicht-Holme-Newman Index-I (LHN-I) [8], and Jaccard metric [9]. These methods
primarily rely on information between two nodes to construct similarity metrics, but they do not fully
utilize the structural information of the entire network.

As the complexity of networks increases, methods that rely solely on information between pairs of nodes
have revealed certain limitations. To address these limitations, some researchers have proposed similarity
metrics based on network paths, such as Leicht-Holme-Newman Index-II (LHN-II) [8], Local Path (LP)
metric [10], and Katz metric [11]. These methods consider the similarity between nodes based on differ-
ent paths between them, expanding the application scope of similarity metrics. However, similarity-based
methods still face certain limitations. They tend to strongly depend on the structural features of the net-
work, resulting in significant performance differences under different network structures. Furthermore,
these methods have less applicability when partial common neighbor information is missing. Therefore,
future research needs to explore how to incorporate more global network information to enhance the
robustness and applicability of similarity-based methods.

It is important to note that these methods are inherently dependent on the static snapshot of the current
network, which limits their applicability to future link prediction scenarios.

2.2 Structural likelihood probability

Link prediction algorithms based on structural likelihood probability are an important method in complex
network analysis. These algorithms rely on mathematical modeling to explain and predict potential con-
nections between nodes in the network. Typically, these algorithms involve three main steps. The first
step is to construct a likelihood probability model of the network structure, with the core of the model
being to derive the probability of connections forming between nodes based on the existing network
structure. Next, the algorithm maximizes the likelihood probability of the observed network structure,
which typically involves optimization based on predefined network organizational principles or connec-
tion mechanisms. For example, in some cases, the hierarchical structure, community structure, or other
geometric properties of the network may influence the connection probability between nodes.

In 2008, Clauset et al. proposed a link prediction method based on a hierarchical structure likelihood
model. This method reveals the generation mechanism of complex networks by analyzing the hierarchi-
cal relationships between nodes in the network. The model assumes that network connections are not
formed randomly, but are constrained by higher-level structures. Specifically, Clauset et al. established
a probability model for hierarchical structures to calculate the likelihood probability of connections be-
tween nodes and used this model for link prediction. This hierarchical structure likelihood model can
uncover the potential connectivity of the network by analyzing the relative position and adjacency rela-
tionships between nodes, especially in hierarchical network structures such as social networks or citation
networks.
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As research in this field has advanced, many scholars have proposed different link prediction methods
based on network structural likelihood probability. For instance, Pan et al. [12] proposed a method to
quantify the likelihood of a connection by analyzing the impact of link addition and removal on the over-
all likelihood probability of the network. They used a dynamically updated network model to calculate
the connection probability of each node pair and predicted future connections by comparing the likeli-
hood probabilities of different connection patterns. Another example is the likelihood model based on
random block modeling proposed by Gaucher et al. [13], which is mainly applied to link prediction in
sparse networks. The random block model fits the network structure by constructing a network with
multiple communities and uses this model to identify missing links in the network, especially in cases of
incomplete information or sparse networks.

Although link prediction methods based on network structural likelihood probability have rigorous math-
ematical models and can effectively establish the relationship between the macrostructure of the network
andmicro-level links, these methods also have some drawbacks. First, they often rely on specific network
organizational principles, such as hierarchical structures, community structures, or locality principles. As
a result, these methods may not be suitable for handling all types of network structures, particularly in
networks with complex or highly dynamic structures. Additionally, while network structural likelihood
probability provides an effective predictive framework, its computation and reasoning processes are typ-
ically complex [14]. The complexity and computational load increase significantly, especially when
dealing with multi-level or multi-dimensional networks.

To address these issues, researchers have started to explore how to maximize the likelihood probability
model of the network structure within a broader and more flexible network organizational framework. In
recent years, new methods have proposed more general network structure models that can adapt to more
complex and irregular network types, further expanding the application of these methods. In addition
to improving the universality of the models, another key research direction is how to combine the struc-
tural likelihood probability information with other efficient link prediction algorithms. By incorporating
emerging technologies such as machine learning and graph neural networks, future research is expected
to propose more efficient and accurate link prediction methods, which will not only handle complex
network structures but also improve prediction accuracy and computational efficiency.

Link prediction methods based on network structural likelihood probability have significant potential in
practical applications, especially in fields like social networks, communication networks, and recommen-
dation systems. Through further research and optimization of these methods, link prediction and network
analysis in the future will be more accurate and efficient. These advancements will help address various
challenges in real-world networks, such as incomplete node information, network topology changes, and
large-scale data processing issues.

Likewise, as these methods are fully dependent on the present network structure, they are primarily ap-
plicable to the identification of missing links, rather than the prediction of future connections that may
arise as the network evolves.
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2.3 Dimensionality reduction-based link prediction algorithms

Dimensionality reduction-based link prediction algorithms have become an important solution for link
prediction in complex networks due to their strong mathematical theoretical background and excellent
algorithmic interpretability. As the scale of data and the complexity of network structures increase, tra-
ditional similarity-based link prediction methods gradually reveal limitations, especially in dealing with
large-scale sparse networks. Dimensionality reduction methods map high-dimensional network data to
low-dimensional space, not only improving the efficiency of the algorithm but also revealing deeper struc-
tural features. The core advantage of these methods lies in their excellent mathematical interpretability
and strong theoretical foundation, which makes dimensionality reduction methods highly promising for
link prediction in large-scale complex networks. These methods are mainly divided into two categories:
matrix factorization and network embedding.

In matrix factorization methods, the sparse linear representation of the network’s adjacency matrix is a
common technique. By performing sparse linear representation, noise connections in the network can be
effectively removed, and the network topology can be reconstructed, making it easier to identify missing
or false connections. The Robust Principal Component Analysis (RPCA) method proposed by Candès
et al. [15] decomposes high-dimensional data matrices into low-rank matrices and error matrices, with
the goal of minimizing the norm of the error matrix to recover the principal components of the high-
dimensional data matrix. In link prediction, this method improves the interpretability of the data and the
accuracy of the prediction by removing noise. Liu et al[16]. proposed an improved low-rank matrix de-
composition method suitable for cases where matrix elements are distributed across different subspaces.
This method retains more information and better handles the sparsity of networks. Additionally, some
studies have introduced multi-hypergraph interactions to characterize higher-order manifold informa-
tion during the sparse linear representation of matrices [17], further improving the accuracy of matrix
representations. By using a linear combination of sparse matrices and the observed network adjacency
matrices, some studies have reconstructed the network topology and proposed optimization methods[18].
For example, Xian et al. [19] optimized sparse matrices and performed network topology reconstruction
through a linear combination with the observed adjacency matrix, enhancing the link prediction perfor-
mance.

Anothermatrix factorizationmethod is Non-negativeMatrix Factorization (NMF), which has beenwidely
applied in link prediction problems. The core idea of NMF is to map complex networks into a latent fea-
ture space, thereby revealing deeper hidden structural information within the network. NMF decomposes
the adjacency matrix of the network into the product of two non-negative matrices, effectively capturing
potential patterns in the network, especially in uncovering the hidden connections between nodes. Clas-
sic link prediction algorithms based on NMF include FSSDNMF and RGNMF-AN [20], as well as link
prediction algorithms in temporal networks [21]. These algorithms use matrix factorization techniques
to reveal latent patterns in the network structure and predict missing links. NMF has also been suc-
cessfully applied to link prediction in temporal networks [21], where it effectively captures the evolving
relationships between nodes over time.

For network embedding learning methods, inspired by machine learning on structured data, these ap-
proaches sample from complex networks to learn low-dimensional representation vectors of nodes, and

6



have achieved promising results in link prediction [22] [23] [24].Existing network embedding methods
can generally be categorized into Euclidean embedding methods and non-Euclidean embedding methods.

Euclidean embedding methods are exemplified by DeepWalk, a pioneering approach that introduced
ideas from natural language processing into network representation learning [25]. By sampling nodes in a
network to generate ”node sequences” (analogous to sentences), the algorithm embeds network nodes into
a low-dimensional vector space based on the word2vec approach from NLP [26], thereby transforming
link prediction into a problem of measuring similarity between node embeddings.Other notable network
embedding methods include Node2vec [27], LINE [28], and CNDE [29]. Link prediction algorithms
based on network embedding tend to have high time complexity, and their prediction accuracy varies
across different types of networks.While such methods have demonstrated strong performance across
various tasks, they often struggle to effectively represent networks with complex hierarchical structures
or power-law degree distributions, and typically require high-dimensional embeddings to capture such
patterns.

To better capture the latent geometric properties of these networks, non-Euclidean embedding methods,
particularly those based on hyperbolic space, have been proposed and extensively studied. Hyperbolic
spaces have negative curvature and expand exponentially, making them well suited for modeling the
hierarchical and scale-free nature commonly observed in complex networks. In these methods, nodes
are embedded into manifolds of hyperbolic space, and the geometric distance between nodes serves as a
proxy for connection probability, often modeled using functions such as the Fermi-Dirac distribution or
hyperbolic distance metrics. Representative approaches include Poincaré embedding [30], the Lorentz
embedding [31], and Mercator embedding [32] [33] [34]. These methods not only preserve network
structure in low-dimensional spaces but also demonstrate superior performance in link prediction tasks,
and are especially effective for networks with hierarchical, sparse, or temporally evolving structures.

Similar to the previous two categories of methods, dimensionality reduction-based link prediction ap-
proaches are still primarily designed for the completion of missing links within the existing network
structure. Although some methods have shown potential in capturing network evolution patterns, they
are not inherently capable of directly predicting future changes in connectivity.

2.4 Machine learning

With the explosive development of machine learning, link prediction in complex networks has also en-
tered a new wave of progress. Many outstanding research achievements in link prediction are closely re-
lated to machine learning. Among these, graph neural networks are one of the technologies most closely
connected to link prediction in complex networks. Since graph neural networks can effectively capture
structural information and organically integrate node attribute information, their application to link pre-
diction in complex networks is gaining increasing attention from researchers. Graph neural networks
allow direct training and updating of node representation vectors on network (graph) structures [35] [36]
[37] [38]. This significant breakthrough has made graph neural networks a hot research topic, distinct
from traditional neural networks. Furthermore, it has been proven that graph neural networks show strong
potential in link prediction tasks for complex networks [39] [40] [41].

Graph neural networks are a class of machine learning methods that operate directly on unstructured data
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with graph (complex network) structures [35] [36] [37]. Welling et al. [35] first proposed the graph
convolutional neural network based on spectral graph theory, which updates node features by integrating
information from neighboring nodes. The GraphSAGE algorithm [36] uses sampling and aggregation of
neighbor node features to train a learnable function for generating node representation vectors, enabling
an inductive learning paradigm for graph learning. Going a step further, Veličković et al. [37] proposed
the graph attention network (GAT), which automatically learns how to combine the features of neighbor-
ing nodes. Notably, GAT can belong to either the transductive or inductive learning paradigm. However,
ordinary graph neural networks lack the capability to capture high-order structural information inherent
in complex networks, and stacking too many layers can lead to over-smoothing [42].

To better capture high-order information in networks, researchers have proposed hypergraph neural net-
works [43]. Hypergraph neural networks are a class of machine learning methods that can directly learn
high-order structural information present in hypergraph structures. In the early stages of hypergraph
neural network development, some scholars were inspired by graph neural networks and proposed the
HyperGCN framework [37], which trains graph neural networks on hypergraph structures using semi-
supervised learning. In [44], Feng et al. first proposed the hypergraph convolutional neural network
(HGNN) framework based on hypergraph spectral theory, enabling the encoding and learning of high-
order data relationships in hypergraph structures. Further, Feng et al. [45] proposed a more general model
framework, HGNN+, for learning high-order structural information based on HGNN. Dong et al.[46] in-
troduced HNHN, a hypergraph convolutional neural network where both hypernodes and hyperedges
have nonlinear activation functions, allowing for flexible adjustment of the importance of hypernodes
and hyperedges according to dataset characteristics. Bai et al. [47] enhanced the representational learn-
ing ability of hypergraph convolution by adding an end-to-end attention mechanism on top of hypergraph
convolution. Since graph neural networks can effectively learn the spatial features of network (graph)
structures, they are widely used in link prediction tasks for complex networks [39] [40] [41]. Compared to
various types of graph neural networks, hypergraph neural networks can learn high-order structural infor-
mation within complex network structures, indicating that they are also more suitable for link prediction
tasks in complex networks [48].

In addition to the four common categories of link prediction algorithms mentioned above, some re-
searchers have creatively proposed many other excellent link prediction methods based on different theo-
retical foundations. For example, Zhang et al. [49] proposed the S-AIC and S-BIC link prediction models
based on model averaging methods; Singh et al. [50] introduced the FLP-ID link prediction algorithm
grounded in fuzzy set theory; and Lai et al. [51] proposed the BMPA algorithm based on modularized
belief propagation. These research efforts, rooted in diverse theoretical frameworks, have significantly
expanded the boundaries of link prediction in complex networks. They have also helped establish effec-
tive bridges between link prediction and various academic disciplines, demonstrating the interdisciplinary
strengths of complexity science.

Although the aforementioned GNN-based and hypergraph-based link prediction methods have achieved
notable progress in capturing structural patterns within complex networks, they are fundamentally con-
strained to static graph settings. These models typically operate on a fixed snapshot of the network and
assume that the topology remains unchanged during the learning and inference processes. However, real-
world networks are inherently dynamic, with nodes and edges continuously appearing, disappearing, or
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evolving over time.

To address the aforementioned limitations of static graph models, a growing body of research has fo-
cused on developing Dynamic Graph Neural Networks (DGNNs), which explicitly incorporate temporal
information into the graph learning process. These models are designed to capture both the evolving
topological structure and the temporal dependencies that arise in dynamic or time-evolving networks.
By modeling changes in node interactions over time, DGNNs enable the learning of time-aware node
representations that reflect both current and historical states of the network. As a result, these methods
are capable not only of identifying missing links within the current graph snapshot but also of forecasting
future links that may form as the network continues to evolve.

Representative DGNNmodels include Temporal Graph Networks (TGN) [52], which combine a memory
module with a message-passing architecture to continuously update node states in response to temporal
interaction events, enabling fine-grained temporal reasoning in event-driven networks. DyRep [53] in-
troduces a framework based on temporal point processes to jointly model both node dynamics and edge
dynamics over time. EvolveGCN [54], in contrast, takes a model-level perspective, using a recurrent
neural network to update the parameters of a GCN over time, thereby allowing the graph convolution
operation itself to adapt to evolving network structures.

Although dynamic graph neural networks (DGNNs) have demonstrated strong capabilities in modeling
evolving network structures and capturing temporal dependencies, most existing studies remain focused
on short-term link prediction tasks. These models are typically trained to predict the next few interactions
or structural changes in the near future, often within a limited number of time steps or a narrow temporal
window. This focus is largely driven by the availability of training data, the relative stability of short-term
patterns, and the ease of evaluation. However, inmany real-world applications—such as recommendation
systems, social interaction modeling, and scientific collaboration forecasting—the ability to predict long-
term network evolution is of critical importance.

Long-term future link prediction, which involves forecasting connections that may form over a signifi-
cantly extended time horizon, remains an underexplored and challenging area. As the prediction horizon
increases, structural uncertainty grows, new nodes and patterns may emerge, and existing temporal de-
pendencies may weaken or shift. Moreover, the lack of sufficient supervision signals and the tendency
of errors to accumulate over time further hinder the effectiveness of traditional DGNN-based models in
long-range scenarios. Therefore, despite the theoretical potential of DGNNs to address this task, there
is still a clear gap in the current research landscape when it comes to robust, generalizable, and scalable
solutions for long-term link prediction.

However, when studying link prediction solely from the perspective of algorithm design, it is difficult
to answer a key question: ”What is the upper limit of link prediction accuracy for a specific complex
network?” In fact, even for the same complex network, different link prediction algorithms often exhibit
varying levels of prediction accuracy. This indicates that the accuracy of a particular algorithm only
reflects its ability to interpret the generative mechanism of the specific network structure, but does not
fully capture the inherent predictability of the network’s links. Thus, quantifying and measuring the link
predictability of complex networks has become a critical research question [37]. For example, when
the prediction results of a link prediction algorithm are unsatisfactory on a certain complex network,
we cannot determine whether the algorithm is poorly chosen or if the network’s links themselves are
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inherently difficult to predict accurately. If we can determine the degree of ”predictability” of a network’s
links, we will be able to effectively address this issue. To some extent, the link predictability of a network
can be regarded as an important intrinsic property of the network itself.

At present, some scholars have focused on and studied the link predictability of complex networks . Yin
et al. [55] studied the impact of Shannon entropy on link predictability by combining local information
of networks with Shannon entropy. Lü et al. employed matrix perturbation theory to reconstruct the
link structure of networks and proposed the concept of ”network structure consistency,” arguing that
”link predictability” is an important inherent property of networks. Based on this, Chen et al. [56]
combined network feature statistics with network structure consistency and proposed a link predictability
metric based on degree clustering coefficients. Chen et al. [57] studied the link predictability of bipartite
networks using non-parametric structural enhancement and structural perturbation methods. Sun et al.
[58] discovered, through research on 12 real-world networks, that the normalized shortest compression
length can directly evaluate link predictability and shows a clear linear relationship with it. Tan et al. [59]
analyzed network topology from the perspective of eigen-spectra and proposed a mathematical metric for
measuring the link predictability of complex networks based on eigen-spectral theory.

These research achievements have significantly advanced the study of link predictability in complex
networks. Delving deeply into the link predictability of complex networks not only provides critical
guidance for the design of link prediction algorithms but also enhances our understanding of network
structure generation mechanisms. Currently, although some progress has been made in the research on
link predictability of complex networks, the field is still in its infancy. Significant challenges remain in
establishing a mathematical upper bound for link prediction accuracy or proposing universal and effective
link predictability metrics.
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3 Research Methodology

Modeling and prediction of network dynamics are not just aimed at understanding the current structure of
the network, but also at predicting potential changes that may occur at a future point in time, particularly
those changes that affect the network’s performance, efficiency, reliability, and stability. Through mod-
eling and prediction, we can more effectively manage networks, prevent potential problems, and make
targeted decisions.

Significant progress has been made in the mathematical modeling and methodologies of time series data
in various complex dynamical systems, particularly in areas such as gravitational systems, fluid dynam-
ics, molecular dynamics, and financial market data. The modeling of these systems has not only advanced
the theoretical development of the related disciplines but also provided strong support for practical appli-
cations. In recent years, the development of mathematical methods andmodels has achieved considerable
maturity, especially over the past few decades, where researchers have made substantial progress in de-
scribing the dynamic behavior of these systems using mathematical tools.

However, in-depth research into controlling network dynamics and the associated mathematics still faces
many challenges. These challenges primarily arise from the complex interconnections and topological
structures between nodes in a network. Specifically, the dynamic behavior of networks is closely related
to their structure, and the connectivity of network nodes often changes over time, typically exhibiting
non-linear characteristics. This differs from traditional classical dynamical system models, which in
many cases rely on more fixed structures and time series data patterns.

Therefore, the modeling of complex network dynamics and its related fields still require in-depth research
into the non-linearity and dynamic changes of network topologies. This not only demands more refined
modeling and computation from a mathematical modeling perspective but also requires adaptive predic-
tion and control during the actual evolution of the network, particularly when dealing with large-scale,
dynamically changing networks. Although some progress has been made, how to understand and effec-
tively influence network dynamics remains an open research question that warrants further exploration
in both academic and practical fields.

For link prediction in complex networks, most methods typically rely on directly analyzing the network’s
topological structure. However, traditional topological network analysis methods often face challenges
in practical applications. This is because complex networks are composed of discrete nodes and edges,
forming a topological structure, while many dynamic systems have standard time series data. The dis-
creteness of this topological structure makes link prediction more difficult to analyze.

In recent years, the development of hyperbolic geometry has provided a new perspective to address this
issue. Research has shown that many real-world complex networks have an inherent geometric structure
that is not easily captured by Euclidean space. To better understand and predict the dynamic behavior of
complex networks, scholars have proposed a method of embedding the network into hyperbolic space.
Hyperbolic space is a type of geometry with negative curvature, which can effectively represent the
hierarchical structures and relationships between nodes in a network, features that are often present in
many real-world networks.

Once a complex network is embedded into hyperbolic geometry space, its structural features are trans-
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formed into continuous geometric representations, making the network’s dynamic evolution similar to
traditional time series prediction tasks. This mapping converts the nodes and edges in the network into
points and paths in hyperbolic space, where the relative positions of nodes not only reflect their topolog-
ical relationships but also capture characteristics such as node popularity, similarity, and other potential
structural features.

In this hyperbolic geometry space, the evolution of the network no longer solely relies on traditional
discrete topological reasoning. Instead, it captures the network’s evolution patterns by observing the
changes in node trajectories. These trajectories represent the movement of nodes over time, reflecting
the dynamic changes in the connections between nodes. Therefore, the evolution trajectories of nodes
can be regarded as time series data, similar to time series prediction tasks encountered in other fields.

By embedding the network into hyperbolic geometry space, existing time series modeling methods can
be employed to predict the future evolution of the network. These methods are capable of capturing
the complex relationships between nodes and the evolution patterns of the topological structure, provid-
ing powerful tools for link prediction in dynamic networks. Specifically, time series modeling methods
predict future trajectories by learning from historical node trajectory data.

As shown in Figure 3.1, this is the overall flowchart . This flowchart illustrates the entire process from
data preparation to experimental analysis. First, the data preparation phase involves obtaining the original
edge connection data. Then, in the data processing phase, hyperbolic geometric embedding and similarity
popularity trajectory extraction are performed. In the time series construction and data analysis stages,
the intrinsic patterns and distribution characteristics of the data are analyzed. Next, an appropriate mod-
eling method is chosen for predictive modeling, followed by model training and parameter adjustment.
Finally, in the model evaluation stage, evaluation metrics are used to assess the model’s performance,
and the predicted results are compared with the actual results. The process concludes with the analysis
of experimental results to draw conclusions.

12



Figure 3.1: Overall flowchart.

3.1 Data Preparation and hyperbolic geometric embedding

3.1.1 Dataset

In this study, three real-world network datasets are used, all sourced from the work cited in Reference
[1].

(1) The flight connections between airports in the United States [60] are based on the national aviation
network data.The dataset originates from the publicly available flight information provided by the
U.S. Department of Transportation, covering flights from January 1988 to May 2015. Based on
daily flight connection data during this period, 10,000 network snapshots were created, with each

13



snapshot representing a single day’s flight network. In these snapshots, nodes represent airports, and
edges denote flight connections between them. To simplify the network structure, bidirectional flight
relationships were converted into undirected edges, and the largest connected subgraph was extracted
from each snapshot [1]. Figure 3.2 shows a schematic of the US Air transportation network.

Figure 3.2: Airport network connectivity diagram.

(2) The arXiv collaboration network [61] dataset originates from the arXiv platform and is used to an-
alyze author collaboration relationships in academic papers. Each paper is classified into different
fields, and authors establish collaborations by co-authoring papers. In this network, nodes represent
authors, and edges represent their collaboration relationships, i.e., two authors co-authored a paper.
The dataset shows the dynamic changes in author collaboration, with new collaborations forming
over time while some old collaborations may fade. By analyzing these collaboration data, key re-
searchers, research trends, and interdisciplinary collaboration patterns within academic fields can be
identified [1]. Figure 3.3 illustrates the schematic of the arXiv collaboration network.
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Figure 3.3: The arXiv collaboration network connectivity diagram.

(3) This dataset originates from the PGP (Pretty Good Privacy) Web of Trust (WoT) [62], a decentralized
trust model based on public-key encryption. In PGP, users verify each other’s public keys by digitally
signing them, thereby establishing trust relationships. The nodes in the graph represent PGP users
and their corresponding public keys, with each node containing the user’s identity information and
public key. The edges represent trust relationships between nodes. In this trust network, trust is prop-
agated through endorsements between nodes. When a user digitally signs another user’s public key, it
means they are validating that user’s identity, creating a trust chain within the network. This dataset,
collected by Jörgen Cederlöf and others, includes trust relationships and public key information be-
tween PGP users, reflecting the distribution characteristics of nodes and edges in the trust network.
It is widely used in research on trust propagation, network topology, and security issues in encrypted
communication [1]. Figure 3.4 illustrates the schematic of the PGP Web of Trust connectivity.
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Figure 3.4: PGP Web of Trust connectivity diagram.

3.1.2 Hyperbolic geometric embedding

Representative hyperbolic embedding methods include Poincaré embedding [30], Lorentz embedding
[31], and Mercator embedding [34].

The Poincaré model [30]is a commonly used representation in hyperbolic geometry, typically using a unit
disk (in two dimensions) or a unit sphere (in higher dimensions) to represent hyperbolic space. The core
of this model is the use of the Poincaré distance function to compute the distance between two points in
space, defined as:

dρ(x, y) = arcosh
(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
(3.1)

where x and y are points within the unit disk, and ∥x∥2 and ∥y∥2 represent the distances of points x and y
from the origin. The Poincaré model is highly intuitive and suitable for visualizing hierarchical structures,
such as taxonomies and social networks. However, it may encounter numerical instability issues in high-
dimensional spaces, and its optimization can be trapped in local minima, making it challenging to achieve
effective global optimization, especially in low dimensions.

The Lorentz model [31], on the other hand, is a representation of hyperbolic geometry well-suited for effi-
cient Riemannian optimization. It represents points in space through the upper half of a high-dimensional
hyperboloid, with coordinates x = (x0, x1, . . . , xn) satisfying x20 − ∥x∥2 = 1, where x refers to all co-
ordinates except x0. The Lorentz model’s distance function is given by:

dL(x, y) = arcosh(−⟨x, y⟩L) (3.2)

where ⟨x, y⟩L = −x0y0+
∑n

i=1 xiyi is the Lorentzian scalar product. Compared to the Poincaré model,
the Lorentz model offers stronger stability and optimization efficiency when handling high-dimensional
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data, especially in large-scale datasets. During Riemannian optimization, the Lorentz model avoids the
numerical instability issues that arise in the Poincaré model, making it more efficient in the optimiza-
tion process. While its geometric structure is less intuitive than that of the Poincaré model, the Lorentz
model excels in high-dimensional spaces and complex datasets, particularly in tasks that require efficient
learning of hierarchical structures.

In this study, we use trajectory data obtained through Mercator embedding, all of which is sourced from
Reference [1].

TheMercator methodwas employed tomap these network snapshots into the underlying hyperbolic space
[34]. At its core, theMercator method combines Laplace eigenmaps with maximum likelihood estimation
(MLE) to produce precise and efficient network embeddings. This method has been applied in previous
studies and uses MLE to optimize the positions of nodes in hyperbolic space.

In a nutshell, Mercator takes as input the network’s adjacency matrix A. The generic element of the
matrix is Aij = Aji = 1 if there is a link between nodes i and j, and Aij = Aji = 0 otherwise. It then
infers radial (popularity) and angular (similarity) coordinates, ri and θi, for all nodes i ≤ N . To this end,
it maximizes the likelihood function:

L =
∏

1≤i,j≤N

p(xij)
Aij [1− p(xij)]

1−Aij (3.3)

where the product goes over all node pairs i, j in the network, while p(xij) is the Fermi-Dirac connection
probability:

p(xij) =
1

1 + exij−R
(3.4)

where xij = ri + rj + 2 ln
(
∆θij
2

)
is approximately the hyperbolic distance between nodes i and j; R is

the radius of the hyperbolic disk where nodes reside; and T ∈ (0, 1) is the network temperature, which
is also inferred by Mercator and is related to the clustering strength of the network.

The connections and disconnections among nodes act respectively as attractive and repulsive forces.
Mercator feels these attractive/repulsive forces, placing connected (disconnected) nodes closer to (farther
from) each other in the hyperbolic space. We note that changes in the adjacency matrix result in the re-
evaluation of all node positions.

The Figure 3.5 shows the visualization result of applying Mercator embedding to any given topology
snapshot in the US airport network.
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Figure 3.5: Original network(left) and the network after Mercator embedding(right)[1].

This approach effectively maps the complex topological structure of the network into hyperbolic space,
capturing the latent relationships between nodes. The Mercator method handles network sparsity ef-
fectively, preserves structural integrity, and significantly reduces computational complexity. Moreover,
the node coordinates generated by the Mercator embedding can be used for subsequent link prediction
tasks, such as predicting potential future connections by analyzing the trajectories of node similarity and
popularity.

TheMercator method excels in processing large-scale sparse networks, producing embeddings that reflect
high-order relationships between network nodes with scalability and accuracy. Through this hyperbolic
embedding approach, the underlying structural features of the network are effectively captured, providing
a powerful tool for analyzing network dynamics and performing link prediction.

3.2 Time series analysis

By using the Mercator projection method to process topological networks, the complex link prediction
problem transformed into a time series prediction problem, significantly simplifying the prediction and
analysis. Taking node BIL(Billings Logan International Airport) from the USAir dataset as an example,
the trajectory maps extracted using the Mercator method are shown in Figure 3.6 to Figure 3.8, corre-
sponding to the popularity trajectory, similarity trajectory, and expected degree trajectory, respectively.
(The data used in this experiment comes from the trajectory data extracted after Mercator embedding, as
published in [1]):
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Figure 3.6: In USAir, the node BIL, Popularity

Figure 3.7: In USAir, the node BIL, Similarity
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Figure 3.8: In USAir, the node BIL, Expected degree

In [1], the authors conduct a detailed analysis of the statistical characteristics of these trajectories. Specif-
ically, they analyze the velocity increments, autocorrelation, variance, and the probability distribution of
velocity increments, demonstrating the long-term dependence, stability, volatility, and the presence of
abrupt changes or regularity in the time series. We extract the analysis of the similarity-popularity trajec-
tories of CLT airports in the US airport network from the paper and provide a brief description here.As
shown in Figure 3.9.

Figure 3.9: In USAir, the node CLT, popularity(a-left) and similarity(a-right) trajectories,Velocity In-
crement(b), Autocorrelation of the velocity process(c),Variance of the velocity process(d),Variance of
the velocity process(e)[1].

(1) Velocity Increment of the Trajectory: From the graph, it can be seen that the velocity increments ex-
hibit significant fluctuations throughout the entire time period, indicating that the time series experi-
ences considerable instantaneous changes. This also suggests that the series has high non-stationarity
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in the short term.

(2) Autocorrelation of the velocity process: The autocorrelation graph shows that the time series exhibits
anti-persistence (negative autocorrelation) in the short term.Negative autocorrelation means that the
velocity increments exhibit reverse correlation in the short term, meaning that the current change
(e.g., an increase) tends to be followed by a change in the opposite direction (e.g., a decrease). This
anti-persistence characteristic indicates that the original data often exhibits volatile patterns, such as
a rapid increase at one point being followed by a decrease.

(3) Variance of the velocity process: The data in the graph show that the variance decreases as the block
size increases, meaning that as the block size grows, the data’s volatility gradually diminishes. This
indicates that over larger time scales, the data’s volatility tends to stabilize, suggesting that the series
is more stable over longer periods.

(4) Velocity Increment Distribution: The probability distribution of the velocity increments in the graph
shows clear symmetry and is close to a Gaussian distribution. This means that the velocity changes in
the time series roughly follow a normal distribution. The black dashed line represents the Gaussian
fit, showing that the distribution of velocity increments closely resembles the Gaussian distribution.
This indicates that the velocity increments change relatively smoothly, with most of the variations
concentrated within a smaller range, and the probability of extreme increments (very large positive
or negative values) is low.

Through the analysis of these statistical characteristics, the time series appears non-stationary and highly
volatile in the short term, exhibiting anti-persistence. However, over longer time scales, it shows some
trend or persistence and exhibits a certain degree of stability.

Additionally, in the paper, the authors use the fractional Brownian motion model to obtain reasonable
prediction results. It can be observed that the fractional Brownian motion model accurately predicts
the long-term trend of the trajectory. Based on this, we attempt to use other methods to predict these
trajectories. We focus not only on the prediction performance of the long-term trend of the trajectories
but also on their predictive performance in terms of finer details.

3.3 Time series modeling

In time series prediction problems, the model can learn the temporal dependencies through historical
data and capture the patterns of changes in the relative positions of the nodes. This approach avoids the
complexity of directly handling graph structures, making the link prediction task more intuitive and easier
to implement.

The commonly used methods for time series prediction include traditional methods, machine learning
methods, and deep learning methods.

Traditional time series forecasting methods mainly rely on statistical models, with common ones includ-
ing ARIMA, seasonal ARIMA, and exponential smoothing [63]. These methods assume that time series
data exhibit certain statistical regularities, making them suitable for stationary data or data with seasonal
and trend variations. ARIMA (AutoRegressive Integrated Moving Average) combines autoregressive
(AR), differencing (I), and moving average (MA) components to capture dependencies in time series, es-
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pecially for stationary data. Seasonal ARIMA (SARIMA) is an extension of the ARIMAmodel designed
to handle time series with seasonal fluctuations, accounting for periodic changes in the data. Exponential
smoothing methods predict by assigning different weights to historical data, allowing them to capture
trends and seasonal variations [63]. The advantage of traditional methods lies in their simplicity and
ease of implementation, but they perform poorly when dealing with complex, nonlinear, or long-term
dependency data.

With the rapid development of machine learning, machine learning methods have been widely applied in
time series forecasting. Common machine learning methods include Random Forest [64], Support Vector
Machine (SVM) [65], and XGBoost [66], among others. These methods transform time series data into
supervised learning problems through feature engineering, using machine learning models for regression
or classification tasks. Random Forest [64]predicts future values of time series by training multiple deci-
sion trees and performing voting, and it can handle nonlinear relationships without strong assumptions.
SVM [65]predicts by constructing hyperplanes in high-dimensional space, making it suitable for small
datasets or complex features. XGBoost [66], an ensemble method based on gradient-boosted trees, can
handle complex nonlinear relationships and has performed excellently in many time series forecasting
tasks. Machine learning methods perform well in capturing nonlinear and complex relationships, but
they typically require extensive feature engineering and struggle to directly address long-term dependen-
cies in time series data.

Deep learning methods have made significant progress in time series forecasting, especially in handling
long sequences of data and complex nonlinear relationships. Common deep learning methods include
LSTM (Long Short-Term Memory networks) [67], GRU (Gated Recurrent Units) [68], and Transformer
[69]. LSTM [67]is an improved version of Recurrent Neural Networks (RNN) [70], which addresses the
issue of long-term dependencies through gating mechanisms, making it suitable for forecasting long time
series data. GRU [68], similar to LSTM [67], has a simplified structure and faster training speed, yet it can
achieve similar results as LSTM [67]in many tasks. Transformer [69], based on the self-attention mecha-
nism, captures dependencies between different time steps in a sequence, making it particularly suitable for
forecasting multivariate time series. It also allows for parallel processing of the entire sequence, making
it computationally efficient. Deep learning methods can automatically extract features from data, handle
complex nonlinear relationships and long-term dependencies, and are suitable for large-scale datasets,
but they typically require large amounts of data and computational resources.

3.4 Method of prediction

In this task, we focus more on the trend changes of popularity-similarity trajectories over long time peri-
ods. In recent years, with the development of deep learning, neural network methods have been widely
applied to time series analysis and forecasting tasks. The advantages of deep learning methods in long-
term forecasting mainly lie in their powerful nonlinear modeling ability, automatic feature extraction
capability, and ability to handle large-scale data. Compared to traditional statistical methods, deep learn-
ing models can effectively capture the complex nonlinear relationships in the data, which is particularly
important for long-term forecasting tasks, as the long-term trends and patterns in the data often exhibit
highly nonlinear characteristics. Furthermore, deep learning methods can automatically learn meaningful
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features from the data, without relying on manually designed features, which allows the model to adapt
flexibly to different types of data. For time series data, deep learning models are capable of handling
dependencies in long sequences, and they excel in capturing long-term trends and periodic fluctuations.
Architectures like Long Short-Term Memory networks (LSTM) [67] and Gated Recurrent Units (GRU)
[68]can maintain effective memory of historical information over long time spans and predict future
trends.

In addition to their modeling capabilities, deep learning models also exhibit strong robustness when han-
dling noisy and uncertain data. They can automatically extract underlying patterns from large amounts
of data, even in the presence of irregularities and disturbances, thus improving the accuracy of predic-
tions. Especially when facing complex systems (such as climate change, energy demand forecasting,
etc.), deep learning models can effectively integrate information from different sources, perform mul-
timodal learning, and combine external features (such as economic indicators, weather changes, etc.),
further enhancing the reliability of long-term predictions. Deep learning also has strong scalability, and
with the improvement of computational power, these models can handle increasingly large datasets and
continue to optimize through ongoing training, gradually improving the accuracy of long-term forecasts.

Therefore, deep learning methods show a clear advantage over traditional methods in long-term forecast-
ing, particularly in capturing complex patterns and handling large-scale datasets. In addition, the adaptive
learning ability of deep learning models allows them to automatically adjust as the data changes, further
improving prediction performance. Despite challenges such as error accumulation and model stability in
long-term forecasting, deep learning methods can still provide accurate predictions in many application
scenarios, especially when dealing with data influenced by nonlinearity, periodicity, and multiple factors,
demonstrating their unique advantages.

This study adopts the Transformer architecture as the core model for time series forecasting. Originally
proposed by Vaswani et al. in 2017 in the paper ”Attention is All You Need,” [69]the Transformer was
first introduced for natural language processing (NLP) tasks, particularly machine translation and text
generation. In contrast to traditional recurrent neural networks, the key innovation of the Transformer
lies in its full reliance on the self-attention mechanism, which enables the model to capture dependencies
between any two positions in a sequence, regardless of their distance.This is a standard Transformer
architecture, which adopts an encoder–decoder structure.
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Figure 3.10: Standard Transformer structure diagram
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By computing attentionweights in parallel, the Transformer avoids the sequential nature of RNNs, thereby
significantly improving computational efficiency, parameter control, and training speed. The architec-
ture incorporates multi-head attention to capture diverse relationships in different subspaces, and employs
positional encoding to introduce sequential information into the model, compensating for the lack of in-
herent position awareness. Additionally, the Transformer includes components such as feed-forward
neural networks, layer normalization, and residual connections, forming a modular and extensible deep
network framework.

In recent years, due to its powerful sequence modeling capability, the Transformer has been increasingly
introduced into the field of time series forecasting. Its core mechanism—the self-attention mechanism—
enables parallel modeling of all time steps within a sequence, effectively capturing both short-term and
long-term temporal dependencies. This feature overcomes the limitations faced by traditional recurrent
neural networks, such as RNNs [70]and LSTMs [67], which often suffer from vanishing gradients and
low training efficiency when modeling long-term dependencies.

One of the earliest studies to apply Transformer to time series forecasting is the work of Li et al. (2019),
who proposed the LogSparse Transformer to enhance temporal locality and reduce the memory overhead
inherent in the original architecture [71]. Their work demonstrated that Transformer could outperform
traditional recurrent models when properly adapted for temporal data.Following this, Lim et al. (2021)
introduced the Temporal Fusion Transformer (TFT), which combines self-attention with recurrent units
and gating mechanisms for interpretable multi-horizon forecasting [72]. The TFT was among the first
models to offer a hybrid approach tailored specifically for complex real-world forecasting scenarios, such
as electricity demand and retail sales.Lara-Benítez et al. (2021) conducted a systematic evaluation of the
standard Transformer architecture for univariate time series forecasting, comparing its performance with
LSTM and CNN models [73]. Their findings confirmed that, although Transformers are not always
superior in all settings, they show promising results in capturing long-term dependencies and nonlinear
patterns in temporal data.In the financial domain, Lezmi and Xu (2023) applied Transformer models to
asset management and investment forecasting, highlighting the architecture’s effectiveness in modeling
highly volatile and multivariate financial time series [74].

These earlyworks have collectively laid the foundation for a growing body of research exploring Transformer-
based models in time series tasks. They also underscore the importance of architectural adaptation—such
as attention sparsity, position encoding, and hybrid modeling—for the successful deployment of Trans-
former models in time series forecasting.

Figure 3.11 illustrates the steps of time series modeling and prediction in this experiment. The left side of
the figure shows the process of preparing the time series data, which has been described in detail earlier.
The figure also outlines the specific experimental procedure and explains how the Transformer model
processes the data.
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Figure 3.11: Experimental process.

This study is built upon the standard Transformer [69]architecture, with several targeted structural adap-
tations to better address the characteristics of time series forecasting tasks. Specifically, we adopt only
the encoder component of the original Transformer [69]and omit the decoder module. The decoder was
originally designed for autoregressive text generation tasks in natural language processing . However, in
time series forecasting—especially under the direct forecasting setting—the objective is to map historical
observations to future time steps, rather than generating outputs sequentially. Therefore, it is more appro-
priate to employ an encoder-only design, which directly extracts temporal representations from historical
inputs and performs forecasting through subsequent feedforward layers.

This modeling strategy—using only the encoder for time series modeling—has been widely adopted in
recent literature. For instance, Yong Liu et al. proposed the General Time Transformer (GTT) [75],
a foundational encoder-only model capable of zero-shot multivariate time series forecasting. Through
pretraining, GTT learns general temporal representations and achieves prediction accuracy close to or
even surpassing that of supervised models on multiple public datasets.

Building on this idea, the W-Transformer model, proposed by Lena Sasal et al. [76], is specifically de-
signed for non-stationary univariate time series. By combining the Maximal Overlap Discrete Wavelet
Transform (MODWT) with a Transformer encoder structure, the model performs decomposition of the
input series and applies local attention modules on the resulting sub-series. This allows for effective mod-
eling of non-stationarity and long-range nonlinear dependencies, demonstrating the structural flexibility
of the encoder in complex time series settings.

Additionally, Yong Liu et al. introduced the iTransformer model [77], which adopts an inverted encoder
structure that applies attention and feedforward operations along the transformed feature dimensions.
This design focuses on capturing global dependencies in multivariate time series and has achieved state-
of-the-art performance on multiple real-world datasets, further validating the effectiveness and adaptabil-
ity of encoder-only architectures in temporal modeling.
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In summary, these representative studies strongly support the feasibility and effectiveness of using encoder-
only structures for time series forecasting, offering a lightweight, efficient, and highly extensible approach
to Transformer-based temporal modeling.

3.4.1 Experimental setup

3.4.1.1 Data preprocessing

The original data contains a large amount of high-frequency noise, and the model needs to handle these
fluctuations during training, which increases the difficulty of learning. Noise and short-term fluctuations
can distract the model’s attention, making it harder for the model to learn the long-term trends. Firstly,
noise can obscure effective trends. In time series data, high-frequency noise causes drastic fluctuations
in the data, interfering with the long-term trends and patterns. When the model encounters such noise
during training, it may mistakenly treat the noise as an important signal, leading to difficulties in learning
and possibly preventing the accurate capture of the true trend of the data. Therefore, removing the noise
helps the model focus on the main trend of the data, improving the prediction accuracy.

After filtering, the high-frequency noise in the data is removed, leaving mainly the long-term trend infor-
mation. The learning goal for the model becomes clearer. This allows the model to focus more quickly
on learning the main features of the data without getting ”lost” in the noise. Learning becomes easier
and more efficient because the data becomes smoother and focuses on the long-term trend, enabling the
model to identify important patterns in the data more quickly.

Gaussian filtering is a commonly used denoising technique in time series analysis. Its main purpose is
to smooth the data and remove high-frequency noise in the time series, while preserving the long-term
trends and low-frequency components. This filtering method is based on a weighted averaging approach
using the Gaussian distribution, where each data point is averaged with its surrounding points to reduce
the impact of short-term fluctuations and highlight the long-term trend of the data. In Gaussian filtering,
each data point is weighted by a Gaussian distribution function, with points closer to the current data point
receiving higher weights and those farther away receiving lower weights, thus achieving a smoothing
effect.

The mathematical principle of Gaussian filtering can be represented by the Gaussian function, with the
following formula:

G(x) =
1√
2πσ2

e−
x2

2σ2 (3.5)

where G(x) is the Gaussian filter function, representing the weight at the position x. σ is the standard
deviation of the Gaussian distribution, which determines the degree of smoothing. Smaller values of σ
produce smaller smoothing effects, preserving more of the original data features, while larger values of
σ result in a more pronounced smoothing effect, reducing more fluctuations and noise. When applying
Gaussian smoothing, the first step is to select a window size w, which represents the neighborhood range
around each data point. Then, the weighted average is computed for each data point, considering the
weights of its neighboring points, to obtain the smoothed data.

By adjusting the standard deviation of the Gaussian distribution, the degree of smoothing can be flexibly
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controlled. Smaller values of σ preservemore details, while larger values of σ provide stronger smoothing
effects, adapting to different application scenarios. In addition, it is worth noting that Gaussian filtering
has a minimal impact on boundary effects. Compared to other filtering methods (such as mean filtering),
it uses a smooth weighted window to process the data, thereby avoiding the excessive smoothing caused
by boundary effects.

The following figures show the filtered data with different degrees of smoothness controlled by different
values of σ. Specifically, the larger the σ, the smoother the result. We present the filtering effects for σ
values of 1, 5, and 10, respectively. Figure 3.12 to Figure 3.15 display the filtering effects on the BIL
node in the USAir dataset. Figures Figure 3.16 to Figure 3.19 show the filtering effects on node 10 in
the arXiv dataset. Figure 3.20 to Figure 3.23 present the filtering effects on node 0x0A2F87E5 in the
PGP dataset.

Figure 3.12: USAir, the node BIL, Original trajectories.

Figure 3.13: USAir, the node BIL, The filtered trajectories when σ = 1.

Figure 3.14: USAir, the node BIL, The filtered trajectories when σ = 5.
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Figure 3.15: USAir, the node BIL, The filtered trajectories when σ = 10.

Figure 3.16: arXiv, the node 10, Original trajectories.

Figure 3.17: arXiv, the node 10, The filtered trajectories when σ = 1.

Figure 3.18: arXiv, the node 10, The filtered trajectories when σ = 5.

Figure 3.19: arXiv, the node 10, The filtered trajectories when σ = 10.
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Figure 3.20: PGP, the node 0x0A2F87E5, Original trajectories.

Figure 3.21: PGP, the node 0x0A2F87E5, The filtered trajectories when σ = 1.

Figure 3.22: PGP, the node 0x0A2F87E5, The filtered trajectories when σ = 5.

Figure 3.23: PGP, the node 0x0A2F87E5, The filtered trajectories when σ = 10.

In this research, we selected the data processed with σ = 5 as the input data.

3.4.1.2 Dataset partitioning

For the American airport data, use the first 10,000 data points, with the first 9,000 points from the tra-
jectory as the training set, and the last 1,000 points as the test set. For the arXiv data, use data from the
500th to the 6500th point, with the first 6,000 points for training and the next 500 points for testing. For
the PGP data, use the first 2,000 data points, with the first 1,600 points as the training set and the last 400
points as the test set.
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3.4.1.3 Data normalization

If the data is not normalized, features with larger value ranges may dominate the model’s learning process,
preventing the model from effectively capturing information from other features. When using gradient
descent optimization, unnormalized data can cause uneven gradient updates, where certain features have
an exaggerated influence, leading to weight updates that overly rely on some features while neglecting
others. Additionally, unnormalized data may slow down the model’s convergence speed, or in some
cases, cause it to fail to converge altogether, because the scale differences between features can make the
optimization process unstable. Therefore, normalization helps improve the efficiency and stability of the
model’s training process.

Many models based on gradient descent optimization (such as neural networks, support vector machines,
etc.) rely on gradient calculations during training. When the range of input data differs significantly, the
gradient changes will also vary, causing some features’ gradients to change too much or too little, which
can affect the model’s convergence speed. By normalizing the data, all values are scaled to a similar
range, helping the gradient descent algorithm to find the optimal solution more quickly, thus accelerating
the model’s convergence.

Normalization also helps avoid numerical overflow or underflow. If the input data has a very large range,
it can lead to numerical overflow (for example, gradients being too large) or underflow (for example,
very small numbers causing results to be zero) during the computation process. In such cases, the model’s
training becomes unstable and may not yield effective predictions. Normalization compresses the data
into an appropriate range, helping to avoid these numerical issues and ensuring the stability of the training
process.

In our experiment, the MinMaxScaler normalization method is used. MinMaxScaler is a commonly
used normalization technique that linearly scales the data to a specified minimum and maximum range.
This method is particularly suitable when the data distribution is known and does not contain significant
outliers. After normalization, the range of each dataset is between 0 and 1.

For each data point x, the normalized value x′ can be calculated using the following formula:

x′ =
x−min

max−min
(3.6)

3.4.1.4 Time window partitioning

In time series prediction, one important reason for windowing is that models cannot directly handle very
long sequences and are highly dependent on a large number of samples.

First, deep learning models face computational and memory bottlenecks when dealing with long time
series. Traditional time series data often contain a large number of time steps, and if the entire sequence
is used as a single input for training, the model needs to handle a huge amount of input data. This not
only results in a large computational cost but also makes the training process very slow. Furthermore,
deep learning models, especially recurrent neural networks (RNNs) or long short-term memory networks
(LSTMs), encounter issues such as vanishing or exploding gradients when processing long sequences.
The model struggles to capture the dependencies between time steps that are far apart in the sequence.
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Therefore, directly using long sequences as inputs is highly inefficient.

Second, deep learning models rely on a large number of samples to effectively learn the patterns in the
data. In time series data, multiple samples are typically needed for the model to learn stable patterns
and trends. However, if long time series are used without windowing, the model may not obtain enough
samples for training, which could lead to an unstable learning process or underfitting. For example, if
the first 8,000 data points are directly used as historical input to predict the subsequent 2,000 data points
as the target, then for each node, the entire trajectory can only be used to construct a single training
sample. However, deep learning methods fundamentally rely on extracting underlying patterns from
a large number of samples, learning effective representations and prediction functions in a data-driven
manner. When the number of samples is severely limited, the model struggles to learn features with
sufficient generalization capability, which significantly compromises its performance on complex time
series forecasting tasks. Therefore, naively dividing the full trajectory into a single input–output pair fails
to meet the basic data volume requirements necessary for training deep learning models.

By dividing long sequences into multiple smaller time windows, the model can extract independent train-
ing samples from these windows, allowing it to use more training data and thus improve the learning
effectiveness.

Additionally, much of the information in long sequences may not be relevant for prediction, and win-
dowing helps the model focus on useful local information. For example, the trend of changes in a certain
period of history may be helpful for current predictions, while the long-term trend or noise in the full
sequence may have little impact on the prediction. Windowing, by limiting the amount of data input at a
time, helps the model focus on the most relevant parts, thus improving its accuracy.

In summary, windowing effectively addresses the problem of models not being able to directly handle
long sequences and provides enough samples for the model to learn. By appropriately setting the win-
dow size, it can control the computational load while enhancing the model’s training effectiveness and
generalization ability.

In this experiment, the window length is set to be the same as the target sequence length. For example, in
the airport data, the window length is set to 1000, and the target sequence length is also set to 1000. Each
sample pair consists of 1000 time steps of historical data and 1000 time steps of prediction data. After
one sample is formed, the sliding window moves one step forward to create a new sample, continuing
until the entire training set is processed. For the arXiv dataset, the window length is set to 500, and for
the PGP dataset, the window length is set to 400.

3.4.1.5 Dataset construction

Based on the time window division, the input data X and prediction label data Y are partitioned. X

represents the historical data length determined by the time window, while Y is the length of the data to be
predicted. Each pair of (X,Y ) forms a training sample.Figure 3.24 illustrates the process of constructing
sample pairs in our study.
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Figure 3.24: Dataset construction process.

3.4.1.6 Model training

In time series forecasting, the primary objective of model training is to learn the relationship between
input data X and target data Y , enabling the model to make accurate predictions for future time steps.
Specifically, the model learns the following:

(1) Pattern recognition: The model identifies regularities, trends, seasonal patterns, and periodic changes
in the time series data. By observing historical data (X), the model attempts to capture the mapping
between input sequences and target prediction values (Y ).

(2) Temporal dependencies: Time series data exhibit temporal dependency, meaning that data from cur-
rent time steps influence future values. The model learns these temporal dependencies to accurately
forecast upcoming values.

(3) Feature transformation and representation: Through the hierarchical structure of the model (e.g.,
multilayer perceptrons or convolutional layers in neural networks), the input dataX are transformed
into more abstract and meaningful feature representations. These features help the model better un-
derstand the underlying relationships within the data.

3.4.1.7 Testing

Use the trained model to make predictions and collect the prediction results for both the training and
testing datasets.

3.4.1.8 Result evaluation

At the same time, evaluate the prediction results for both the training and testing sets using multiple
metrics to assess the model’s performance on different data and trajectories.

3.4.2 Experimental principles

In our study, we made adaptations to the standard Transformer to better suit our task. Specifically, we
only used the encoder part and the attention mechanism from the original architecture — we did not
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include the decoder, which is mainly used for text generation. In addition, we added fully connected
layers, pooling layers, and dropout layers before and after the encoder.

These components help handle non-text inputs, support dimensional transformations within the network,
enhance the model’s expressiveness, and reduce the risk of overfitting.The specific architecture of the
Transformer model used in this research is as follows:

3.4.2.1 Input Layer

The input layer is the first layer of a neural network. Its main function is to receive external input data
and pass it to the subsequent network layers. The input data is received through the Input layer.The input
layer receives a univariate time series with a shape of (maxlen, 1), where maxlen denotes the length of
the sequence and is determined by the size of the historical data (i.e., X) used in each sample. In the
US Air dataset, maxlen is set to 1000; in the arXiv dataset, it is 500; and in the PGP dataset, it is 400.
The dimensionality of 1 reflects the absence of external features in these time series, meaning that only
a single variable is observed over time.

The standard Transformer is typically designed to process discrete word data, where the input is usually
represented as a one-dimensional sequence of length maxlen, denoting a token sequence of that length. In
contrast, time series data generally consist of continuous real-valued observations that reflect the variation
of a variable over time. Even for univariate time series, the original input shape is commonly (maxlen,
1), where the dimension 1 represents the feature dimension. This additional dimension captures the
feature space structure of the time series, indicating that each time step may carry one or more real-
valued features. In multivariate settings, the input shape is further extended to (maxlen, num_features),
where each time step contains multiple feature values.

Therefore, compared to token sequences, time series inputs have an explicit feature dimension in their
input shape. This structural difference necessitates the use of dense layers to embed the real-valued inputs
into higher-dimensional representations, rather than relying on an embedding lookup table, as is common
in NLP applications.

3.4.2.2 Fully Connected Layer

The input data passes through a fully connected layer. In this study, to meet the input requirements of
the Transformer architecture, we introduce a fully connected layer (Dense(64)) after the original time
series input, mapping each time step’s real-valued feature into a 64-dimensional vector to construct an
embedded sequence. This operation is referred to as ”time series embedding” and serves a similar role
to the embedding lookup applied to discrete token IDs in standard Transformer models.

This step is essential because the core module of the Transformer—multi-head self-attention—requires
the input to be a sequence of vectors (typically with shape (batch_size, seq_len, d_model)) in order to
compute dependencies and similarities across time steps. Directly feeding the raw time series (e.g., with
shape (batch_size, seq_len, 1)) into the model may be syntactically valid, but the extremely low informa-
tion dimensionality limits the model’s ability to extract meaningful features and capture complex patterns.

In contrast, projecting each scalar input into a higher-dimensional embedding space via a Dense layer
significantly enhances the model’s expressive capacity. It enables the attention mechanism to operate
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on richer feature representations and better capture temporal dynamics and nonlinear structures, thereby
providing a stronger foundation for subsequent representation learning and prediction.

3.4.2.3 Transformer Layer

This component consists solely of the encoder part from the standard Transformer architecture. For this
encoder, we did not modify its structure but only invoked it and adjusted its parameters. The Transformer
layer serves as the core of the entire model, responsible for extracting features from the time series.

This part is constructed by stacking multiple TransformerBlocks to form the main functional module of
the model. Each TransformerBlock contains a multi-head self-attention mechanism and a feed-forward
neural network.In this model, the Transformer layer serves as the core component of the entire network.
Its primary function is to model the dependencies and dynamic variations across different time steps in the
time series. Built upon the self-attention mechanism, the Transformer layer is capable of directly captur-
ing interactions between any two positions in the input sequence. This enables the model to effectively
learn long-term dependencies, while avoiding the vanishing gradient problem commonly encountered
in traditional recurrent architectures when modeling long sequences. Such a mechanism is particularly
crucial for time series data, where dependencies often span multiple time steps and exhibit nonlinear or
periodic behaviors.

A Transformer layer typically consists of two sub-modules: Multi-Head Self-Attention and a Feed-
Forward Network (FFN). The multi-head attention mechanism allows the model to extract multi-scale
features from different subspaces, while the feed-forward network further enhances the representation at
each time step. These two components are connected via residual connections and layer normalization,
which help improve model stability and training efficiency.

In terms of data flow, the input to the Transformer layer in this study is generally a tensor of shape
(batch_size, maxlen, 64), where 64 represents the embedding dimension at each time step. After being
processed through the multi-head attention and feed-forward sublayers, the output tensor retains the same
shape (batch_size, maxlen, 64). This architectural design allows the model to process all time steps in
parallel, improving computational efficiency while preserving contextual representations for each time
step.

(1) Attention Mechanism: The primary function of the attention mechanism is to compute similarity-
based weights between each time step and all other time steps within the historical sequence (X), and
to use these weights to aggregate information accordingly. The output of this weighted aggregation is
not the final prediction, but rather a new contextual representation vector that encodes the relevance
between the current time step and the entire historical sequence. This vector is typically passed
into subsequent feed-forward neural network layers. Structurally, the attention mechanism performs
a reweighting and enhancement of each time step’s representation without altering the original se-
quence length or feature dimension.
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Figure 3.25: Illustration of the Attention Mechanism [78]

The figure 3.25 [78] illustrates the computation process of the attention mechanism. The current
time step (represented by the red node on the right) serves as the query position (Query, Q), and its
representation is compared against every time step in the historical sequence (orange nodes). Each of
these time steps generates a key vector (Key, K) and a value vector (Value, V). The model computes
the similarity between the query and each key—typically using a dot product followed by scaling
and a softmax function—to produce a set of normalized attention weights. These weights indicate
the degree to which the current time step attends to information from each historical time point. Fi-
nally, the model aggregates all the value vectors from the historical time steps using these attention
weights, yielding an output representation for the current time step. This representation integrates
dynamic information from multiple time steps, enabling the model to capture long-range dependen-
cies, recurring patterns, or abrupt changes in the time series and to form a context-aware encoding
tailored to the forecasting task.

The following is a detailed computational procedure for the attentionmechanism. In the self-attention
mechanism, the calculation is as follows:

Attn(Q,K, V ) = softmax
(
QKT

√
d

)
V (3.7)

where QKT represents the dot product of the query and key, which measures the compatibility be-
tween the query and all keys. 1√

d
is a scaling factor used to prevent the dot products from becoming

too large. The softmax function is used to normalize these values, ensuring that the attention scores
sum to 1 and obtain the weights for each value.Then, these weights are applied to the corresponding
values (V ), and the final output is the weighted sum.

This study extends the basic attention mechanism to a multi-head attention mechanism. In multi-
head attention, the representation of each time step is processed in parallel by multiple attention
heads, generating corresponding contextual representations. Specifically, each time step in the input
sequence (represented as a 64-dimensional vector) is projected through multiple linear transforma-
tions to produce different sets of queries, keys, and values for each head. Each head independently
performs a scaled dot-product attention calculation and outputs its own attention result. These out-
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puts are then concatenated along the feature dimension and passed through a final linear layer to
map the result back to the original dimension, forming the overall output of the multi-head attention
module. The entire computation is performed independently and in parallel across all heads, and the
outputs are unified at the final stage. Compared to single-head attention, the multi-head structure
allows the model to capture richer and more diverse information from the sequence. Figure 3.26
[79]illustrates the complete structure of multi-head attention and the internal computation process of
scaled dot-product attention.

Figure 3.26: Architecture of Multi-Head Attention and Scaled Dot-Product Attention[79]

Assuming there are h heads, the input queries Q, keys K, and values V are mapped into the query,
key, and value subspaces for each head, respectively:

headp = Attn(QWQ
p ,KWK

p , V W V
p ) (3.8)

where QWQ
p ,KWK

p , V W V
p are the parameter matrices for each head, used to generate different

subspace representations.In most existing studies, the number of attention heads commonly used in
multi-head attention is 4 or 8. In this study, we adopt a 4-head attention mechanism. It is worth
noting that the dimensionality of the time series embedding (set to 64 in this study) must be divisible
by the number of attention heads.

Each head computes a unique attention value, and finally, the results of all heads are concatenated.

(2) Residual Connection:In In the standard Transformer encoder, residual connections appear twice:
once after the multi-head attention module and once after the feed-forward network. Their purpose
is to stabilize training, alleviate gradient vanishing, and enhance feature representation capability. In
this study, we retain this structure without any modification.

Specifically, assuming the input is x, the output after passing through a sub-layer is given by:

Output = LayerNorm(x+ SubLayer(x)) (3.9)

where x is the input data. SubLayer(x) is the result of the computation performed by the sub-layer.
x + SubLayer(x) is the residual connection, adding the input to the output. LayerNorm(·) is a nor-
malization operation used to stabilize the output.
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(3) Feed-forward neural network:After the attention mechanism fuses information, the feed-forward net-
work performs feature enhancement to extract deeper and more abstract representations. In the stan-
dard Transformer encoder, the FFN is placed after the residual connection. It consists of two fully
connected layers: the first projects each position’s representation into a higher-dimensional space,
and the second maps it back to the original dimension. This structure allows the FFN to introduce
non-linear transformations, enhancing the model’s expressive power. Additionally, since it processes
each position independently, it effectively captures complex patterns in the sequence.

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.10)

wherex is the input representation. W1,W2 are the weight matrices for the two linear transformations.
b1, b2 are the bias terms. The activation function is generally ReLU (i.e., max(0, x)).

3.4.2.4 Global Average Pooling

In natural language processing tasks, the input and output sequences typically represent two semantically
different sequences, and the output needs to be generated token by token—for example, in tasks such as
machine translation, text generation, and question answering, which are common applications of large
language models. In these tasks, both the input and the output are natural language sequences, and the
decoder serves as a ”generator” that is primarily responsible for producing the output sequence. However,
in time series forecasting tasks, the input and output sequences have the same semantics, with the only
difference being a shift in time. Therefore, there is no need to generate discrete tokens, no need for step-
by-step autoregressive prediction, and no need for target embeddings—hence, the decoder is not required.
In this study, we replace the decoder structure with pooling and fully connected layers to produce the final
output.

The output of the Transformer layer is followed by a pooling layer, whose primary purpose is to reduce
the dimensionality of the high-dimensional tensor produced by the encoder. Specifically, the input to the
pooling layer has the shape (batch_size, maxlen, embed_dim), where maxlen corresponds to the length of
the historical input sequence and embed_dim is set to 64. After compression, the resulting shape becomes
(batch_size, embed_dim). In this process, the pooling layer compresses the sequence length dimension,
aggregating information from all historical time steps into a single global context vector, while preserving
the feature dimension. This approach is based on the fact that the feature dimension captures the core ab-
stract characteristics of the sequence, with each dimension encoding specific patterns such as periodicity,
trends, or fluctuations. Compressing this dimension would result in a complete loss of expressive power.
The pooling layer thus enables global representation extraction, reduces the computational burden of the
model, and provides more stable output.

3.4.2.5 Fully Connected Layer

This fully connected layer further increases the feature dimension by mapping the global context vector
to a higher-dimensional hidden space, thereby providing richer feature support for the subsequent output
layer. This design helps the model fully integrate and reorganize historical information before generating
prediction values. Specifically, the feature dimension is expanded from 64 to 1024 through this dense
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layer.

3.4.2.6 Output Layer

The output layer is the final layer of the model and directly produces the final prediction results. It maps a
1024-dimensional feature vector into a prediction sequence of length equal to that of the target sequence
Y . Specifically, the output layer takes the tensor of shape (batch_size, 1024) generated by the previous
fully connected layer and directly projects it into the task output of shape (batch_size, maxlen), where
maxlen represents the length of the target sequence Y . In our design, maxlen is set to be the same as the
length of the historical input sequenceX .

3.4.3 Hyperparameter settings

3.4.3.1 Loss Function

The loss function serves precisely to ”guide and correct themodel to generate predictions that better match
the actual results.” In time series forecasting, the loss function compares the model’s predicted value at
each time step with the corresponding ground truth value and computes the error between them. These
individual errors are then propagated backward through the network via the backpropagation mechanism,
guiding the update of the model’s parameters. In this way, the model can adjust its internal weights based
on the prediction deviation at each time step. Through multiple training iterations, the model gradually
improves, and its predictions increasingly align with the true sequence at both the global and local levels.

This study adopts the Mean Squared Error (MSE) loss, which is the most commonly used loss function
in time series forecasting tasks.The calculation formula for MSE is:

MSE =
1

n

n∑
i=1

(
ytrue,i − ypred,i

)2 (3.11)

Where ytrue,i is the true value, ypred,i is the predicted value, and n is the number of samples. The smaller
the MSE value, the smaller the difference between the model’s predicted results and the true values.

3.4.3.2 Activation Function

The activation function is responsible for the output of neurons and determines the activation state (or
output) of each layer in the neural network. Activation functions are typically non-linear (such as ReLU,
Sigmoid, Tanh, etc.), enabling neural networks to learn and express complex non-linear relationships.
The activation function influences the output of each layer, thereby affecting the gradient calculations of
subsequent layers. During backpropagation, the gradient of the activation function needs to be computed
so that the parameters can be updated during gradient descent.

In this study, the activation function used is ReLU, which is the default activation function in the stan-
dard Transformer architecture [69]. ReLU is applied in both the Transformer layers and other layers of
the model. As a nonlinear activation function, ReLU sets negative values to zero while keeping positive
values unchanged. This effectively enhances the representational power of the neural network and of-
fers high computational efficiency. Its main advantage lies in avoiding the vanishing gradient problem,
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thereby enabling more effective training of deep networks.The formula for ReLU is:

ReLU(x) = max(0, x) (3.12)

3.4.3.3 Optimizer

The optimizer adjusts the model’s parameters based on the error from the loss function through gradient
descent (or other optimization algorithms). It uses the gradient information calculated by backpropagation
to update the model’s weights and biases according to a specific rule, with the goal of minimizing the loss
function. After the gradients for each layer are computed via backpropagation, the optimizer uses these
gradients to update the parameters. Optimizers like SGD, Adam, RMSprop, etc., use different strategies
to update parameters, such as adjusting the step size through the learning rate.

Similarly, this study adopts Adam (Adaptive Moment Estimation), the default optimizer used in the stan-
dard Transformer architecture [69]. Adam is a gradient-based optimization algorithm that combines the
concepts of momentum and adaptive learning rates, allowing it to automatically adjust the learning rate
for each parameter, thereby improving training efficiency. The Adam optimizer updates parameters using
the following formula:

θt = θt−1 −
η

√
vt + ϵ

mt (3.13)

Where θt represents the parameters,mt and vt are the first and second moment estimates of the gradients,
η is the learning rate, and ϵ is a small value added to avoid division by zero. Adam can effectively handle
sparse gradients and large datasets.

3.4.3.4 Regularization

Regularization techniques aim to reduce overfitting in models, helping them generalize better on complex
datasets. Common regularization methods include L1, L2 regularization, and Dropout. Regularization
adds a penalty term to the loss function, limiting the excessive changes in model parameters. This penalty
term affects the calculation of the loss function, so during backpropagation, the impact of the penalty term
is also considered, which restricts the parameter updates and prevents overfitting.

The standard Transformer [69]applies Dropout as its default regularization method, with a typical rate
of 0.1, and integrates it into multiple parts of the architecture including attention layers, feed-forward
networks, and residual connections, to mitigate overfitting and improve generalization.These standard
practices were used in this study.

3.4.3.5 Learning rate

The learning rate controls the step size of each parameter update. Although the standard Transformer
introduces a custom learning rate scheduling formula, in most engineering practices or model variants,
fixed learning rates or simplified scheduling strategies are more commonly used. A fixed learning rate
of 1e-3 is the most widely adopted setting, especially in time series forecasting tasks. In this study, we
adopt a learning rate of 1e-3.
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3.4.3.6 Batch size

Set to 64, meaning that 64 samples are used in each training iteration.In this study, taking the US Air
dataset as an example, the training set has a total length of 9000. Each sample consists of a historical
sequence (input) of length 1000 and a target sequence (output) of length 1000. We adopt a sliding window
strategy to construct training samples, with the windowmoving forward by one time step at each iteration.
Since each sample occupies a total of 2000 time steps, the number of valid starting positions is calculated
as 9000− 1000− 1000+ 1 = 7001. As a result, a total of 7001 valid samples can be generated from the
training set for model training.

3.4.3.7 Epochs

The total number of training epochs is set to 50, meaning the entire training set will be used for 50 training
iterations.

3.4.3.8 Hyperparameters in the Transformer block

(1) Embedding dimension: In most Transformer-based time series forecasting tasks, the embedding di-
mension is commonly set to 64 or 128, it is set to 64.

(2) Number of heads: In most Transformer-based time series forecasting tasks, the number of attention
heads is typically set to 4 or 8,it is set to 4.

(3) Maximum sequence length : Set to 1000 for USAir, 500 for arXiv data, and 400 for PGP.

3.4.4 Prediction result evaluation

The most intuitive way to evaluate prediction results is to visualize them and directly compare the differ-
ences between the predicted trajectory and the real trajectory. In addition, we also use several common
prediction metrics in time series forecasting to provide a more comprehensive and detailed evaluation.
We evaluated the prediction performance from multiple aspects, including the average error accuracy be-
tween the predicted and real values, trendmatching, and detail matching. The following are the evaluation
metrics used in this research.

3.4.4.1 R²

R² (Coefficient of Determination) is a commonmetric to assess howwell the predicted values approximate
the actual data. It indicates the proportion of the variance in the true values that is predictable from the
model. R² ranges from negative infinity to 1, where values closer to 1 indicate better performance, and
negative values suggest the model performs worse than a simple mean predictor.

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(3.14)

Where yi represents the i-th ground truth value, and ŷi represents the i-th predicted value. ȳ denotes the
mean of the ground truth values. The term

∑
(yi − ŷi)

2 is the Sum of Squared Errors , which measures
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the total prediction error between the model’s outputs and the actual values. The term
∑

(yi − ȳ)2 is the
Total Sum of Squares , which represents the variance of the ground truth values relative to their mean.

3.4.4.2 Mean Absolute Relative Error (MARE)

MARE quantifies the average magnitude of relative errors between predicted and actual values. It ex-
presses prediction errors as a proportion of the true values, making it suitable for evaluating accuracy
across varying scales. Lower MARE values indicate better predictive performance.

MARE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.15)

Where yi represents the i-th ground truth value, and ŷi represents the i-th predicted value. n is the number
of samples . The term

∣∣∣yi−ŷi
yi

∣∣∣ represents the relative error of the i-th prediction with respect to the ground
truth value.

3.4.4.3 Mean Bias Deviation (MBD)

MBD indicates the overall systematic bias of the model. It is the average of all prediction errors. A
positive MBD implies the model tends to overestimate, while a negative MBD suggests underestimation.
Smaller absolute values of MBD represent a more unbiased and reliable model.

MBD =
1

n

n∑
i=1

(ŷi − yi) (3.16)

Where ŷi represents the i-th predicted value, yi is the i-th ground truth value, and n denotes the number
of samples. The term ŷi − yi indicates the prediction error for the i-th sample, where a positive value
means overestimation and a negative value means underestimation.

3.4.4.4 Correlation

Correlation measures the linear relationship between the predicted sequence and the true sequence. It is
typically quantified using the Pearson correlation coefficient, which ranges from -1 to 1. A value close to
1 indicates strong alignment in trends between the two sequences, a value close to -1 indicates completely
opposite trends, and a value near 0 implies no linear correlation.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(3.17)

Where xi and yi represent the values of variables x and y for the i-th sample, respectively. x̄ and ȳ are the
mean values of variables x and y. The numerator is the covariance, which reflects the degree to which
the two variables change together. The denominator is the product of the standard deviations of the two
variables, serving as a normalization factor.
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3.4.4.5 Dynamic Time Warping (DTW)

DTW is a distance metric that evaluates the similarity between two time series by aligning them in time.
It allows stretching or compressing of the time axis to find the best match, making it especially useful
when the sequences differ in length or exhibit temporal misalignment. A smaller DTW value indicates
higher similarity.

D(i, j) = d(xi, yj) +min


D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

(3.18)

where D(i, j) represents the minimum accumulated distance to the point (i, j); d(xi, yj) is the local
distance between two points, commonly calculated using Euclidean distance:

d(xi, yj) = (xi − yj)
2 or |xi − yj | (3.19)

Boundary condition: D(1, 1) = d(x1, y1), and the rest are initialized to +∞. The final DTW distance is
D(n,m)D(n,m), which represents the minimum total matching cost between the two entire sequences.

3.4.4.6 Sequence Consistency

Sequence consistency evaluates whether the predicted sequence captures the local variation patterns of
the true sequence. It is computed by analyzing the correlation of the differences between adjacent time
steps (i.e., first-order differences), thus reflecting how well the model captures the dynamic behaviors of
the data.

Sequence Consistency =

∑n−1
i=1 (∆yi −∆ȳ) (∆ŷi −∆ŷ)√∑n−1

i=1 (∆yi −∆ȳ)2 ·
√∑n−1

i=1 (∆ŷi −∆ŷ)2
(3.20)

where ∆yi = yi+1 − yi and ∆ŷi = ŷi+1 − ŷi represent the i-th changes in the ground truth and pre-
dicted sequences, respectively. ∆y and ∆ŷ denote the mean values of these differenced sequences. The
numerator captures the covariance between the two sequences, while the denominator is the product of
their standard deviations.

Among them,MARE andMBD evaluate the prediction performance based on the precision difference be-
tween the predicted values and the real values. Correlation, on the other hand, evaluates the performance
from the perspective of trend consistency. However, it is more sensitive to numerical discrepancies, and
deviations in the details will directly lower its value. In contrast, Correlation has a higher tolerance for
both numerical and detail discrepancies, focusing more on the matching of trends over a long time scale.
DTW measures the overall similarity, allowing for time misalignment in details, and its primary focus
is on the shape similarity. Sequence Consistency combines both trend and detail matching, making it a
comprehensive metric for evaluating time series prediction.
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4 Experimental Results

Figure 4.1: USAir, the node BIL, The predicted(red) and real(blue) trajectories of popularity.(The
green dashed line separates the training process (before) from the testing process (after), with subse-
quent results being the same.).
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Figure 4.2: USAir, the node BIL, The predicted(red) and real(blue) trajectories of expected degree.

Figure 4.3: USAir, the node BIL, The predicted(red) and real(blue) trajectories of similarity.
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Table 4.1: USAir, the node BIL

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.9213 0.0247 0.0761 0.962 3.3e-07 0.0381
test -1.497 0.087 0.525 -0.421 1.8e-07 -0.018

kappa
train 0.881 0.129 -0.072 0.944 2.1e-09 0.091
test -56.39 1.144 0.927 -0.002 8.5e-07 0.011

similarity
train -1.180 0.0998 0.0147 0.251 8.7e-09 0.0108
test -0.057 0.09179 0.043 0.180 1.0e-07 0.0208

The prediction results for node BIL in the USAir network indicate that the time series is highly unpre-
dictable. In terms of point-wise similarity, both popularity and kappa achieve strong performance on the
training set, with R2 values of 0.9213 and 0.881, respectively, indicating excellent model fitting. How-
ever, their performance drops drastically on the test set, with R2 values falling to −1.497 and −56.39,
respectively, reflecting a complete failure in generalization. Although similarity shows low R2 in both
sets, it remains relatively stable (−1.180 train, −0.057 test).

Regarding trend similarity, popularity and kappa exhibit high correlation in the training set (0.962 and
0.944), but these values collapse on the test set (−0.421 and −0.002), suggesting the model fails to
capture or generalize trend direction. Similarity shows slightly higher test correlation (0.180), though
still weak.

For shape similarity, while DTW values remain small across all features, indicating global shape align-
ment, the Sequence Consistency scores are generally low on the test set. In particular, popularity shows
a negative value (−0.018), indicating disordered local trend directions.

Overall, while the model performs well during training, its test performance collapses across all metrics.
Node BIL’s time series exhibits strong non-stationarity, trend instability, and structural unpredictability,
rendering accurate forecasting highly challenging.
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Figure 4.4: USAir, the node BUR, The predicted(red) and real(blue) trajectories of popularity.

Figure 4.5: USAir, the node BUR, The predicted(red) and real(blue) trajectories of expected degree.
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Figure 4.6: USAir, the node BUR, The predicted(red) and real(blue) trajectories of similarity.

Table 4.2: USAir, the node BUR

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.594 0.0464 0.637 0.893 1.8e-08 0.0191
test -1.111 0.054 0.712 -0.244 1.5e-06 -0.002

kappa
train 0.744 0.058 -0.112 0.874 2.5e-08 0.050
test -0.857 0.106 -0.667 0.723 2.9e-07 -0.015

similarity
train -0.114 0.117 0.017 0.339 7.8e-09 0.022
test -15.29 0.2071 0.043 0.0508 9.7e-07 0.004

The prediction results for the BUR node indicate that the time series exhibits very low predictability.
In terms of point-wise similarity, the R2 values on the test set are all negative, with particularly poor
results for the similarity feature (R2 = −15.29), indicating that the model fails to approximate future
values accurately. Regarding trend similarity, while popularity and similarity showweak or even negative
correlation on the test set, kappa is the only feature that retains a moderate level of correlation (0.723),
suggesting partial preservation of trend direction. For shape similarity, although DTW values remain
relatively low, indicating some global shape alignment, the sequence consistency values are close to zero
or negative, reflecting disordered or reversed local trends. Overall, the prediction performance on the
BUR node reveals high uncertainty and structural variability in the time series, with only kappa providing
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marginally usable predictive information.

Figure 4.7: USAir, the node COS, The predicted(red) and real(blue) trajectories of popularity.

Figure 4.8: USAir, the node COS, The predicted(red) and real(blue) trajectories of expected degree.
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Figure 4.9: USAir, the node COS, The predicted(red) and real(blue) trajectories of similarity.

Table 4.3: USAir, the node COS

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train -0.038 0.072 0.611 0.722 2.2e-07 0.013
test 0.006 0.043 0.912 0.676 1.1e-06 0.016

kappa
train 0.694 0.108 -0.040 0.8503 9.2e-09 0.082
test -1.61 0.186 -1.023 -0.0571 9.8e-07 0.011

similarity
train -0.66 0.181 -0.077 0.374 1.5e-09 0.207
test -6.789 0.2741 -0.931 -0.595 5.2e-06 -0.006

The prediction results for node COS in the USAir network indicate generally low predictability, partic-
ularly on the test set. In terms of point-wise similarity, while popularity and kappa achieve moderately
acceptable performance on the training set (with R2 values of −0.038 and 0.694), both kappa and simi-
larity exhibit significantly negative R2 values on the test set (−1.61 and −6.789), suggesting complete
failure in predicting future numerical values.

Regarding trend similarity, the correlation values on the test set are notably weak. Kappa and similarity
exhibit degraded or reversed trends with correlations of −0.0571 and −0.595, respectively. Only popu-
laritymaintains a moderate correlation of 0.676, indicating some level of stability in directional patterns.
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In terms of shape similarity, DTW values remain relatively low, implying that the predicted sequences
are roughly aligned in shape. However, the sequence consistency values on the test set are generally low,
particularly for similarity, which drops to a negative value (−0.006), revealing highly disordered local
trend directions.

Overall, the time series of node COS shows large numerical deviations, inconsistent trends, and weak
structural stability in the test set, with only popularity preserving limited predictive ability in terms of
trend consistency.

Figure 4.10: arXiv, the node 10, The predicted(red) and real(blue) trajectories of popularity.
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Figure 4.11: arXiv, the node 10, The predicted(red) and real(blue) trajectories of expected degree.

Figure 4.12: arXiv, the node 10, The predicted(red) and real(blue) trajectories of similarity (c).
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Table 4.4: arXiv, the node 10

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.807 0.072 0.835 0.937 3.9e-08 0.005
test -1.275 0.0414 -0.453 0.255 1.1e-05 0.0551

kappa
train 0.895 0.0731 -0.228 0.947 6.3e-08 0.127
test -5.201 0.1937 2.396 -0.263 5.4e-07 0.024

similarity
train 0.876 0.026 0.007 0.942 2.2e-08 0.085
test 0.0781 0.0445 -0.095 0.636 1.6e-06 0.011

The prediction results for node 10 in the arXiv network show good performance on the training set, but
a significant degradation on the test set. In terms of point-wise similarity, all three features—popularity,
kappa, and similarity—achieve highR2 values on the training set (0.807, 0.895, and 0.876, respectively).
However, in the test set, both popularity and kappa experience large drops in R2 to negative values
(−1.275 and−5.201), indicating a failure to generalize. In contrast, similarity retains a small but positive
R2 of 0.0781, suggesting limited predictive power.

With respect to trend similarity, similarity maintains a relatively high test correlation of 0.636, while
popularity and kappa drop to 0.255 and −0.263, respectively, the latter indicating a reversed trend.

In terms of shape similarity, all features preserve low DTW values, suggesting global shape alignment.
However, the Sequence Consistency metrics drop considerably on the test set, with kappa and similarity
falling to 0.024 and 0.011, indicating unstable and disordered local trend structures.

Overall, although the model fits well on the training data, it suffers from poor generalization on unseen
data. Only similarity demonstrates marginally usable predictive capacity in forecasting future values for
node 10.
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Figure 4.13: arXiv, the node 740, The predicted(red) and real(blue) trajectories of popularity.

Figure 4.14: arXiv, the node 740, The predicted(red) and real(blue) trajectories of expected degree .
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Figure 4.15: arXiv, the node 740, The predicted(red) and real(blue) trajectories of similarity.

Table 4.5: arXiv, the node 740

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.792 0.061 0.632 0.925 1.5e-06 0.018
test -1.331 0.036 -0.436 0.253 3.9e-06 0.0516

kappa
train 0.515 0.098 -0.135 0.743 1.3e-07 0.148
test -0.732 0.168 -0.556 0.176 5.1e-06 0.036

similarity
train 0.852 0.018 0.044 0.937 4.8e-08 0.121
test -3.390 0.089 0.412 -0.470 8.3e-08 0.007

The prediction results for node 740 in the arXiv network indicate that the time series exhibits poor gener-
alization performance. In terms of point-wise similarity, although all three features—popularity, kappa,
and similarity—achieve relatively high R2 scores on the training set (0.792, 0.515, and 0.852, respec-
tively), their performance on the test set significantly deteriorates. TheR2 values for all features become
negative, with similarity dropping sharply to−3.390, suggesting that the model fails to capture the actual
dynamics of future values.

With respect to trend similarity, the test set correlation coefficients are considerably lower across all
features. Popularity and kappa retain only weak positive correlations (0.253 and 0.176, respectively),
while similarity demonstrates a clear trend reversal with a negative correlation of−0.470. This indicates

55



that the model not only struggles to follow the overall direction of the series but, in some cases, predicts
opposing trends.

For shape similarity, the DTW values remain low in both the training and test sets, indicating that the
overall sequence shapes are somewhat aligned. However, the Sequence Consistency values in the test set
drop noticeably, especially for similarity (from 0.121 to 0.007), revealing that local trend directionality
becomes unstable and inconsistent.

Overall, while themodel fits the training datawell, the generalization to unseen data is poor across all three
features. The predictions on node 740’s time series exhibit substantial numerical errors, disrupted trends,
and degraded structural consistency, highlighting significant non-stationarity and structural volatility in
the data.

Figure 4.16: arXiv, the node 2247, The predicted(red) and real(blue) trajectories of popularity.
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Figure 4.17: arXiv, the node 2247, The predicted(red) and real(blue) trajectories of expected degree.

Figure 4.18: arXiv, the node 2247, The predicted(red) and real(blue) trajectories of similarity.
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Table 4.6: arXiv, the node 2247

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.490 0.039 0.311 0.758 1.1e-07 0.014
test -1.029 0.035 -0.954 -0.011 2.5e-06 0.024

kappa
train 0.049 0.236 0.059 0.408 1.0e-08 0.008
test -1.695 0.296 0.100 -0.265 1.6e-07 -0.036

similarity
train -3.510 0.135 0.085 -0.226 5.7e-08 -0.009
test -1.147 0.141 -0.343 -0.203 8.7e-06 -0.010

The prediction results for node 2247 in the arXiv network reveal extremely low overall predictability, with
poor model performance on both the training and test sets. In terms of point-wise similarity, all features
exhibit negative R2 values on the test set, indicating the model’s inability to reconstruct future values.
Notably, the similarity feature shows a highly negative R2 of−3.510 even in the training set, suggesting
an inherent lack of structure. While popularity achieves a moderate R2 of 0.490 on the training set, it
drops to −1.029 on the test set, indicating a complete failure in generalization.

With respect to trend similarity, the correlation of popularity drops from 0.758 (train) to −0.011 (test),
showing an absence of consistent trend direction. Both kappa and similarity also exhibit low or negative
correlation values on both sets, indicating that the model fails to capture any meaningful directional
patterns.

For shape similarity, although DTW values remain relatively low on the training set, they increase no-
ticeably on the test set. Sequence Consistency values are negative across all features on the test set,
particularly for kappa and similarity, reflecting disordered and unstable local trend structures.

Overall, the time series of node 2247 lacks learnable structure in both training and test sets. The predic-
tions suffer from large numerical deviations, reversed or inconsistent trends, and poor structural stability,
making this node a typical case of strong non-stationarity and low predictability.
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Figure 4.19: PGP, the node 0x0A0AC927, The predicted(red) and real(blue) trajectories of popularity.

Figure 4.20: PGP, the node 0x0A0AC927, The predicted(red) and real(blue) trajectories of expected
degree.
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Figure 4.21: PGP, the node 0x0A0AC927, The predicted(red) and real(blue) trajectories of similarity.

Table 4.7: PGP, the node 0x0A0AC927

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.423 0.031 -0.247 0.682 5.5e-07 -0.023
test 0.409 0.011 0.050 0.678 1.1e-06 -0.021

kappa
train 0.766 0.073 11.02 0.895 3.6e-05 0.056
test -170.82 0.832 154.77 -0.286 53.05 -0.009

similarity
train 0.375 0.265 0.048 0.991 2.9e-07 0.375
test -3.359 -3.359 -3.359 0.278 1.0e-05 -0.043

The prediction results for node 0x0A0AC927 in the PGP network suggest that, while certain features
retain limited predictive capacity, the overall time series is characterized by high instability and low
predictability.

In terms of point-wise similarity, popularity achieves consistent R2 values on both the training and test
sets (0.423 and 0.409), indicating stable performance. In contrast, kappa performs well on the training set
(R2 = 0.766) but collapses on the test set with a highly negativeR2 of−170.82 and extreme bias (MBD
= 154.77), reflecting total model failure. The similarity feature has a moderate training R2 of 0.375, but
it drops to −3.359 in the test set, again indicating poor generalization.

Regarding trend similarity, popularity maintains a relatively stable correlation on the test set (0.678),
while similarity shows moderate trend alignment (0.278). Kappa, however, reverses its trend on the test
set with a correlation of −0.286.
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For shape similarity, the DTW values increase significantly in the test set across all features, especially
for kappa (53.05), indicating severe shape misalignment. Sequence Consistency scores drop below zero
for all features in the test set, with similarity falling from 0.375 to−0.043, suggesting unstable local trend
directionality.

Overall, although popularity retains some predictive ability on the test set, both kappa and similarity
degrade substantially. The time series of this node exhibits strong non-stationarity and structural volatility,
posing significant challenges to accurate forecasting.

Figure 4.22: PGP, the node 0x0A2F87E5, The predicted(red) and real(blue) trajectories of popularity.

61



Figure 4.23: PGP, the node 0x0A2F87E5, The predicted(red) and real(blue) trajectories of expected
degree .

Figure 4.24: PGP, the node 0x0A2F87E5, The predicted(red) and real(blue) trajectories of similarity.
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Table 4.8: PGP, the node 0x0A2F87E5

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.782 0.019 -0.016 0.948 2.3e-06 0.0408
test -3.563 0.033 0.935 0.521 1.0e-05 -0.066

kappa
train -0.248 0.0623 0.220 0.391 1.4e-06 0.041
test -2.435 0.113 4.402 0.159 5.1e-05 0.030

similarity
train -0.206 0.1453 0.350 0.658 3.7e-07 0.0381
test -0.208 0.136 -0.333 0.321 2.3e-06 -0.006

The prediction results for node 0x0A2F87E5 in the PGP network demonstrate low overall predictabil-
ity, particularly on the test set, where the model exhibits instability in trend consistency and structural
alignment.

In terms of point-wise similarity, popularity performs well on the training set with an R2 of 0.782, but
this sharply declines to −3.563 on the test set, indicating a complete breakdown in generalization. Both
kappa and similarity show negativeR2 values in both training and test sets, suggesting the model fails to
learn meaningful numerical patterns for these features.

Regarding trend similarity, only popularity maintains a moderate test correlation (0.521), while kappa
and similarity remain weak at 0.159 and 0.321, respectively, indicating that predicted sequences do not
align well with the true trend directions.

For shape similarity, DTW values are within acceptable ranges, but Sequence Consistency drops signifi-
cantly in the test set. Popularity and similarity show negative consistency values (−0.066 and −0.006),
indicating disordered local trends.

Overall, while the model fits popularity well on training data, its performance on unseen data is poor
across all features. Node 0x0A2F87E5’s time series is marked by non-stationary behavior, weak trend
alignment, and structural irregularity, making accurate forecasting difficult.
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Figure 4.25: PGP, the node 0x0A15BE0D, The predicted(red) and real(blue) trajectories of popularity.

Figure 4.26: PGP, the node 0x0A15BE0D, The predicted(red) and real(blue) trajectories of expected
degree similarity.
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Figure 4.27: PGP, the node 0x0A15BE0D, The predicted(red) and real(blue) trajectories of similarity.

Table 4.9: PGP, the node 0x0A15BE0D

R2 MARE MBD Correlation DTW Sequence Consistency

popularity
train 0.742 0.018 0.367 0.909 9.0e-07 0.064
test -4.715 0.023 0.696 0.439 8.4e-06 -0.068

kappa
train -1.245 0.092 0.781 -0.152 1.1e-06 0.030
test -3.598 0.079 0.280 -0.036 1.0e-05 0.049

similarity
train -1.820 0.327 -1.111 -0.264 1.0e-07 -0.002
test -40.69 0.614 -3.144 -0.013 1.0e-05 0.038

The prediction results for node 0x0A15BE0D in the PGP network indicate extremely poor predictability,
especially on the test set, where all features exhibit significant numerical errors, loss of trend direction,
and structural instability.

In terms of point-wise similarity, popularity performs well on the training set (R2 = 0.742), but its test
performance deteriorates sharply (R2 = −4.715), reflecting a complete breakdown in generalization.
Both kappa and similarity show negative R2 values across both training and test sets, with similarity
reaching as low as −40.69 on the test set.

Regarding trend similarity, popularity maintains strong correlation on the training set (0.909), but this
drops significantly to 0.439 in the test set. Kappa and similarity exhibit near-zero or negative correlation
throughout, indicating that the model fails to capture trend directions and may even predict opposite
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trends.

For shape similarity, although DTW values remain within acceptable ranges, Sequence Consistency
scores are low on the test set. Notably, popularity’s consistency drops from 0.064 to −0.068, indicating
disordered local trend alignment.

Overall, while the model fits popularity to some extent during training, its generalization across all fea-
tures is extremely limited. The time series of node 0x0A15BE0D displays strong non-stationarity and
structural volatility, making accurate prediction highly challenging.

4.1 Popularity

The popularity trajectories used in this study generally show an upward trend over time. However, in
the short term, there are significant fluctuations with large variations. While the overall trend of the
trajectories shows clear fluctuations, the long-term growth trend is more prominent. Among these, the
popularity trajectories of the arXiv and PGP datasets have a more stable growth rate, while the popularity
trajectory of the USAir dataset shows unstable growth with significant fluctuations of sharp increases
and decreases over a relatively long period. We observe that the vast majority of nodes in real-world
networks exhibit a long-term upward trend in popularity, which may be related to the growth in network
size and the increased activity across the entire network.

In terms of prediction performance, the model performed well during training, closely following the
overall trend of the real data, and it also captured some of the fluctuations in the details. However,
during the testing phase, the performance clearly declined compared to the training phase. Given the
clear upward trend in the data, the model made reasonable predictions regarding this trend. We can see
that for the arXiv dataset, with the most stable growth rate, the predicted upward trend closely matched
the real data. For the PGP and USAir datasets, although the model also predicted the upward trend, the
speed of growth deviated to some extent from the real situation. The model, based on its performance
during training, tried to predict these details and fluctuations using the learned patterns. However, from
the prediction results, it seems the model has not yet accurately predicted these details, as the fluctuations
and variations do not align well with the real data.

4.2 Expected degree

The expectation trajectories also exhibit significant short-term fluctuations, but from a long-term perspec-
tive, they lack a clear upward or downward trend, appearing more random compared to the popularity
trajectories.

Similarly, during training, the model effectively learned the fluctuation characteristics and some details
of the data, with the predicted results on the training set closely matching the real data. During testing, the
model made similar predictions based on the oscillation patterns learned during training, and the range
of predicted values was close to the actual range of values. However, it also failed to match the details.
For the expectation trajectories, we predicted similar shapes, but were unable to capture the finer details.
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4.3 Similarity

The similarity trajectories are the smoothest, showing no high-frequency fluctuations in the short term,
but no clear trend was observed either. From the prediction results, the prediction performance for the
similarity trajectories is the worst. The similarity trajectories performed poorly during training, and the
predicted trajectory could not closely follow the real trajectory. The prediction results also deviated
significantly from the actual values.
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5 Conclusion and Recommendations

Through the analysis of prediction results, we observe that time series with a single clear trend—such as
consistently increasing or decreasing trajectories—tend to exhibit the best prediction performance. For
example, in the case of the popularity trajectory, where a long-term upward trend is evident, the model’s
predictions also generally follow an increasing pattern. Moreover, the model is capable of capturing pat-
terns that resemble the actual data. However, regardless of whether the feature is popularity, expectation,
or similarity, the model fails to make accurate predictions at a detailed level. In other words, although the
model attempts to capture fine-grained variations, the predicted details are highly random and fall short
of the performance achieved during training.

Interestingly, we find that the expectation trajectory of the ANC airport in the USAir dataset exhibits a
noticeable periodic pattern. We conducted a separate prediction experiment on this specific time series,
and the results show that although some amplitude deviations exist, the overall trend direction, turning
points, and frequency closely match the actual data. This suggests that trends with apparent regular
variation can also be effectively captured by the model, enabling reasonably accurate forecasts.

Figure 5.1: arXiv, the node ANC, The predicted(red) and real(blue) trajectories of expected degree.

In addition to the aforementioned sequences with strong regularity, the dataset also contains a large num-
ber of trajectories exhibiting continuously changing trends and frequent directional shifts. These time
series often lack discernible patterns upon visual inspection—for instance, the similarity trajectories and
the vast majority of expectation trajectories do not present any clear trend regularity.

Although neural networks are capable of fitting such fluctuating trends effectively on the training set and
generating predictions with similarly dynamic behavior, this phenomenon raises two fundamental ques-
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tions: (1) Does the strong performance on the training set reflect the model’s ability to learn underlying
structural patterns in the data, or is it merely a result of memorizing the training examples? (2) Is the poor
generalization performance on the test set a consequence of overfitting, or does it stem from an inherent
lack of predictability in the data itself?

At the core of these questions lies a deeper issue: whether such shifting trends are governed by any
latent patterns, and whether neural networks possess the capacity to discover them. Importantly, these
questions are not mutually exclusive nor strictly separable, as they often lead to the same observable
outcome—limited predictive accuracy on unseen data. Therefore, further investigation of these non-
stationary sequences may help delineate the boundaries and limitations of neural networks in time series
forecasting tasks.

First, the hyperparameter configurations we adopted (such as embedding dimension, number of attention
heads, and feedforward network width) are commonly used and widely validated in the literature, and
are considered generally reasonable. Second, we confirmed that the model produces valid and reliable
predictions on structured time series, such as the expectation trajectory of the ANC airport in the USAir
network, which exhibits clear periodic patterns.

However, when switching to other datasets, we observed that despite the model performing well on the
training set—with the loss decreasing steadily—the validation loss remained highly volatile and failed
to converge. Notably, across multiple experiments, we observed significant random fluctuations: even
within a reasonable range of hyperparameters, the training results varied substantially from run to run.
This randomness masked the effects of fine-tuning and prevented the identification of a stable, optimal
parameter combination. As a result, we were only able to determine a “reasonable parameter range,”
within which tuning efforts had little impact on validation performance, which appeared to be limited by
the inherent predictability of the data itself.

Furthermore, upon visual inspection, we found that these time series lacked clear trend structures or iden-
tifiable patterns—making it difficult, even for human observers, to discern any consistent or meaningful
progression. Although the model demonstrated strong fitting ability on the training data and poor per-
formance on the validation data—an observation that superficially resembles overfitting—we found that
neither modifying the model architecture nor adjusting the hyperparameter space improved the outcome.
In the absence of discernible trends or periodic structures in the data, we conclude that the failure to gen-
eralize is not due to overfitting in the conventional sense, but rather stems from the intrinsic structural
complexity and low predictability of the time series themselves.

We extracted the prediction results for nodes LAX, 1674, and 0x0D62001B from the USAir, arXiv, and
PGP datasets in reference [1]. We found that traditional methods have the ability to fit details during
the training phase, but the results in the prediction phase tend to become linear. Neural networks, in
contrast, have stronger capabilities in both detail fitting and prediction, producing more complex results.
Neural networks perform well in predicting the periodic components of the trajectory, but their accuracy
in predicting details still needs improvement.

Compared to traditional methods, neural networks can automatically extract patterns from the data with-
out relying on parameter estimation. Furthermore, neural networks have stronger learning capabilities
for complex patterns in the data, allowing them to make predictions that include both trends and details.
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However, neural networks cannot make predictions for extremely long time periods as traditional meth-
ods can. One issue is the lack of sufficient data, as neural networks often rely on large amounts of data.
Additionally, they are more prone to problems like gradient vanishing and gradient explosion. Extremely
long time series typically require deep neural networks, which result in a significant increase in parame-
ters. Predicting sequences longer than 1000 steps is already a rare task in deep learning, and predicting
even longer sequences would pose a significant challenge.

Figure 5.2: arXiv, the node LAX, The predicted(red) and real(blue) trajectories[1]

Figure 5.3: arXiv, the node 1674, The predicted(red) and real(blue) trajectories[1].

Figure 5.4: PGP , the node 0x0D62001B, The predicted(red) and real(blue) trajectories[1]

Based on the above prediction results, the neural network’s ability to predict time series primarily depends
on the periodic and trend components, while the noise components in the data are unpredictable. The
current methods have successfully predicted the periodic and long-term increasing or decreasing trends.
However, the performance of these methods is still limited in identifying more complex patterns in the
sequence.

Currently, long-term accurate prediction tasks in deep learning face multiple challenges, including the
long-term dependencies in the data, noise, and sudden value changes caused by unexpected events, all of
which greatly interfere with prediction accuracy. Additionally, as the data increases, the computational
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complexity of long-term sequence prediction significantly grows, making the need for large amounts
of computational resources and time a major issue. In recent years, with the rapid development of deep
learning, more andmoremodels for time series modeling have emerged. Thesemethods, by incorporating
mechanisms such as sparse attention, seasonal modeling, and frequency domain modeling, have enabled
deeper analysis of time series from various perspectives. In the future, these more complex models can
be considered to better explore the potential complex patterns in these trajectories.
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