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ABSTRACT

Behavioral modeling of radio frequency (RF) devices has become an essential technique for accurately
predicting device performance in complex operational scenarios. This paper presents a comprehen-
sive methodology that integrates physical Technology Computer-Aided Design (TCAD) simulations,
X-parameter extraction, and neural network-based prediction models. Initially, TCAD is employed to
simulate the internal physical behavior of RF devices, providing a detailed understanding of carrier trans-
port, thermal effects, and electric field distributions. Using these simulations, behavioral models are con-
structed, enabling the extraction of X-parameters, which effectively characterize the nonlinear dynamics
and frequency-domain interactions of RF devices. To enhance predictive accuracy and computational ef-
ficiency, a neural network model is developed to learn the relationship between input signals and device
responses based on the extracted X-parameters. The proposed approach demonstrates high fidelity in
predicting device behavior under various operational conditions, offering a robust framework for RF de-
vice design and optimization. This study highlights the synergy between physical simulation, parameter
extraction, and machine learning for advancing RF device modeling techniques.

Keywords: Behavioral modeling,TCAD simulation,neural networks,nonlinear modeling.
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1 Introduction

With the rapid development of modern electronics, compound semiconductor materials such as gallium
nitride (GaN), gallium arsenide (GaAs), and indium phosphide (InP) are increasingly being applied in
fields such as power electronics, radio-frequency (RF) communications, and optoelectronic devices.
Compared to traditional silicon-based semiconductors, compound semiconductor materials exhibit supe-
rior performance because of their unique electrical and thermal properties, such as better high-frequency
characteristics, higher breakdown voltage, and lower conduction loss. However, designing and optimiz-
ing these devices pose significant challenges, particularly in complex operating conditions such as high
frequencies and high power. Effective evaluation and prediction of the performance of these devices has
become a critical technical issue in semiconductors [1].

In circuit design, the use of computer-aided design (CAD) software has become an essential step for
simulation and analysis. These tools provide valuable insights prior to the actual fabrication of circuits,
significantly reducing design costs and shortening development cycles. However, achieving this requires
an accurate circuit model, as only a reliable model can offer meaningful guidance for design [2].

Traditionally, microwavemodelingmethods have been primarily categorized into two approaches: physics-
based models and empirical models [3,4]. Physics-based models involve a detailed understanding of the
materials, structural parameters, and process parameters used in transistor devices to derive their voltage-
current characteristics. However, due to the difficulty in accurately characterizing physical phenomena,
the practical application of physics-based models in circuit design remains limited. In contrast, empirical
models use fitted mathematical functions [5] to approximate device characteristics, sacrificing the phys-
ical interpretability of parameters in exchange for improved computational efficiency. Yet, this trade-off
diminishes their utility in guiding device design.

Both physics-based and empirical models require precise measurements of S-parameters. However, in
real-world electromagnetic environments, input and output signals often deviate from simple linear rela-
tionships. As the performance demands of communication systems increase, the limitations of traditional
S-parameter models become particularly evident when devices operate under saturated conditions with
high power, high efficiency, and nonlinear outputs. In such large-signal conditions, RF devices exhibit
various nonlinear phenomena, including gain compression, harmonic distortion, intermodulation distor-
tion, self-heating effects, and memory effects. To account for these effects, physics-based and empirical
models require additional parameters, which increases model complexity and makes parameter extraction
more challenging.

Behavioral modeling has emerged as a promising research direction in recent years [6]. As a black-box
modeling approach, behavioral models do not require knowledge of the internal structure or equivalent
circuit of a device. Instead, they rely solely on measured input and output signals to establish an equiv-
alent model of the device’s characteristics. By selecting an appropriate model structure and identifying
model parameters based on port information, behavioral modeling creates a functional representation of
the device. Since it avoids the need to understand the physical relationships among internal components,
behavioral modeling helps protect intellectual property and prevent reverse engineering. Compared to
physics-based and empirical models, behavioral models offer significant advantages, including reduced
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time costs, higher modeling efficiency, and sufficient accuracy. As a result, they have found widespread
application in modeling RF front-end circuits and devices. This fast and efficient modeling approach ad-
dresses the growing need for nonlinear system modeling and facilitates further research and applications
in RF engineering.

Traditional physical TCAD (Technology Computer-Aided Design) models can accurately simulate the in-
ternal physical behaviors of devices, such as carrier transport, temperature distribution, and electric field
distribution. However, due to their high computational complexity and resource requirements, physical
models often become inefficient for large-scale device integration and system-level simulations. Behav-
ioral models, as a ”black-box” modeling approach, characterize the external behavior of devices, sim-
plifying the modeling process, and improving simulation efficiency. They are widely used in integrated
circuits, RF devices, and other fields. By combining physical TCAD models with behavioral models, it
is possible to achieve efficient device and system-level simulations while maintaining model accuracy,
thus providing more effective tools for device design and [7].

1.1 Aims and Objectives

Enhancing Modeling Efficiency and Accuracy through the Combination of Physical TCAD Models and
Behavioral Models Physical TCAD models provide detailed and precise predictions of device perfor-
mance by accurately describing internal physical processes, such as carrier diffusion and electric field
distribution. However, due to their computational complexity, especially in multi-dimensional modeling,
these models require substantial computational resources. Behavioral models, as a ”black-box” model-
ing approach, derive the external behavior of devices from test data and extract characteristic parameters,
avoiding the need for complex physical simulations. By combining physical TCAD models and behav-
ioral models, it is possible to retain the high accuracy of physical models while leveraging behavioral
models to simplify simulation calculations, thereby improving overall modeling efficiency and accuracy.

Enhancing Flexibility and Scalability in Device Design Behavioral models provide a high-level abstrac-
tion that can represent the electrical behavior of devices across multiple dimensions, making them suitable
for various operating environments. This simplified and efficient modeling approach enables designers
to perform device design and system-level simulations more rapidly and easily extend these models to
multi-device systems and complex circuits. This flexibility is particularly valuable for large-scale inte-
grated circuits, RF systems, and other applications.

Reducing Development Time and Costs By combining physical TCAD models with behavioral models,
device performance evaluation can be conducted rapidly during the design phase, avoiding the need for
extensive physical prototype fabrication and testing inherent in traditional experimental methods. Behav-
ioral models characterize external behavior based on test data, minimizing the focus on internal details.
This allows for fast simulations at a lower computational cost, significantly shortening the development
cycle and reducing overall costs during the development process.

Supporting Research and Applications of Novel Compound Semiconductor Devices and Systems With
the emergence of novel compound semiconductor materials (e.g., gallium nitride [GaN], gallium arsenide
[GaAs]) and innovative device structures, new design methods and simulation tools are critical to ad-
vancing technology. Combining physical TCAD models with behavioral models enables more accurate
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evaluation of these new materials and devices, providing stronger support for their development. In par-
ticular, in specialized applications such as high-frequency and high-power scenarios, behavioral models
can quickly assess the electrical performance of devices without involving complex physical simulations,
offering effective technical support for the design and application of novel devices.

Improving Simulation Convergence and Computational Efficiency A key advantage of behavioral models
is their superior simulation convergence, especially in multi-dimensional modeling. Compared to phys-
ical TCAD models, behavioral models simplify the model structure, allowing for multiple simulations
in a shorter time frame, helping designers quickly find optimal solutions. Therefore, the hybrid model-
ing approach combining behavioral models and physical TCAD models can greatly enhance simulation
efficiency and convergence while maintaining accuracy.

1.2 Research Questions

The primary research questions of this thesis are summarized as follows:

1. Effectiveness of Behavioral Models

• How can behavioral models accurately represent the external characteristics of RF devices
while maintaining prediction accuracy comparable to physical TCAD models?

• What are the applicability and limitations of behavioral models under multidimensional op-
erating conditions, such as high frequency and high power?

2. Integration of Physical and Behavioral Models

• What strategies can effectively integrate physical TCAD models with behavioral models to
achieve both high accuracy and high efficiency in modeling?

• How can the trade-offs between physical accuracy and computational efficiency be identified
in different modeling scenarios?

3. Optimization of Modeling Efficiency and Accuracy

• How can hybrid modeling approaches maximize computational efficiency while maintaining
precision?

• Which aspects of physical TCAD models can be substituted by behavioral models to reduce
computational resource consumption?

4. System-Level Applications and Scalability

• How scalable are behavioral models for multi-device systems or complex circuits?

• How does the hybrid modeling framework perform in supporting the design and optimization
of large-scale integrated circuits and RF systems in system-level simulations?

5. Modeling Methods for Novel Materials and Structures

• How can the combined modeling framework remain adaptable to novel compound semicon-
ductor materials (e.g., GaN, InP) and innovative device structures?

• How can these newmaterials and devices’ electrical performance be evaluated and optimized,
particularly under extreme operating conditions such as high temperature and high voltage?
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6. Practical Value of the Modeling Framework

• What specific impacts does the hybrid modeling approach have in reducing the development
cycle and cost in practical design workflows?

• What are the specific demands and challenges for the modeling framework in different appli-
cation scenarios, such as high-frequency communications and power electronics?

1.3 Contribution

Contributions

The primary contributions of this thesis are summarized as follows:

1. Proposed a Hybrid Modeling Framework An innovative hybrid modeling framework was pro-
posed, integrating physical TCAD models and behavioral models to fully utilize the strengths of
both approaches, achieving high accuracy and computational efficiency in RF device modeling.

2. ImprovedModeling Efficiency and Scalability The hybrid modeling approach was demonstrated
to significantly reduce the computational resources required for multi-dimensional RF device sim-
ulations while maintaining the accuracy of physical models. The framework also enhances scala-
bility for multi-device systems and complex circuits.

3. Optimized Device Performance Evaluation and System-Level Simulations By combining the
efficiency of behavioral models and the accuracy of physical models, a novel method was devel-
oped for rapid RF device performance evaluation, supporting system-level simulations in large-
scale integrated circuits and RF systems.

4. Supported Research and Applications of Novel Materials and Devices A tailored hybrid mod-
eling approach was developed for novel compound semiconductor materials (e.g., GaN, GaAs)
and innovative device structures, providing technical support for their property evaluation and op-
timization.

5. Reduced Development Cycle and Cost The hybrid modeling framework significantly shortened
the development cycle of RF devices through rapid performance evaluation and simplified simu-
lation workflows, thereby reducing time and cost in the development process.

6. Validated Practical Application Value of the Framework The practical applicability of the hy-
bridmodeling frameworkwas validated through real-world case studies, demonstrating its potential
in critical areas such as high-frequency communications and power electronics, providing valuable
support for technological advancements in the industry.

1.4 Structure of the Thesis

This thesis is organized into five chapters, as outlined below:

This thesis consists of five main chapters that collectively address the research problem, methodology,
and findings. The first chapter lays the groundwork by introducing the research background, problem,
objectives, and contributions. It also provides an overview of the thesis structure.
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The second chapter offers a comprehensive review of the relevant literature, highlighting the theoreti-
cal foundations of physical TCAD models and behavioral models. It identifies current limitations and
challenges in the field, establishing a clear direction for the research.

The third chapter details the methodology employed in this study, focusing on the integration of physical
TCAD and behavioral models to develop a hybrid modeling framework. This chapter also discusses the
tools and techniques used for data collection and validation.

The fourth chapter presents the experimental results derived from the proposed hybridmodeling approach.
It includes a comparative analysis of the hybrid model’s performance against traditional methods and
discusses its practical applications and implications.

Finally, the fifth chapter concludes the thesis by summarizing the key findings, emphasizing the con-
tributions to both theory and practice, and offering recommendations for future research and potential
extensions of the work.

1.5 Summary

This study advances innovation and development in semiconductor device modeling technology by com-
bining physical TCAD models with behavioral models. This approach not only deepens the understand-
ing of the internal behaviors of compound semiconductor devices but also provides more advanced tools
for efficient device design. By leveraging this innovative modeling methodology, the accuracy and ef-
ficiency of semiconductor device design can be significantly improved, driving modeling technologies
toward higher levels of efficiency and precision.

Behavioral models enhance the ability to evaluate and optimize device performance by precisely charac-
terizing the external behaviors of devices. They allow for rapid performance evaluation and optimization
without involving complex physical calculations, which is especially significant for compound semi-
conductor devices operating under high-frequency and high-power conditions. By integrating physical
TCAD models, external characteristics remain highly consistent with the underlying physical processes,
ensuring more reliable performance assessments.

With the continuous development of novel compound semiconductor materials, effectively evaluating
and optimizing their performance has become a critical challenge for academia and industry alike. The
combined modeling techniques of physical TCAD and behavioral models provide more accurate tools
for the research and application of these new materials. This is particularly valuable in fields such as
high-frequency communications, power electronics, and optoelectronics, where they can accelerate the
development and deployment of novel devices.

In industries such as communications, energy, and power, the increasing demand for high-performance
devices necessitates rapid responses to market needs and optimized device performance. By employing
the combined modeling approach, the design and validation processes for high-performance devices can
be greatly accelerated, enabling quicker market entry and fostering further technological innovation in
the industry.

The integration of behavioral models also brings advantages to system-level design and integration, mak-
ing it feasible to apply them to multi-device integrated circuits and complex systems. By combining
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physical TCAD models with behavioral models, comprehensive evaluations at the system level are pos-
sible, which helps improve the design efficiency and performance of integrated circuits and multi-device
systems, further advancing the field of integrated circuits.

The combined modeling approach aims to improve the accuracy and efficiency of device design, pro-
moting the application of compound semiconductor devices in high-frequency and high-power scenar-
ios. This research provides more efficient tools for developing novel devices, theoretical support for
semiconductor device design and optimization, and enhanced capabilities for system-level integration.
Ultimately, it facilitates technological advancements across the semiconductor industry chain, offering
robust support for designing high-performance electronic systems and promoting the widespread adop-
tion of novel materials and devices.
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2 Literature Review

2.1 Introduction

Behavioral modeling is a typical black-box modeling technique. In this method, the model is constructed
without relying on detailed knowledge of the internal structure of the device [8]. Instead, it is based on
analyzing the input and output data characteristics of the device. By collecting input-output data and using
it to establish a black-box model, a mathematical model can be generated to characterize the behavior of
the device under test. This method is particularly suitable for devices with unclear or unknown internal
structures. Using this approach, it is possible to rapidly explore and analyze the external characteristics
of the device without a deep understanding of its internal details, providing valuable references for device
design and optimization.

The primary advantages of this method are its simplicity and ease of implementation. Even for devices
lacking detailed physical information, an accurate model can still be constructed by applying input signals
and measuring the corresponding output responses. This makes it an effective and widely used modeling
technique for many unknown devices. Figure 2.1 illustrates the topology of the behavioral model. Al-
though the internal structure of the model remains uncertain, it can still generate corresponding output
data based on the applied input signals, thereby effectively characterizing the device’s behavior.

In the behavioral modeling of power transistors, actual measurement data and simulation results are typi-
cally used to derive complete model parameters through appropriate mathematical formulas and methods.
The accuracy of a power transistor’s behavioral model depends on the precision of the measurement data.
Therefore, the behavioral modeling of power transistors can be divided into two critical stages:

1. Measurement Scheme Design: First, a reasonable measurement scheme must be designed. This
includes determining the port excitation conditions, load settings, control of external environmental
factors, and ensuring the detailed accuracy of the test data. Ensuring the precision of the measure-
ment data is crucial for providing high-quality foundational data for subsequent modeling.

2. Mathematical Model Construction: Second, a mathematical model matching the nonlinear be-
havior of the device needs to be established based on the measured data. Power transistors exhibit

Figure 2.1: Flow chart of behavior model establishment
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significant nonlinear characteristics. Researchers must analyze and process the measurement data
to extract nonlinear parameters and incorporate them into the mathematical model to more accu-
rately describe and predict the behavior of power transistors.

The close integration of these two stages is key to establishing an accurate behavioral model for power
transistors. Only by ensuring the accuracy of the measurement data and combining it with an appropriate
mathematical model can the operational characteristics of power transistors be deeply understood, thereby
providing strong support for their optimized design.

2.2 S parameter

When a power transistor operates within its linear region, S-parameters can provide highly accurate de-
scriptions of circuit characteristics [9]. S-parameters, or scattering parameters, are key parameters in
microwave transmission and include S11, S21, S12, and S22. S11 represents the input reflection coef-
ficient, which indicates the return loss at the input; S22 is the output reflection coefficient, reflecting
the return loss at the output. S21 denotes the forward transmission coefficient, often used to describe
gain, while S12 represents the reverse transmission coefficient, reflecting isolation. These parameters
help accurately analyze the performance of power transistors and their associated circuits.In this case, the
S-parameters of the a and b waves are expressed as follows: see Equation 2.1.

[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
. (2.1)

2.3 Hot-S Parameters

As the input signal increases, power transistors exhibit nonlinear characteristics andmemory effects under
real operating conditions, making S-parameters insufficient for accurately describing their behavior [10].
To address this limitation, the concept of hot-S parameters was proposed, building upon traditional S-
parameters. Unlike traditional S-parameters, which are measured under single-source excitation condi-
tions, hot-S parameters incorporate dual-source excitation. A large signal is used to activate the device’s
operating state, followed by the measurement of the response to a small signal [11, 12]. This method
enables hot-S parameters to better describe the behavior of nonlinear devices while maintaining some
similarities to traditional S parameters.Hot-S parameter are expressed as follows:see Equation 2.2.

[
b1(fs)

b2(fs)

]
=

[
hotS11 hotS12

hotS21 hotS22

][
a1(fs)

a2(fs)

]
. (2.2)

However, this simplified expansion method only considers the effect of the large-signal input fc and does
not fully account for the intermodulation products between the large signal fc and the small signal fs.
To refine the model, an additional small signal with the same frequency as the large driving signal is
introduced at the other end of the device. Since the power of the input small signal is much lower than
that of the driving large signal, we can treat this small signal as a perturbation signal without altering
the device’s operating state. This assumption holds under the condition that the higher-order harmonic
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responses at each port are neglected, and only the fundamental frequency responses are retained. Under
these conditions, the Hot-S parameters can be expressed as:see Equation 2.3.

[
b1(fs)

b2(fs)

]
=

[
hotS11 hotS12

hotS21 hotS22

]
×

[
a1(fc)

a2(fc)

]
+

[
T12

T22

]
ej2φ(a1(fc))conj(a2(fc)). (2.3)

In the above equation, the introduction of T12 and T22 accounts for the nonlinear response of the pertur-
bation signal and its conjugate component near the large-signal operating point. This approach partially
linearizes the nonlinear behavior of the system. However, it is important to note that since the equation
only considers the fundamental responses, it cannot fully capture the influence of the nonlinear intermod-
ulation products.

2.4 PHD model

As an advancement of the extended thermal S-parameters, Verspecht et al. introduced a novel large-signal
scattering parameter technique, referred to as the poly-harmonic distortion (PHD) model [13, 14]. The
PHD model is rigorously derived through mathematical analysis based on the description function.

The description function characterizes a time-invariant system, where any delay in the incident wave
corresponds to an identical delay in the scattered wave. This behavior manifests as a linear phase shift
within the frequency domain. In this framework, the phase of the fundamental excitation signal serves as
the reference, and the phase operator P is defined as:

P = ejφA11 . (2.4)

Here, the separation of phase and amplitude becomes feasible, ultimately leading to Formula as fellow:

Bpm = Fpm

(
|A11|, A12P

−2, A13P
−3, . . . ,×A21P

−1, A22P
−2, . . .

)
P p+m. (2.5)

After performing this transformation, the primary independent variable A11 is simplified from a com-
plex number to a positive real value, significantly reducing the complexity of subsequent mathematical
operations (as shown in Figure 2.2).

Assuming that for a device under test (DUT), the fundamental input signal A11 represents a large-signal
excitation, while other harmonic components act as small-signal excitations, the operating point of the
DUT is determined solely by A11. Under this condition, the harmonic superposition principle (as illus-
trated in Figure 2) can be applied to linearize these small harmonic signals. Here, the mutual influence of
small signals and their conjugate components is negligible, and their output effects appear in a positively
correlated form. Consequently, the final PHD model can be described as follows:

Bpm =
∑
qn

Spq,mn (|A11|)P p+m−nAqn +
∑
qn

Tpq,mn (|A11|)P p+m+nconj(Aqn). (2.6)
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Figure 2.2: The harmonic superposition principle

2.5 X parameter

In order to enhance and commercialize the model, Jan and Agilent jointly filed a patent for the X-
parameter behavioral model. The description formula for this model is given as:

Bef = X
(F )
ef (|A11|)P f +

∑
gh ̸=11

X
(S)
ef,gh(|A11|)AghP

f−h +
∑

gh ̸=11

X
(T )
ef,gh(|A11|)A∗

ghP
f+h. (2.7)

In Equation 2.7, the first term solely depends on the large-signal operating point. At this stage, only the
large-signal excitation is applied to the DUT, while the amplitude and phase data at all relevant frequency
points are captured. By comparing thesemeasurements to the amplitude and phase of the excitation signal,
the amplitude ratio and phase shift across different frequencies can be determined to extract the model
parameters.

The XS and XT terms describe the effects of the perturbation small signal and its conjugate component
on the port’s scattering waves, respectively. While the reflection coefficient is not explicitly modeled,
the nonlinear effects caused by load impedance mismatches are incorporated in the form of small signal
disturbances. As illustrated in Figure 2.3), it can be observed that asA11 increases, system nonlinearities
become more pronounced. This effect leads to greater compression and distortion, influencing system
behavior, including rotation and scaling factors.

According to the preceding derivation, the X-parameter’s large-signal operating point is determined en-
tirely by the device’s nonlinear state. This includes both the input signal and the DC bias conditions of
the large signal A11 (expressed as |A11|, DC). Since the model derivation assumes a single large-signal
excitation, the X-parameter model is best suited for devices with proper impedance matching. However,
in cases where significant load impedance mismatches occur, causing the DUT to operate under strong
nonlinear conditions, the X-parameter model may exhibit substantial prediction errors.
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Figure 2.3: The increase of the incident wave distorts the smiling face

2.6 Cardiff Model

The development of the X-parameter model led to the creation of the Cardiff model, which introduces a
new modeling strategy. This approach combines a truth look-up table with a polynomial-based behav-
ioral model [15, 16]. By integrating measurement-based and model-based methods, the Cardiff model
facilitates the conversion of measured voltage and current waveforms into model parameters, allowing
for smooth incorporation into CAD software.

The Cardiff model extends the classical X-parameter model, and its formulation is expressed as:

bk =
n−1∑
m=0

Ck,m

(
Q

P

)m

a1 +
n−1∑
m=0

Uk,m

(
P

Q

)m

a2. (2.8)

Compared to load-dependent X-parameters, the Cardiff model accounts for the amplitude |A21| of the in-
cident wave at the output and separates the amplitude and phase of the large-signal incident wave into two
distinct components [17, 18]. Here, the ratio Q/P is introduced as an independent variable to represent
the phase difference. Model parameters C and U are determined by integrating and rotating phase oper-
ators of various orders, enabling the model to cover a broader range on the Smith chart. This expansion
significantly improves the prediction range by employing interpolation and extrapolation techniques.

However, one limitation of the Cardiff model is its inability to capture high-order harmonics of the re-
flected wave. As a result, it is primarily suited for simulations involving fundamental wave outputs, such
as AM-AM and AM-PM distortions or fundamental wave load-pull. In strongly nonlinear conditions, this
model may exhibit increased prediction errors. To address this, the single-input Cardiff model has been
extended to handle multi-tone and two-tone excitations, facilitating the prediction of mixed-order inter-
modulation products. The Cardiff model is also applicable to multi-input single-output (MISO) power
amplifiers. In such cases, where multiple excitation signals with varying amplitudes and phases interact,
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the model can be expressed as:

Bp,h = (∠A1,1)
h ·

∑
m

∑
n

∑
x

Kp,h,m,n,x · |A1,1|x · |A2,1|m ·
(∠A2,1

∠A1,1

)n

. (2.9)

In this formulation, subscripts x andm represent the amplitude variation ranges of the two signals, while
n denotes the range of phase variations. To ensure that each harmonic aligns with the fundamental sig-
nal phase, the Cardiff model normalizes all phases to the fundamental phase of A1,1. The coefficients
are separated into amplitude-dependent components, eliminating phase dependence and simplifying the
mathematical representation. This normalization enhances the time invariance of the model and reduces
computational complexity.

Experimental validation has demonstrated the Cardiff model’s excellent interpolation capabilities and
accuracy while significantly reducing the size of the required dataset. However, the re-normalization of
traveling waves adds complexity to parameter extraction. To further enhance the model’s versatility, DC
bias has been incorporated into the Cardiff model [19], improving its adaptability and reducing testing
overhead.

2.7 Summary

This chapter presented advanced behavioral modeling techniques for RF devices, starting with the black-
box behavioral modeling approach, which characterizes device behavior based on input-output relation-
ships. The limitations of traditional S-parameters in nonlinear conditions were addressed with Hot-S
parameters, which incorporate large-signal excitation and perturbation signals. The PHDmodel further
extended this concept by separating amplitude and phase components to describe harmonic effects. The
X-parameter model was introduced as a commercialized approach for large-signal nonlinear modeling,
while the Cardiff model expanded X-parameters with polynomial behavior modeling and truth look-up
tables, improving prediction accuracy for multi-tone and mixed-order systems. These techniques collec-
tively enhance the accuracy and efficiency of RF device characterization and design.
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3 Research Methodology

The previous chapter reviewed commonly used behavioral modeling methods and their development in
the context of RF device modeling, with a particular focus on advanced techniques such as S-parameters,
Hot-S parameters, PHD models, X-parameter models, and Cardiff models. These models have signifi-
cantly improved the accuracy and efficiency of characterizing nonlinear device behavior. To further ex-
plore the modeling mechanisms and practical applications of power amplifiers, this chapter introduces the
fundamental principles of power amplifiers and X-parameters, along with their relevance in large-signal
nonlinear modeling. It systematically presents the key steps involved in model extraction, including ex-
citation configuration, data acquisition, and parameter fitting, and further discusses the implementation
and validation of the models in simulation environments. This provides essential technical support for
subsequent device performance analysis and optimization design.

3.1 Introduction to the Fundamental Theory of Power Amplifiers

With the continuous advancement of semiconductor technology and the widespread application of elec-
tronic devices, power amplifiers (PAs) in wireless communication systems are evolving toward more sys-
tematic and industrialized technological development. Currently, PA research covers multiple aspects,
including the application of various types of transistors and system-level studies tailored for different
application scenarios [20]. This field encompasses devices, modeling, circuits, and testing. This section
introduces the classification of microwave transistor devices and the fundamental performance metrics
of power amplifiers.

3.1.1 Classification of Transistors

Microwave transistors serve as the core components in high-power amplifier (PA) systems, and their tech-
nical characteristics have a direct impact on the overall PA performance. Therefore, a solid understanding
of microwave transistor fundamentals is essential for anyone involved in device modeling.

Microwave transistors are generally categorized based on their structure and operating principles into two
main types: junction transistors and field-effect transistors (FETs). Junction transistors include bipolar
junction transistors (BJTs), typically fabricated with a single semiconductor material such as silicon,
and heterojunction bipolar transistors (HBTs), which use compound semiconductors [21]. BJTs, also
known as triodes, are made up of three regions (NPN or PNP), namely the emitter, base, and collector.
They are commonly used in the lower frequency range (0.1 GHz to 4 GHz) due to their low cost and
adequate performance. HBTs, on the other hand, are built with heterojunctions formed from different
semiconductor materials, such as InP or AlGaAs/GaAs. Compared to BJTs, HBTs offer higher emission
efficiency and faster carrier transport, allowing them to operate at frequencies exceeding 100 GHz in
some cases [21].

Field-effect transistors are unipolar devices in which current is carried by a single type of charge carrier—
electrons in n-channel FETs and holes in p-channel FETs. While BJTs are current-controlled devices,
FETs are controlled by voltage. Structurally, a FET consists of three terminals: gate, source, and drain.
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The current between the source and drain is modulated by the gate voltage, acting similarly to a voltage-
dependent resistor. Various types of FETs include MESFETs [22, 23] (metal-semiconductor FETs),
MOSFETs [24] (metal-oxide-semiconductor FETs), HEMTs [25] (high electron mobility transistors),
and PHEMTs [26] (pseudomorphic HEMTs).

Among these, HEMTs have seen rapid development in China and are considered a leading technology
in the FET domain. In particular, GaN-based HEMTs are regarded as highly promising for RF power
applications due to their excellent high-frequency, high-power, and high-efficiency performance. These
devices also offer substantial design flexibility, making them well-suited for modern wireless commu-
nications, radar systems, and RF power amplifiers. However, challenges remain: characteristics such
as self-heating, floating-body effects, and trap-related phenomena—stemming from the wide bandgap
properties of GaN—can significantly impact device behavior and pose difficulties for accurate modeling
.

3.1.2 Fundamental Performance Metrics

In radio frequency (RF) systems, the power amplifier serves as the final stage in the transmitter chain,
playing an essential role in boosting the power of modulated signals. Its performance has a direct impact
on the effectiveness and reliability of systems such as wireless communications, radar, and satellite links.
To meet the demands of coverage, efficiency, and signal fidelity, understanding the core performance
parameters of RF power amplifiers is critical.

During the design process, several key metrics require particular attention—most notably power gain,
the 1 dB compression point, and power-added efficiency (PAE). These indicators influence not only
the amplifier’s ability to deliver sufficient output power over distance but also the overall efficiency of
the system, its ability to preserve signal quality, and its potential to minimize interference with adjacent
signals. A precise evaluation and optimization of these parameters enable designers to develop RF circuits
that support robust, energy-efficient, and high-performance signal transmission [45].

Transmission gain and power gain are defined as follows:

Assume the input power is Pin, the available power from the source is Pav, and the output power is Pout.
Then, the transmission gain Gt and the power gain Gp are defined respectively as:

Gt =
Pout

Pav
(3.1)

Gp =
Pout

Pin
(3.2)

The following describes the 1 dB compression point and the third-order intercept point (IP3):

Power amplifiers exhibit different performance characteristics under varying input signal levels. When
operating under small-signal conditions, the gain remains relatively constant and linear. However, as the
input signal strength increases, nonlinearities between the input and output begin to emerge, causing the
gain to gradually decrease and eventually leading to output power saturation.

A critical parameter used to describe this nonlinear behavior is the 1 dB compression point (P1dB),
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which is defined as the output power level at which the gain drops by 1 dB from its ideal linear value.
It is commonly used to evaluate the linearity of power amplifiers and serves as an essential indicator of
system signal fidelity. The 1 dB compression point can be mathematically expressed as:

P1dB = Pout, uncompressed − 1 dB (3.3)

where P1dB is the output power at the compression point, and Pout, uncompressed is the ideal output power
without gain compression.

Another important indicator of linearity is the Third-Order Intercept Point (IP3). It is derived from
the intersection point between the extrapolated fundamental signal output line and the extrapolated third-
order intermodulation product line. The IP3 is widely used to assess the degree of intermodulation distor-
tion in power amplifiers. It represents the hypothetical output power level where the third-order products
would reach the same amplitude as the fundamental output signal, assuming both continue increasing
linearly.

A larger distance between the IP3 and the 1 dB compression point (and the saturation point) indicates bet-
ter amplifier linearity, as it reflects a wider dynamic range before significant nonlinear distortion occurs,
as illustrated in Figure 3.1.

Figure 3.1: Input–Output Characteristic Curve of the Power Amplifier

The power-added efficiency (PAE) and drain efficiency (DE) are two important metrics used to eval-
uate the performance of power amplifiers in terms of power conversion. These indicators reflect how
effectively a PA transforms the supplied DC power into usable RF output power, considering inevitable
losses during the conversion process.

The two efficiency metrics are defined as follows:

PAE =
Pout − Pin

PDC
× 100% (3.4)

DE =
Pout

PDC
× 100% (3.5)
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Here, Pout denotes the output RF power, Pin is the input RF power, and PDC represents the supplied DC
power.

PAE accounts for both the output and input RF powers, offering a broader view of the amplifier’s effective
power contribution. In contrast, DE only considers the direct conversion from DC to RF output. A higher
efficiency in either metric indicates better utilization of the supplied power, helping reduce energy losses
and improving the overall energy performance of the amplifier.

3.2 Introduction of X-Parameter Theory

A key challenge in nonlinear systems lies in handling frequency interactions, where the output at any
frequency depends on all input frequency components, violating the principle of superposition. To address
this complexity, we introduced a separation strategy that decomposes the input into large-signal and small-
signal components. The large-signal portion defines the device’s dynamic operating point, while small
signals are treated as perturbations around this state.

To simplify the characterization of nonlinear mappings, we compared static large-signal linearization
with dynamic large-signal linearization. A notable finding was that the small-signal output in dynamic
conditions depends not only on the small-signal input but also on its complex conjugate. This insight led
to a method for linearizing nonlinear scattering mappings under dynamic operating conditions.

The discussion then expanded on generalizing scattering parameters to accommodate single-tone sinu-
soidal inputs, culminating in the formulation of single large-tone X-parameters. We introduced the con-
cept of pseudowaves and demonstrated their role in capturing cross-frequency phase and time-invariance
properties. By using the phase of the largest input pseudowave as a reference, we simplified the nonlinear
mapping process.

To make the X-parameter more practical, we separated the large-signal input pseudowaves from small-
signal components and linearized the small-signal behavior around the large-signal operating point. This
approach reduced the computational complexity of characterizing the X-parameters, resulting in a man-
ageable single-tone formulation. Finally, we discussed the procedure for extracting X-parameters from
experimental measurements, using a canonical nonlinear mapping example to illustrate the process.

3.2.1 Linear Time-Invariant Electrical Networks

Network analysis is a well-established field with abundant references, including [27–29]. Here, we pro-
vide a concise discussion on the essential concepts relevant to this study. A two-port network example
is depicted in Fig. 3.2. In such systems, a linear time-invariant electrical network is often defined by
relating the current and voltage at its ports. If we take current as the independent variable, we can express
the system in terms of the impedance matrix Z:

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

][
I1

I2

]
. (3.6)
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Figure 3.2: Two-port electrical network

The elements Zba of the impedance matrix are determined as follows:

Zba =
Vb

Ia

∣∣∣∣
Ic=0, c ̸=a

. (3.7)

Here, the current through all ports, except the one being analyzed, is set to zero. This simplification
eliminates extraneous terms, reducing the equation to a form where Zba can be easily determined.

Alternatively, when voltage is treated as the independent variable, the admittance matrix Y is defined:

[
I1

I2

]
=

[
Y11 Y12

Y21 Y22

][
V1

V2

]
. (3.8)

Each admittance term Yba is calculated by:

Yba =
Ib
Va

∣∣∣∣
Vc=0, c ̸=a

. (3.9)

Both impedance and admittance matrices face challenges at high microwave frequencies. Specifically,
direct measurement becomes impractical due to the inability to terminate ports accurately with shorts or
opens. To address this, scattering parameters (S-parameters) are introduced, which provide a robust way
to describe network behavior at microwave frequencies.

Scattering parameters relate incident and reflected waves at the network ports rather than voltages and
currents. These parameters are defined as:[

B1

B2

]
=

[
S11 S12

S21 S22

][
A1

A2

]
, (3.10)

where A represents the incident wave, and B corresponds to the reflected wave.

The scattering matrix provides a complete description of network behavior, similar to the impedance
and admittance matrices. However, unlike the latter, scattering parameters are particularly suitable for
microwave applications as they work with traveling waves. These parameters can be measured directly
using a vector network analyzer (VNA), which simplifies the calibration and analysis process. Further
details on VNA operation and calibration are available in [30].

Lastly, the relationships between traveling waves, impedance parameters, and admittance parameters can
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be understood as linear transformations. This makes scattering parameters an invaluable tool for the
characterization of high-frequency networks.

3.2.2 Linearization of Nonlinear Mappings

In this section, we shift our focus to nonlinear scattering mappings and the commonly employed lin-
earization techniques used to simplify their complexity. Nonlinear systems are often linearized around
a dynamic operating point rather than a static one. This approach introduces a frequency-dependent
interaction between the large-signal and small-signal components. Specifically, positive and negative
frequency components of the small signal are handled differently, resulting in a nonlinear mapping that
is inherently nonanalytic. Consequently, the output depends on both the small signal’s complex phasor
and its conjugate component, which we will illustrate further.

Scattering parameters (S-parameters) are valid primarily for small-signal, linear, and time-invariant sys-
tems, or those that can approximate such conditions. However, in a nonlinear system, the output Y can
be expressed as a nonlinear function f of the input X:

Y = f(X). (3.11)

The relationship described in (2.7) is often complex and challenging to analyze. To simplify, the input
X is decomposed into two parts: a static term X0 and a small time-varying perturbation x, such that
X = X0 + x. This decomposition allows the output Y to be separated into:

Y = Y0 + y, (3.12)

where Y0 = f(X0) represents the response to the static term, and y denotes the perturbation caused by
x.

To approximate y, we expand Y using a Taylor series around X0:

Y = f(X0) + x
df

dX

∣∣∣∣
X=X0

+
1

2
x2

d2f

dX2

∣∣∣∣
X=X0

+ · · ·+ 1

n!
xn

dnf

dXn

∣∣∣∣
X=X0

. (3.13)

From this expansion, the perturbation y can be obtained as:

y = Y − Y0 = k1x+ k2x
2 + k3x

3 + . . . , (3.14)

where ki are the coefficients derived as:

ki =
1

i!

dif

dxi

∣∣∣∣
X=X0

. (3.15)

This linearization simplifies the characterization of nonlinear mappings by expressing the system’s re-
sponse as a summation of perturbation terms. Each term in the series corresponds to a specific order
of nonlinearity, providing a practical means to analyze and approximate the output behavior caused by
small-signal variations.
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3.2.3 Properties of Weakly Nonlinear Systems with Large-Signal Bias

In this section, we examine the characteristics of weakly nonlinear time-invariant systems. These devices
are defined by their stable, single-valued, and continuous output responses to input signals, specifically
when operating around a large-signal bias point. An example of such a device is shown in Equation (3.16),
where the output Y is modeled as a cubic polynomial function of the inputX:

Y = f(X) = k1X + k2X
2 + k3X

3. (3.16)

Whenwe apply the input signalX(t) = A1 cos(ω1t)+A2 cos(ω2t), whereωi = 2πfi, to Equation (3.16),
the output Y (t) consists of spectral components at frequencies that are linear combinations of f1 and f2,
as shown in Equation (3.17):

fout = nf1 +mf2, (3.17)

where n andm are integers. These output frequency components include harmonics of f1 and f2, as well
as intermodulation products where n ̸= 0 andm ̸= 0.

To illustrate, consider an input signal composed of a direct current (DC) component X0(t) and a small
signal x(t):

X0(t) = A0, (3.18)

x(t) =
δejωt + δ∗e−jωt

2
= |δ| cos(ωt+ arg(δ)), (3.19)

where A0 is a real constant and δ is a small complex phasor. Using this input, we linearize the response
y(t) about the operating point X0(t) = A0.This situation can be seen in Figure 3.3, as shown in Equa-
tion (3.20):

y(t) = Y (t)− Y0(t) ≈ f ′(X0(t))x(t), (3.20)

where f ′(A0), the first derivative of f(X) evaluated at X = A0, is given by:

f ′(A0) = k1 + 2k2A0 + 3k3A
2
0. (3.21)

Substituting into Equation (3.20), we obtain:

y(t) =
(
k1 + 2k2A0 + 3k3A

2
0

) δejωt + δ∗e−jωt

2
. (3.22)

The Fourier coefficient of the output at frequency ω, denoted as ŷ(ω), is derived as:

ŷ(ω) =

(
k1 + 2k2A0 + 3k3A

2
0

2

)
δ. (3.23)

Equation (3.23) highlights the linear dependence of ŷ(ω) on the small-signal amplitude and phase (δ)
while incorporating the nonlinear relationship with the DC operating point A0. This demonstrates the
interplay between the large-signal bias and small-signal dynamics in weakly nonlinear systems.

Our next example considers a large,see Figure 3.4, periodically time-varying signal added toX0(t). This
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Figure 3.3: There is alinear relationship between the small-signal input and the small-signal output

signal can be expressed as:

X0(t) = A0 +A1 cos(ωt), (3.24)

and the small signal as:

x(t) =
δejωt + δ∗e−jωt

2
= |δ| cos(ωt+ arg(δ)). (3.25)

At this point, the derivative of f(X0(t)) with respect to X0 is evaluated as:

f ′(X0(t)) = k1 + 2k2 (A0 +A1 cos(ωt)) + 3k3 (A0 +A1 cos(ωt))2 . (3.26)

Using trigonometric identities, we expand:

f ′(A0 +A1 cos(ωt)) =
(
k1 + 2k2A0 + 3k3A

2
0

)
+ (2k2A1 + 6k3A0A1) cos(ωt) +

3

2
k3A

2
1 cos(2ωt).

(3.27)

Substituting this result into the linearized response, we have:

y(t) =

[(
k1 + 2k2A0 + 3k3A

2
0

)
+ (2k2A1 + 6k3A0A1) cos(ωt) +

3

2
k3A

2
1 cos(2ωt)

]
δejωt + δ∗e−jωt

2
.

(3.28)
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Figure 3.4: The large-signal operating point, the corresponding output of the small-signal and large-
signal inputs

Grouping terms by frequency components, we find:

y(t) = [βδ + β∗δ∗] + [αδ + γ∗δ∗] ejωt + [γδ + α∗δ∗] e−jωt

+ βδej2ωt + β∗δ∗e−j2ωt + γδej3ωt + γ∗δ∗e−j3ωt, (3.29)

where the coefficients are defined as:

α =
1

2

(
k1 + 2k2A0 +

3

2
k3A

2
0 + 3k3A0A1 +

3

4
k3A

2
1

)
, (3.30)

β =
1

2

(
2k2A1 + 6k3A0A1 + 3k3A

2
1

)
, (3.31)

γ =
3

8
k3A

2
1. (3.32)

The Fourier coefficient of the output at frequency ω is:

ŷ(ω) =

(
1

2
k1 + k2A0 +

3

2
k3A

2
0 +

3

4
k3A

2
1

)
δ +

3

8
k3A

2
1δ

∗. (3.33)

When A1 → 0, the periodically time-varying signal vanishes, simplifying the analysis. Contributions
from higher harmonics at ω result from nonlinearities in the system. This analysis demonstrates that a
linearization around a large-signal dynamic operating point comprises mappings of both the large-signal
and small-signal components.
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3.2.4 Nonlinear Scattering Mappings

Having established the linearization of a general large-signal scattering mapping, we revisit the scattering
parameters introduced in Section 3.1, restating them as:

b1 = S11a1 + S12a2 (3.34)

b2 = S21a1 + S22a2. (3.35)

Given the linear nature of this system, the frequency components in the incident and scattered waves can
be independently analyzed and separated. Consequently, a1 and a2 can be assumed to represent spectral
content at a single frequency. Similarly, the same holds for b1 and b2. Extending this notion to N ports,
equations (2.35) and (2.36) become generalized as:

b1 = F1(a1, a2, . . . , aN ) (3.36)

b2 = F2(a1, a2, . . . , aN ) (3.37)

...

bN = FN (a1, a2, . . . , aN ). (3.38)

Here, F1, F2, . . . , FN represent nonlinear, time-invariant mappings of the incident waves at each of the
N ports. By relaxing the linear constraints, a1, a2, . . . , aN , b1, b2, bN are no longer modeled solely as
single sinusoids, as described in Section 3.3. For simplicity, we assume the incident wave at port 1 is a
sinusoidal signal with frequency f1, expressed as:

a1(t) = |A1,1| cos(2πf1t+ arg(A1,1)) = ℜ{A1,1 · ej2πf1t}, (3.39)

where A1,1 is a complex coefficient [12]. Thus, all frequencies in the system will be represented as
fk = kf1, where k is a non-negative integer. The incident wave at port q and the scattered wave at port
p can then be expressed as:

aq(t) =
K∑
l=1

|Aq,l| cos(2πlf1t+ arg(Aq,l)) (3.40)

bp(t) =
K∑
k=1

|Bp,k| cos(2πkf1t+ arg(Bp,k)). (3.41)

Here,K represents the total number of harmonics considered relevant in the system. The Fourier coeffi-
cientsAq,l andBp,k correspond to the l-th harmonic of port q and the k-th harmonic of port p, respectively.
Substituting (2.37) into its individual Fourier components, we obtain:

Bp,k = Fp,k(A1,1, A1,2, . . . , A1,K , A2,1, A2,2, . . . , A2,K , . . . , AN,1, AN,2, . . . , AN,K), (3.42)
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for p = 1, . . . , N and k = 1, . . . ,K . The coefficient Bp,k is often termed the scattered pseudowave at
the k-th harmonic of port p, while Aq,l represents the incident pseudowave at the l-th harmonic of port q.
It is important to note that both the scattering parameters in (3.35) and (3.36) and the nonlinear mapping
in (3.37) are influenced by the DC voltage or current bias at all device ports. While incident waves can
also include a DC component, DC effects are omitted here for simplicity. For a detailed discussion on
DC effects, see [27].

3.2.5 Time-Invariance of Nonlinear Scattering Mappings of Pseudowaves

The nonlinear scattering mapping, as expressed in Equation 3.37, is inherently time-invariant. This im-
plies that if the input signals are uniformly delayed by τ seconds, the resulting outputs will remain iden-
tical to those for the original inputs, but shifted by the same time τ .

In the frequency domain, such a delay corresponds to a phase shift. The magnitude of this phase shift
depends on the harmonic order. Specifically, a delay of τ seconds results in a phase shift of kτ for the k-th
harmonic, where k indicates the harmonic order. Thus, the nonlinear mapping Fp,k satisfies the property:

Fp,k(A1,1e
jθ, A1,2(e

jθ)2, . . . , A1,K(ejθ)K , . . . ) = Fp,k(A1,1, A1,2, . . . , A1,K , . . . )(ejθ)k, (3.43)

where θ = 2πfτ is the phase shift. Each harmonic’s contribution is scaled by a phase term (ejθ)k,
proportional to its harmonic order.

Defining P = ej arg(A1,1), the mapping simplifies to:

Fp,k(A1,1, A1,2, . . . , A1,K , . . . ) = Fp,k(|A1,1|, A1,2P
−2, . . . , A1,KP−K , . . . )P k. (3.44)

This transformation reduces the dimensionality of the parameter space by isolating the phase dependence
of A1,1 from the mapping.

3.2.6 Single Large-Tone X-Parameter Power Wave Relationship

Using the derived time-invariance property, a generalized X-parameter of type FB can now be defined.
The X-parameter describes the relationship between incident and scattered pseudowaves for large-tone
excitation. It is given by:

X
(FB)
p,k (|A1,1|, A1,2P

−2, . . . , A1,KP−K , . . . ) =
Fp,k(A1,1, A1,2, . . . )

P k
. (3.45)

From this definition, the scattered pseudowave Bp,k can be expressed as:

Bp,k = X
(FB)
p,k (|A1,1|, A1,2P

−2, . . . )P k. (3.46)

This formulation emphasizes the modularity of the X-parameter terms for efficient characterization. To
approximate nonlinear behavior, linearization techniques are applied as in Section 3.4. The expansion
leads to:
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Bp,k ≈ Fp,k(|A1,1|, 0, . . . )P k +
∑
q,l

∂Fp,k

∂Aq,l

∣∣∣
A1,1

Aq,lP
k−l +

∑
q,l

∂Fp,k

∂A∗
q,l

∣∣∣
A1,1

A∗
q,lP

k+l. (3.47)

To further simplify, partial derivatives are defined as new X-parameters:

X
(S)
p,k,q,l =

∂Fp,k

∂Aq,l

∣∣∣
A1,1

, X
(T )
p,k,q,l =

∂Fp,k

∂A∗
q,l

∣∣∣
A1,1

. (3.48)

Combining these terms, the final power wave relationship is:

Bp,k = X
(FB)
p,k (|A1,1|, DC, f)P k+

∑
q,l

X
(S)
p,k,q,l(|A1,1|, DC, f)Aq,lP

k−l+
∑
q,l

X
(T )
p,k,q,l(|A1,1|, DC, f)A∗

q,lP
k+l.

(3.49)

This final relationship captures the nonlinear interactions between harmonics and highlights the contri-
bution of each incident wave component.

This final relationship captures the nonlinear interactions between harmonics and highlights the contri-
bution of each incident wave component.

3.3 TCAD Modeling and X-Parameter Extraction of GaN HEMT

In the previous two subsections, we introduced the fundamental performance metrics of power amplifiers
and the basic principles of X-parameters. These concepts lay the theoretical foundation for analyzing
and modeling the nonlinear behavior of RF power devices. Building upon this foundation, the current
subsection focuses on the implementation of GaN HEMT device modeling within the TCAD (Technol-
ogy Computer-Aided Design) environment and the subsequent extraction of X-parameters. This process
enables the characterization of large-signal behavior with high accuracy, providing a reliable basis for
simulation and circuit-level design optimization.

3.3.1 GaN HEMTModeling in TCAD

GalliumNitride (GaN) High ElectronMobility Transistors (HEMTs) are widely recognized as a key tech-
nology in the field of high-frequency, high-power, and high-efficiency applications. Thanks to their wide
bandgap, high breakdown voltage, and excellent electron transport characteristics, GaN HEMTs signifi-
cantly outperform traditional silicon-based and GaAs-based devices in terms of power density, frequency
handling, and thermal reliability. They have become indispensable in areas such as 5G communications,
radar systems, and satellite transmitters.

To analyze the internal physics and predict electrical performance before physical fabrication, Technology
Computer-Aided Design (TCAD) offers a simulation-based approach rooted in fundamental semiconduc-
tor physics. TCAD enables detailed analysis of carrier transport, electric field distribution, breakdown
behavior, and thermal effects, thereby reducing development cycles and supporting design optimization.

Among mainstream TCAD platforms, tools such as Sentaurus (by Synopsys), ATLAS (by Silvaco),
and COMSOL Multiphysics are commonly used. In this study, we utilize Synopsys Sentaurus, which
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provides robust support for complex materials, advanced physical models, and both 2D and 3D device
simulations. Its ability to handle phenomena such as self-heating, interface traps, and high-field effects
makes it highly suitable for modeling GaN HEMTs.

The following section describes the step-by-step process of constructing a GaN HEMT model using
Sentaurus, including structural definition, material and doping setup, physical model selection, meshing,
and simulation configuration. The goal is to generate reliable electrical characteristics for subsequent
X-parameter extraction.

3.3.2 Modeling Procedure Overview

The TCAD modeling of a GaN HEMT involves several essential steps: defining the device structure,
assigning material properties and doping profiles, selecting appropriate physical models, configuring
simulation conditions, and analyzing the resulting data.

1. Device Structure Definition

The geometric structure is defined according to the target device specifications. A typical GaN HEMT
comprises a substrate (Si, SiC, or sapphire), a buffer layer, a GaN channel, an AlGaN barrier, and metal
contacts for the source, drain, and gate. Critical dimensions such as layer thicknesses, gate length, and
spacing directly influence device behavior.

Figure 3.5: Cross-sectional structure of a typical AlGaN/GaN HEMT

2. Material and Doping Profiles

Each layer is assigned its corresponding material parameters, including bandgap energy, mobility, per-
mittivity, and thermal properties. Common materials include GaN, AlGaN, and SiN. Accurate doping
profiles—such as background doping in the buffer and high-concentration doping near the source/drain—
must also be specified, as these determine carrier concentration and breakdown voltage.

3. Selection of Physical Models

To accurately capture the behavior of GaN HEMTs, several physical models are applied in simulation,
including drift–diffusion carrier transport, field-dependent mobility, self-heating (lattice heating) effects,
interface trap models, and bandgap narrowing with high-field velocity saturation. These models are
selectively enabled based on the simulation focus and the device’s intended application.
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4. Meshing and Simulation Setup

The simulation mesh is refined in critical areas such as the channel and junction regions to ensure numeri-
cal accuracy. Bias conditions are defined, typically with the source grounded, a sweeping voltage applied
to the gate, and a fixed drain bias. Environmental conditions such as temperature and convergence criteria
are also set at this stage.

5. Solving and Data Analysis

After configuration, the simulation is executed using Sentaurus Device. The outputs include dis-
tributions of current density, potential, electric field, and carrier concentrations. From these, key I–V
characteristics and performance metrics can be extracted to support further behavioral modeling and X-
parameter characterization.

3.3.3 X-Parameter Extraction Procedure

In the modeling of RF power devices, X-parameters have emerged as an extended scattering parameter
framework capable of capturing nonlinear behavior. They have been widely adopted for large-signal and
behavioral modeling in recent years. Traditionally, the extraction of X-parameters relies heavily on the
Harmonic Balance (HB) technique. This frequency-domain method interprets nonlinear circuit responses
as the superposition of multiple harmonic components, enabling the direct computation of steady-state
spectral responses. It is known for its computational efficiency and completeness in frequency informa-
tion and is well-suited to linear or weakly nonlinear circuits. As a result, HB has been extensively used
in commercial microwave CAD tools.

However, when applied in device-level simulations based on the Sentaurus TCAD platform, HB often en-
counters severe convergence issues. These challenges stem from several factors. First, GaN HEMTs ex-
hibit strong nonlinearities under high voltage bias, including significant self-heating, field-enhanced mo-
bility degradation, and carrier velocity saturation, which make it difficult for frequency-domain solvers
to converge to stable solutions. Second, Sentaurus requires fine mesh grids in critical regions such as
the junction and channel to maintain numerical accuracy. This dramatically increases the matrix size
and computational burden for HB solvers, exacerbating instability [31]. Finally, TCAD simulations fre-
quently involve coupling multiple complex physical models—such as lattice heating, interface traps, and
drift-diffusion equations—which leads to highly nonlinear equation systems and complicates conver-
gence due to poor initial approximations.

To address these limitations, this work proposes a time-domain transient simulation combined with multi-
harmonic least-squares fitting as an alternative X-parameter extraction method. Specifically, a periodic
input signal (e.g., single-tone or two-tone) is applied using Sentaurus Device, and the transient re-
sponse waveform is collected after the system reaches steady periodic operation. Instead of applying
a direct Fourier transform, the output waveform is approximated by a composite function composed of
multiple harmonic basis terms. The coefficients of this model, including amplitude and phase of each har-
monic, are extracted using the least-squares method, allowing the nonlinear mapping between excitation
and response to be effectively identified and modeled in the X-parameter framework.

This approach offers several advantages: it avoids dependence on frequency-domain solvers, thus over-
coming HB convergence bottlenecks under strong nonlinearity; it preserves harmonic information using
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time-domain results; and it allows flexible model complexity control to balance accuracy and computa-
tional cost. In summary, the transient + least-squares-based X-parameter extraction method introduced
in this work provides a viable, robust, and platform-compatible solution for nonlinear modeling of GaN
HEMTs, supporting large-signal simulation and behavioral modeling with high reliability.

To provide a rigorous theoretical foundation for the X-parameter extractionmethod proposed in this work,
we present a newly formulated harmonic fitting approach based on transient simulation data. This method
is designed to process real-valued waveforms from TCAD simulations by modeling the signal as a sum
of harmonic sine and cosine functions, and estimating the amplitude and phase of each component via
least squares fitting. It avoids the convergence issues often encountered with frequency-domain harmonic
balance (HB) solvers under strong nonlinear conditions.

Unlike the traditional HB method, which solves nonlinear responses directly in the frequency domain
using complex exponential basis functions, the approach proposed here is entirely time-domain-based. It
relies only on waveform samples and basic trigonometric modeling, thus providing a numerically stable
and broadly applicable alternative for large-signal nonlinear characterization.

Assume that the output waveform f(t) of a power amplifier under periodic large-signal excitation can be
approximated as:

f(t) = a0 +

N∑
k=1

ak cos(kω0t+ ϕk) (3.50)

where a0 is the DC offset, ak and ϕk are the amplitude and phase of the k-th harmonic, and ω0 is the fun-
damental angular frequency. Since this model contains nonlinear phase terms, we introduce an equivalent
linear representation:

f(t) = a0 +

N∑
k=1

[Ak cos(kω0t) +Bk sin(kω0t)] (3.51)

with coefficients Ak = ak cos(ϕk) and Bk = −ak sin(ϕk). Given M time samples from the transient
simulation, i.e., f(t1), f(t2), . . . , f(tM ), the sampled data can be expressed as an overdetermined linear
system:

f = X · θ + e (3.52)

where f ∈ RM×1 is the sampled data vector, θ ∈ R(2N+1)×1 is the parameter vector containing a0, Ak, Bk,
and X ∈ RM×(2N+1) is the design matrix consisting of basis functions. The optimal solution can be ob-
tained using the least squares criterion:

θ = (XTX)−1XT f (3.53)

Once Ak and Bk are obtained, the original harmonic amplitudes and phases are recovered by:
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ak =
√

A2
k +B2

k, ϕk = − arctan
(
Bk

Ak

)
(3.54)

This method guarantees the uniqueness of the solution and minimizes the squared fitting error. It is both
numerically robust and easy to implement. Figure 3.6 illustrates the waveform sampling process and
matrix formulation used in this proposed method.

It is worth emphasizing that this modeling and derivation approach was independently developed in this
study. The motivation was to overcome the severe convergence limitations observed in TCAD simula-
tions using harmonic balance solvers when modeling strongly nonlinear devices. The proposed approach
provides a reliable, frequency-domain-free alternative for extracting harmonic characteristics from tran-
sient responses, with strong applicability in nonlinear RF device modeling.

Figure 3.6: Proposed method: transient waveform samples are fitted using harmonic basis via least
squares

3.3.4 Development of an Artificial Neural NetworkModel for TCAD-Based GaNHEMT

Artificial neural networks are mathematical models capable of approximating complex nonlinear func-
tions. Their advantage lies in their ability to learn and extract features from large-scale, high-dimensional
data. Compared with traditional linear models, neural networks use multiple interconnected neurons to
fit the relationship between input and output. Each neuron applies a nonlinear activation function to its
inputs, enabling the network to capture complex patterns.

Let the input vector be x = (x1, x2, . . . , xn)
T and the output vector be y = (y1, y2, . . . , ym)T , where the

neural network model can be expressed as:

y = f(x,w, b) (3.55)

To train the neural network parameters w and b, a dataset containing input features and corresponding

28



output labels is required. The network minimizes the error (loss) between predicted and actual values
by updating weights iteratively using optimization algorithms such as gradient descent. The following
sections introduce three key components: activation functions, loss functions, and backpropagation.

3.3.4.1Nonlinear Activation Functions

3.3.4.0.1 Tanh Function The Tanh (hyperbolic tangent) activation function maps input values to the
range [−1, 1], centered at zero. It is defined as:

y = tanh(x) =
ex − e−x

ex + e−x
(3.56)

Figure 3.7: Tanh Activation Function

Although smooth, the Tanh function can lead to vanishing gradients for large or small inputs, which may
hinder training convergence.

3.3.4.0.2 ReLU Function The Rectified Linear Unit (ReLU) is widely used due to its simplicity and
efficiency:

y = ReLU(x) =

x, x ≥ 0

0, x < 0
(3.57)

ReLU allows positive signals to pass unchanged while setting negatives to zero, which may result in the
”dead neuron” problem.

3.3.4.0.3 Leaky ReLU Function Leaky ReLU addresses the dead neuron issue by allowing a small
negative slope α:

y = Leaky ReLU(x) =

x, x ≥ 0

αx, x < 0
(3.58)

The typical value of α is 0.01. Leaky ReLU retains some gradient in the negative region, thus improving
robustness.
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Figure 3.8: ReLU Activation Function

Figure 3.9: Leaky ReLU Activation Function
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3.3.4.2Optimization Criteria

The objective of neural network training is to minimize the loss function Loss(w, b):

w, b = argmin
w,b

Loss(w, b) (3.59)

3.3.4.0.4 Mean Squared Error (MSE) MSE is a standard loss for regression problems, sensitive to
large errors:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.60)

3.3.4.0.5 MeanAbsolute Error (MAE) MAE computes the average absolute difference, more robust
to outliers:

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.61)

3.3.4.3Backpropagation Algorithm

Backpropagation computes gradients of the loss function with respect to each parameter and updates
weights using gradient descent. For a network with L layers and activation functions σ(l), the forward
pass is:

ŷ = σ(L)(w(L)σ(L−1)(. . . σ(1)(w(1)x))) (3.62)

The loss gradient with respect to the output is:

∂Loss
∂ŷ

= ŷ − y (3.63)

Gradient at the output layer:

δ(L) =
∂Loss
∂ŷ

· σ(L)′(z(L)) (3.64)

Gradient at hidden layers (1 ≤ l ≤ L− 1):

δ(l) = (w(l+1)T δ(l+1)) · σ(l)′(z(l)) (3.65)

Gradient of weights:
∂Loss
∂w(l)

= δ(l)(a(l−1))T (3.66)

Weight update rule:

w
(l)
new = w(l) − η

∂Loss
∂w(l)

(3.67)

where η is the learning rate controlling update step size.
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3.3.5 Incremental Learning-Based X-Parameter Prediction

As modeling precision demands increase for GaN HEMT devices, X-parameters have emerged as an
effective method for capturing the nonlinear behavior of RF transistors under large-signal excitation.
However, traditional offline training approaches require collecting all data beforehand, which limits
adaptability to changing device conditions. To overcome this limitation, we propose an incremental
learning framework combined with neural networks to support continuous and efficient X-parameter
modeling.

Incremental learning allows a model to dynamically update its parameters while continuously receiving
new data, without retraining from scratch. The goal is to acquire new knowledge θnew from new data
Dnew while retaining prior knowledge θold. This learning objective can be mathematically expressed as:

θnew = argmin
θ

(Lnew(θ;Dnew) + λ · Ω(θ, θold)) (3.68)

where:

• Lnew is the loss function on the new dataset, such as MSE or Huber Loss;

• Ω(θ, θold) is a regularization term penalizing deviation from old knowledge;

• λ is a trade-off coefficient balancing knowledge stability and adaptability.

This formulation reflects the stability–plasticity trade-off essential to incremental learning, allowing the
model to generalize to new conditions without catastrophic forgetting.

In this work, we fine-tune a pretrained neural network to adapt to new conditions. Initial training is based
on simulated dataD0 generated by TCAD, yielding a base model θ0. Upon arrival of new data, the model
is updated using a few epochs or low learning rate fine-tuning:

θt ← θt−1 − η · ∇θL(f(x; θt−1), y) (3.69)

where η is the learning rate, f(·) is the network, and L is the loss on the new data.

To further improve model stability, we integrate the Elastic Weight Consolidation (EWC) method.
EWC introduces a regularization term that preserves important parameters from previous tasks by penal-
izing deviations weighted by the Fisher Information Matrix Fi:

LEWC(θ) = Lnew(θ) +
λ

2

∑
i

Fi(θi − θ∗i )
2 (3.70)

where θ∗i are parameters from the previous model andFi reflects their importance. This strategy mitigates
catastrophic forgetting by preserving critical weights.

Compared to retraining from scratch, our method significantly reduces training time and memory us-
age while adapting to changing operating conditions. It enables real-time or near real-time behavioral
modeling of GaN HEMTs, and lays a practical foundation for future intelligent modeling in RF systems.

32



Figure 3.10: Incremental Learning Framework for X-Parameter Prediction

3.4 Summary

This chapter systematically addressed the behavioral modeling of RF power amplifiers (PAs), combining
theoretical foundations, device-level simulation, data extraction, and machine learning–based prediction.
It lays a comprehensivemodeling framework that integrates physical insight with data-driven approaches,
forming the technical basis for the subsequent analysis and design chapters.

The chapter began by introducing fundamental performance metrics of PAs, including power gain, 1 dB
compression point, third-order intermodulation intercept point (IP3), and power-added efficiency (PAE).
These metrics serve not only as critical indicators of amplifier performance but also provide quantitative
references for non-linear modeling and verification. We further reviewed the theoretical background
of X-parameters, which extend traditional S-parameters into the large-signal nonlinear domain and are
widely applied for high-frequency behavioral modeling.

For device-level modeling, this chapter utilized Synopsys Sentaurus TCAD tools to simulate a GaN
HEMT structure under multiple bias conditions. Key modeling steps—including geometry construction,
material configuration, doping setup, meshing, and physical model selection (e.g., mobility degradation,
thermal effects, trap states)—were described in detail. Due to the limitations of harmonic balance (HB)
methods in handling strong nonlinearity within Sentaurus (such as poor convergence), a novel time-
domain fitting approach was proposed. The method reconstructs the output signal using cosine-based
harmonic superposition and least-squares fitting, effectively extracting amplitude and phase components
of the X-parameters without relying on frequency-domain solvers.

At the data-driven modeling level, an artificial neural network (ANN)–based behavioral model was pro-
posed to predict X-parameter behavior. Various activation functions (Tanh, ReLU, Leaky ReLU) and
loss functions (MSE, MAE, Huber Loss) were incorporated to enhance learning flexibility and general-
ization. The backpropagation algorithm was mathematically described, showing how model parameters
are optimized iteratively to reduce the error between predicted and target outputs.

To address the need for continuous learning and adaptability in real-world deployment, this chapter in-
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troduced an incremental learning framework for updating the ANN model with newly generated data.
Specifically, the Elastic Weight Consolidation (EWC) method was adopted to prevent catastrophic for-
getting by penalizing parameter deviations based on their importance. A regularized objective function
incorporating the Fisher information matrix was derived to balance knowledge retention and new data
adaptation.

Finally, a complete flowchart of the incremental learning–based X-parameter prediction system was pre-
sented to illustrate the continuous learning process, from initial model training to dynamic fine-tuning
and model refinement.

In summary, this chapter establishes a unified, multi-level modeling strategy for GaN HEMT–based PAs
that integrates physics-based simulation, harmonic fitting, deep learning prediction, and continual learn-
ing techniques. The framework provides a robust foundation for advanced modeling, error analysis, and
circuit-level implementation, as explored in the following chapters.
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4 Experimental Results and Discussion

Gallium Nitride (GaN) HEMT devices are prone to defect formation due to varying levels of impurity
incorporation during the fabrication process [32]. These defects can introduce significant variability in
device behavior, particularly under large-signal operating conditions, affecting both DC and AC perfor-
mance. As a result, large-signal modeling of GaN HEMTs has become a crucial bridge between semi-
conductor process technology and circuit-level design. Accurate modeling is essential for the successful
implementation of GaN-based power amplifier (PA) circuits.

However, conventional physical models often suffer from limitations in practicality. Their structural
complexity, rooted in nonlinear partial differential equations (PDEs), leads to high computational over-
head and extended simulation times. Moreover, analytical models typically require intensive process-
dependent calibration and iterative correction, making them both time-consuming and difficult to gener-
alize across technologies.

To overcome these challenges, this work adopts a TCAD-basedmodeling approach. TechnologyComputer-
Aided Design (TCAD) enables precise characterization of GaN HEMTs at the physical level by incorpo-
rating material, geometry, and field interaction effects. By using TCAD-generated data as the foundation,
this chapter focuses on developing and validating behavioral models that more accurately capture the de-
vice’s nonlinear characteristics, offering a scalable and efficient alternative for large-signal modeling.

4.1 GaN HEMT Device Modeling Using TCAD

In order to accurately simulate the electrical characteristics of GaN HEMT devices, a comprehensive
TCAD model was constructed that includes multiple layers and considers thermal effects. Figure 4.1
presents the cross-sectional view of the GaN HEMT structure, which includes an AlGaN barrier, GaN
channel, AlGaN buffer, AlN seed, and oxide layers. The thermal conductivities (kth) of each material are
defined to enable self-heating simulation.

To investigate the influence of different physical models on the device’s behavior, the output ID-VDS

characteristics were simulated under three models: Drift-Diffusion (DD), Thermodynamic (Thermo),
and Hydrodynamic (Hydro). As shown in Figure 4.2, the DD model exhibits the highest drain current,
while Thermo and Hydro models demonstrate the reduction due to thermal feedback and carrier energy
effects.

Subsequently, the ID-VG transfer curves were extracted for varying drain voltages (VDS = 0 V, 5 V, 10 V,
15 V, 20 V). Figure 4.3 shows the consistency of threshold voltage and peak transconductance across
voltage levels, demonstrating stable channel formation. The curves remain consistent across thermal
models, indicating that the DD model is sufficiently accurate for small-signal simulations.

Finally, the output ID-VDS curves were obtained for a set of gate voltages ranging from -4 V to +4 V. Fig-
ure 4.4 reveals that with increasing gate bias, the device gradually enters saturation, and the current level
increases linearly with VDS before compressing, which aligns with the expected large-signal performance.

Based on the above results, the Drift-Diffusion (DD) model is selected for subsequent behavioral mod-
eling, balancing computational efficiency and predictive accuracy.
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Figure 4.1: Cross-sectional structure of the GaN HEMT model with defined thermal conductivities.

Figure 4.2: Output characteristics under DD, Thermo, and Hydro models. DD model shows higher
drain current due to the absence of thermal effects.
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Figure 4.3: Transfer characteristics (ID-VG) under different drain voltages. Minimal variation confirms
the robustness of the channel behavior.

Figure 4.4: Output characteristics (ID-VDS) at different gate voltages (VG = -4 V to +4 V).
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4.2 X-Parameter Extraction for GaN HEMT

4.2.1 X-Parameter Extraction Circuit for GaN HEMT

To accurately characterize the nonlinear behavior of GaN HEMT devices under large-signal conditions,
a dedicated simulation circuit for X-parameter extraction is designed, as illustrated in Fig. 4.5. This
dual-path structure separately applies large-signal excitation and small-signal probing, aligning with the
requirements of harmonic excitation and scattering response modeling, and serves as a crucial foundation
for X-parameter-based behavioral modeling.

Figure 4.5: Schematic diagram of X-parameter extraction circuit for GaN HEMT

In this testbench, both large and small signal sources are connected through 50Ω matching resistors to
ensure impedance matching and suppress signal reflection. Inductors of 1µH are used to decouple DC
bias from the RF paths at both the gate and drain terminals. Capacitors of 1µF are employed to block
DC while allowing high-frequency signals to pass through.

The simulation conditions are configured as follows:

• Gate bias (Vg): 2V and 4V;

• Drain bias (Vd): 10V and 20V;

• Excitation frequency range: 1 GHz to 6GHz, with a step size of 0.2GHz;

• Large-signal amplitude sweep: 0 V to 8V, in 0.2V steps;

• Total simulation sets: 4800 data points.

This configuration ensures comprehensive coverage of the device’s dynamic response under various bi-
asing, frequency, and excitation conditions. The extracted X-parameters contain rich complex-domain
information linking incident and reflected waves at multiple harmonics. They capture key nonlinear phe-
nomena such as harmonic interaction, gain compression, and memory effects, making them an effective
bridge between physical-level TCAD simulations and system-level behavioral modeling.
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4.2.2 X-Parameter Extraction Process

To assess the nonlinear behavior of the GaN HEMT device under large-signal excitation, we selected a
representative bias condition with gate voltage Vg = −4V and drain voltage Vd = 15V. A large-signal
sinusoidal excitation with a frequency of 2GHz and an amplitude of 4V was applied. This setup provides
a suitable environment for examining the harmonic content and convergence behavior of the device under
strong nonlinearity.

Figure 4.6 shows the gate voltage (Vgs) and gate current (Ig) waveforms. It can be observed that the
voltage waveform is approximately sinusoidal, while the gate current exhibits a slight asymmetry due
to nonlinear effects. Figure 4.7 displays the corresponding drain voltage (Vds) and drain current (Ids)
waveforms, where the nonlinear nature of Ids is clearly reflected in its waveform distortion.

To extract the harmonic content of Vds and Ids, we applied a least-squares fitting method to the transient
waveform data. The fitting results are shown in Figure 4.8 and Figure 4.9. The fitted curves align closely
with the original data, demonstrating the validity and accuracy of the harmonic decomposition method
used in this work.

Based on the time-domain data and fitted harmonics, we further derived the amplitude and phase spectra
of the fundamental and higher-order harmonics. Figure 4.10 and Figure 4.11 present the amplitude and
phase spectra of Vds, respectively, while Figure 4.12 and Figure 4.13 show the corresponding spectra for
Ids. These spectral results are essential inputs for constructing the X-parameters that capture the nonlinear
large-signal behavior of the device.

Figure 4.6: Gate voltage (Vgs) and gate current (Ig) waveform under large-signal excitation.

4.2.3 Optimized Harmonic Parameters Extraction

To evaluate the effectiveness of the cosine-based least squares fitting method for modeling nonlinear
responses under large-signal excitation, we extracted the DC component and the first seven harmonics
(amplitude and phase) for both Vds and Ids from the fitted waveform data. The extracted harmonic
coefficients are summarized in Tables 4.1 and 4.2.

As shown in the results, all fitting errors are below 0.001, which indicates that the fitting method achieves
high accuracy. The close match between the fitted waveform and the original signal demonstrates the
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Figure 4.7: Drain voltage (Vds) and drain current (Ids) waveform under large-signal excitation.

Figure 4.8: Fitted Vds waveform using the least-squares method.

Figure 4.9: Fitted Ids waveform using the least-squares method.

Figure 4.10: Vds harmonic amplitude spectrum.
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Figure 4.11: Vds harmonic phase spectrum.

Figure 4.12: Ids harmonic amplitude spectrum.

Figure 4.13: Ids harmonic phase spectrum.
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method’s reliability in representing nonlinear behavior and transient responses of GaN HEMT devices
under large-signal conditions.

Table 4.1: Optimized Harmonic Parameters for Vds

Harmonic Amplitude Phase (radians) Fitting Error
DC 14.6327 — —
1st 1.2574 -188.8308 0.0004
2nd 0.3622 -133.0594 0.0006
3rd -0.1592 6.2116 0.0002
4th -0.0244 13.3970 0.0003
5th 0.0103 -2.7735 0.0005
6th 0.0096 0.7328 0.0004
7th 0.0036 4.3499 0.0003

Table 4.2: Optimized Harmonic Parameters for Ids

Harmonic Amplitude Phase (radians) Fitting Error
DC 0.0086 — —
1st 0.0252 9.0835 0.0005
2nd -0.0067 5.1672 0.0003
3rd 0.0032 -0.0670 0.0004
4th -0.0008 0.8148 0.0002
5th 0.0002 0.4252 0.0003
6th -0.00002 0.6816 0.0004
7th 0.00008 1.2860 0.0002

To extract complete X-parameters for GaNHEMT under large signal excitation, this study adopts a three-
tone superposition method, which is theoretically sufficient to separate the linear and nonlinear response
terms. The general expression for the X-parameter expansion is given by:

Bik = X
(F )
ik (A11)P

k +X
(S)
ik (d|A11|)P kaji +X

(T )
ik (d|A11|)P k+1aji

Here, P k represents the k-th harmonic of the large signal at port 1, while aji denotes the small signal
stimulus injected during the superposition process. The three key terms represent: the large-signal-only
contribution X(F ), the linear response to the small signal X(S), and the second-order modulation com-
ponent X(T ).

To extract these components, three independent simulations are conducted:

1. Only the large signal is applied.

2. A large signal is applied along with a small signal in-phase (0° phase difference).

3. A large signal is applied along with a small signal in quadrature (90° phase difference).
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Figure 4.14 and Figure 4.15 show the output voltage and current waveforms under these three conditions.
It is evident that the introduction of small signals induces subtle differences in the waveforms. These
variations are the key to extracting the small-signal response embedded within the large-signal excitation.

Figure 4.14: Drain Voltage under Large Signal Only and Combined Signals (Phase 0° and 90°)

Figure 4.15: Drain Current under Large Signal Only and Combined Signals (Phase 0° and 90°)

By applying least-squares fitting across these three simulations, the system of equations is solvable, yield-
ing the three X-parameter components: X(F ), X(S), and X(T ). The obtained results demonstrate excel-
lent agreement, with back-calculated output signals exhibiting minimal errors (on the order of 10−17)
compared to the original simulated values. This confirms the accuracy of the coefficient extraction
method and validates the feasibility of using transient simulations to derive X-parameters in a TCAD-
based modeling framework.
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4.3 GaN HEMT Artificial Neural Network Model Development result

4.3.1 Incremental Learning for X-Parameter Prediction

To enhance the flexibility and accuracy of X-parameter modeling under diverse operating conditions,
we developed an artificial neural network (ANN) prediction framework using incremental learning tech-
niques. This approach allows the model to be updated with new data batches over time without retraining
from scratch, effectively addressing the problem of catastrophic forgetting common in standard neural
networks.

The overall modeling and training workflow is shown in Figure 4.16. Initially, the neural network is
trained on a portion of the dataset. As new data becomes available, the model is updated incrementally
using Elastic Weight Consolidation (EWC) to retain important parameters from previous tasks, while
learning new X-parameter mappings.

Figure 4.16: Workflow of X-parameter prediction using incremental learning

In total, 4800 sets of simulation data were generated using a TCAD-based GaNHEMTmodel across vary-
ing gate and drain voltages and signal amplitudes. The model was trained incrementally and evaluated
on unseen samples for predictive performance.

Table 4.3 presents a portion of the prediction results for both Vds and Ids. The predicted values show
excellent agreement with the ground truth, and the corresponding errors remain very low—demonstrating
the reliability of our approach in capturing nonlinear X-parameter behavior.
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Table 4.3: Sample prediction results for Vds and Ids

Vds (True) Vds (Pred) Error Ids (True) Ids (Pred) Error

0.58962 0.57269 0.01694 0.08809 0.08821 0.00012
0.00527 -0.02502 0.03030 0.09079 0.08850 0.00229
0.15381 0.14488 0.00893 0.08297 0.08369 0.00072
-0.01496 0.00216 0.01713 -0.02597 -0.02485 0.00112
-0.60951 -0.60523 0.00428 -0.09691 -0.09474 0.00217

4.4 Summary

Chapter Summary

This chapter presents a comprehensive study on GaN HEMT modeling and X-parameter extraction un-
der large-signal conditions. Starting with TCAD simulation, we explored various physical models and
selected the Drift-Diffusion approach as a balance between accuracy and computational efficiency. A
dedicated extraction circuit was designed, and a time-domain fitting method based on least squares was
used to replace traditional harmonic balance techniques, thus overcoming convergence issues and im-
proving the stability of parameter extraction.

Following this, a three-tone excitation schemewas employed to fully extract the X-parameter coefficients.
The reconstructed waveforms showed negligible error compared to the simulation data, validating the
reliability of the method.

Finally, we introduced artificial neural networks and incremental learning to predict X-parameters based
on 4800 simulation samples. The proposed model demonstrated high prediction accuracy for both Vds

and Ids, showing promise for future behavioral modeling and device-level prediction tasks.
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5 Conclusion and Recommendations

This thesis presented a comprehensive investigation into the modeling and prediction of large-signal be-
havior in GaN HEMT devices, using a hybrid approach that combines physics-based TCAD simulations
with data-driven artificial neural network (ANN) techniques.

Firstly, the study addressed the limitations of traditional physical models—particularly those relying on
harmonic balance (HB) methods—when applied within the TCAD environment. These limitations in-
clude poor convergence due to high nonlinearity, complex mesh refinement, and coupling of multiple
physical models. To overcome this, a novel time-domain method based on transient simulation and har-
monic fitting using the least-squares technique was introduced. This approach avoids frequency-domain
solvers altogether, enabling numerically stable and accurate X-parameter extraction even under strong
nonlinear conditions:contentReference[oaicite:0]index=0.

Secondly, we developed a dedicated extraction circuit and employed three-tone simulations to decouple
linear and nonlinear response components. The reconstructed waveforms showed excellent agreement
with the simulated data, validating the proposed X-parameter extraction technique.

To extend themodeling capabilities, we introduced an artificial neural network framework trained on 4800
sets of TCAD-generated data. TheANNwas designed to predict X-parameters under varying bias and sig-
nal conditions. To ensure scalability and adaptability, incremental learning via Elastic Weight Consolida-
tion (EWC) was integrated, allowing the model to retain previously learned knowledge while adapting to
new data. The predicted results of Vds and Ids were consistent with the reference values, with minimal er-
rors, demonstrating strong generalization and prediction capabilities:contentReference[oaicite:1]index=1.

The major contributions of this thesis can be summarized as follows:

• A novel X-parameter extraction method based on time-domain simulations and least-squares har-
monic fitting, which overcomes the convergence bottlenecks of HB solvers in TCAD.

• Integration of TCAD simulation with behavioral modeling, enabling accurate device-level predic-
tion while preserving physical insight.

• The use of incremental learning to construct a continually improving ANN framework, which sup-
ports dynamic updates and avoids catastrophic forgetting.

• Demonstration of high accuracy and reliability in bothmodel fitting andANNprediction, supported
by extensive numerical validation.

Recommendations for Future Work:

• Explore the integration of more advanced deep learning architectures (e.g., transformers or graph
neural networks) to improve nonlinear mapping accuracy in multi-port or broadband scenarios.

• Extend the modeling framework to include memory effects and thermal feedback mechanisms,
further enhancing the fidelity of GaN HEMT behavioral models.

• Investigate real-time model adaptation strategies in hardware-in-the-loop environments, accelerat-
ing the deployment of data-driven models in RF system design.
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• Apply the developed methods to other compound semiconductors such as GaAs and InP, validating
the generality of the proposed approach across device technologies.

• Incorporate fabrication-induced variability and process uncertainty into the model, potentially us-
ing probabilistic neural networks to predict distributions rather than single deterministic outputs.

In conclusion, this work provides a robust, scalable, and practical modeling strategy that bridges the gap
between physics-based device modeling and efficient behavioral prediction. It lays a strong foundation
for future research in intelligent semiconductor modeling, system-level co-design, and accelerated RF
design workflows.
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