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ABSTRACT

Prostate cancer (PCa) remains a significant global health concern, with transrectal ultrasound (TRUS)
commonly used for its detection due to its accessibility and cost-effectiveness. However, TRUS imaging
is limited by speckle noise and low contrast, which compromise diagnostic accuracy. This study inves-
tigates the effect of preprocessing techniques—normalization, despeckling, and their combination—on
TRUS image quality and texture feature stability to enhance computer-aided diagnosis (CAD) of PCa. A
total of 1,316 texture features, including first-order statistics, shape descriptors, and higher-order matrices
(GLCM, GLDM, GLRLM, GLSZM, NGTDM), were extracted from automatically segmented prostate
regions. Image quality was evaluated using four quantitative metrics, demonstrating that the combina-
tion of normalization andNon-LocalMeans Filtering (NLMF) significantly improved contrast and feature
consistency. Among the extracted features, 318 showed high stability (Spearman correlation coefficient ρ
≈ 0.9–1.0) across preprocessing schemes. Using these stable features, a Support Vector Machine (SVM)
classifier achieved an area under the curve (AUC) values of approximately 0.92, indicating strong di-
agnostic performance. In conclusion, appropriate preprocessing—particularly normalization combined
with NLMF—enhances TRUS image quality and preserves diagnostically relevant texture features, sup-
porting more accurate and reliable CAD systems for prostate cancer detection.

Keywords: Prostate Ultrasound, Prostate Cancer, Pre-proccessing, Texture Analysis, Transrectal Ultra-
sound

v



TABLE OF CONTENTS

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xii

1 Introduction 1
1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 10

3 Research Methodology 15
3.1 Acquisition of Ultrasound Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Types of Image Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Speckle Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Salt and Pepper (Impulse) Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Intensity Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Average Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Bilateral Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Median Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.5 Wiener Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.6 Non-Local Means Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Texture Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Quality Evaluation and Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Classification Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



4 Results 30

5 Conclusion and Discussion 48
5.1 Implications for CAD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

BIBLIOGRAPHY 57

APPENDICES 67

I List of Selected Stable Texture Features 68

vii



LIST OF TABLES

4.1 The median (±IQR) values of texture features extracted from segmented PCa ultrasound
images (Nr = 382), including O, N, and images further processed with various filtering
methods (AF, BF,MF,WF, andNLMF) based on both the original and normalized images.
The extracted features include OGCC, LFI, W1GSS, W5FE, W8GDS, and GGCI. . . . . 32

4.2 Texture features were extracted as median (±IQR) values from cancerous regions seg-
mented from PCa ultrasound images (Nr = 382), including original images (O), normal-
ized images (N), and images further processed with various filtering methods (AF, BF,
MF, WF, and NLMF) based on both the original and normalized images. The extracted
features included OGCC, LFI, W1GSS, W5FE, W8GDS, and GGCI. . . . . . . . . . . . 33

4.3 Texture features were extracted as median (±IQR) values from normal regions segmented
from PCa ultrasound images (Nr = 382), including original images (O), normalized im-
ages (N), and images further processed with various filtering methods (AF, BF, MF, WF,
and NLMF) based on both the original and normalized images. The extracted features
include OGCC, LFI, W1GSS, W5FE, W8GDS, and GGCI. . . . . . . . . . . . . . . . . 34

4.4 Quality EMmedian(±IQR) values for all the segmented ultrasound prostate images (Nr =
382) extracted between the O and all various filtering methods (AF, BF, MF, WF, NLMF). 35

4.5 Shapiro–Wilk test p-values for each texture feature across different preprocessing meth-
ods. All p-values are reported in scientific notation. A p-value less than 0.05 indicates
that the null hypothesis of normality is rejected, suggesting the corresponding feature
does not follow a normal distribution under that preprocessing condition. . . . . . . . . 35

4.6 Statistical analysis using the Mann–Whitney rank-sum test (p<0.05) was conducted for
the p-values of texture features extracted between all different preprocessing schemes
O, N, D(NNLMF), and ND. The Spearman correlation coefficients (ρ, p-value) are also
presented. Features with statistical significance are highlighted in bold. . . . . . . . . . 36

4.7 Classification performance (Accuracy and AUC) under different preprocessing schemes 46

I.1 Selected stable texture features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



LIST OF FIGURES

3.1 Flow diagram of the integrated system as proposed in this study for the PCa ultrasound
texture analysis. (1) Data Acquisition (TRUS) Images, (2) Data Selection & Segmen-
tation, (3) Image Preprocessing, transformation, (4) Image Quality Assessment & Se-
lection and evaluation metrics, (5) Image transformations, (6) Features extraction, (7)
Significance analysis (8) Statistical analysis, (9) Identify stable vs unstable features for
the different preprocessing schemes. Np: Number of patients, Nr: Number of images,
O: Original images, N: Normalization, AF: Average Filtering, BF: Bilateral Filtering,
MF: Median Filtering, WF: Wiener Filtering, NLMF: Non-Local Means Filtering, EM:
Evaluation metrics, PSNR: Peak Signal-to-Noise Ratio, SSIM: Structural Similarity In-
dex Measure, RMSE: Root Mean Square Error, CNR: Contrast-to-Noise Ratio, GLCM:
Gray-Level Co-occurrence Matrix, GLDM: Gray-Level Dependence Matrix, GLRLM:
Gray-Level Run Length Matrix, D: Des-peckle, ND: normalization and despeckle. . . . 16

4.1 PCa ultrasound images were automatically segmented, to extract texture features based
on different preprocessing schemes, including the following: a) O, b) AF, c) BF, d) MF,
e) WF, f) NLMF. The texture features are described using OGCC (GLCM-Correlation)
and W8GDS (Wavelet-LLL-GLDM-Small-Dependence High Gray Level Emphasis). . . 30

4.2 PCa ultrasound images were automatically segmented, to extract texture features based
on different preprocessing schemes, including the following: a) N, b) NAF, c) NBF, d)
NMF, e) NWF, f) NNLMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Segmentation of cancerous regions in PCa ultrasound images was performed to extract
texture features from the original and normalized images. . . . . . . . . . . . . . . . . . 31

4.4 Segmentation of cancerous regions in PCa ultrasound images was performed to extract
texture features from the original and normalized images. . . . . . . . . . . . . . . . . . 32

4.5 Boxplots of six different texture features extracted from the entire (whole) region of
PCa ultrasound images under different preprocessing conditions: original (O), normal-
ized (N), filtered (D), and normalized + filtered (ND). The extracted features include:
a) OGCC, b) LFI, c) W1GSS, d) W5FE, e) W8GDS, and f) GGCI. These visualizations
highlight the distribution and variability of texture features across different preprocessing
pipelines for whole-region analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Boxplots of six different texture features extracted from the cancerous tissue region of
PCa ultrasound images under different preprocessing conditions (O, N, D, ND). . . . . . 38

4.7 Boxplots of six different texture features extracted from the normal tissue region of PCa
ultrasound images under different preprocessing conditions (O, N, D, ND). . . . . . . . 39

ix



4.8 Regression plots between the O vs ND of six different texture features extracted from the
whole region of PCa ultrasound images. The extracted features include: a) OGCC, b)
LFI, c) W1GSS, d) W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . . . 40

4.9 Regression plots between the O vs ND of six different texture features extracted from the
cancerous tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d)
W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10 Regression plots between the O vs ND of six different texture features extracted from
the normal tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d)
W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Bland-Altman plots between the O vs ND of six different texture features extracted from
the whole region of PCa ultrasound images. The extracted features include: a) OGCC,
b) LFI, c) W1GSS, d) W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . 43

4.12 Bland-Altman plots between the O vs ND of six different texture features extracted from
the cancerous tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS,
d) W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.13 Bland-Altman plots between the O vs ND of six different texture features extracted from
the normal tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d)
W5FE, e) W8GDS, and f) GGCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.14 ROC curves for SVM-based classification of cancerous versus normal tissue regions in
prostate ultrasound images, under different preprocessing and feature selection strategies.
(a) ROC curve based on all features extracted from O images (b) ROC curve based on all
features extracted from NNLMF-processed images (c) ROC curve based on 318 stable
features selected from O images (d) ROC curve based on 318 stable features selected
from NNLMF-processed images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



xi



LIST OF ABBREVIATIONS

AF: Average Filtering.
AUC: Area Under the Receiver Operating Characteristic (ROC) curve.
BF: Bilateral Filtering.
bpMRI: Biparametric Magnetic Resonance Imaging.
CAD: Computer-Aided Diagnosis (system).
CNR: Contrast-to-Noise Ratio.
DRE: Digital Rectal Examination.
ECE: Extracapsular Extension.
GGCI: Gradient_GLCM_Inverse Variance.
GLCM: Gray-Level Co-occurrence Matrix.
GLDM: Gray-Level Dependence Matrix.
GLRLM: Gray-Level Run Length Matrix.
GLSZM: Gray-Level Size Zone Matrix.
GMRF: Gaussian Markov Random Field.
HMM: Hidden Markov Model.Emphasis.
k-NN: k-Nearest Neighbors.
LBP: Local Binary Pattern.
LFI: Logarithm First-order Interquartile Range.
MSE: Mean Squared Error.
MF: Median Filtering.
MRI: Magnetic Resonance Imaging.
mpMRI: Multiparametric Magnetic Resonance Imaging.
NLMF: Non-Local Means Filtering.
NGTDM: Neighboring Gray Tone Difference Matrix.
NMF: Normalized Median Filtering.
NNLMF: Normalized Non-Local Means Filtering.
NWF: Normalized Wiener Filtering.
OGCC: GLCM-Correlation.
PCa: Prostate Cancer.
PSA: Prostate-Specific Antigen.
PSNR: Peak Signal-to-Noise Ratio.
pMRI: Pseudo-Magnetic Resonance Imaging.
RF: Radio Frequency (signal).
ROI: Region of Interest.
ROC: Receiver Operating Characteristic.
RMSE: Root Mean Square Error.
SGLDL: Square-Gray Level Dependence Low Gray-Level Emphasis.
SRGLCD: Square Root-Gray Level Co-occurrence Matrix Difference Variance.
SSIM: Structural Similarity Index Measure.
SVM: Support Vector Machine.
TRUS: Transrectal Ultrasound.
UTI: Urinary Tract Infection.
WF: Wiener Filtering.
W1GSS: Wavelet-HHH_GLSZM Small Area High Gray Level Emphasis.
W5FE: Wavelet-HHL_FirstOrder_Entropy.
W8GCI: Wavelet-LLL_GLDM Small Dependence High Gray Level Emphasis.
ND: Normalization combined with Denoising.
O: Original Images (without preprocessing).
N: Normalized Images.
D: Denoised Images (Filtered).
GLCM_Homogeneity: Gray-Level Co-occurrence Matrix Homogeneity.
GLCM_Entropy: Gray-Level Co-occurrence Matrix Entropy.
GLCM_Contrast: Gray-Level Co-occurrence Matrix Contrast.
GLRLM_HGRE: Gray-Level Run Length Matrix High Gray-Level Run Emphasis.
GLRLM_SRE: Gray-Level Run Length Matrix Short Run Emphasis.
GLRLM_RV: Gray-Level Run Length Matrix Run Variance.
GLSZM_ZE: Gray-Level Size Zone Matrix Zone Entropy.
GLSZM_HGLE: Gray-Level Size Zone Matrix High Gray-Level Emphasis.
Wavelet: Wavelet Transform.
W-HLH: Wavelet Transform - High-Low-High frequency decomposition.
W-HHL: Wavelet Transform - High-High-Low frequency decomposition.
W-LLL: Wavelet Transform - Low-Low-Low frequency decomposition.
FirstOrder_Entropy: First-order statistical Entropy feature.
SDHGLE: Small Dependence High Gray Level Emphasis.
GLCM_Corr: Gray-Level Co-occurrence Matrix Correlation.
FO_Entropy: First-Order Entropy.
GLDM_SDHGLE: Gray-Level Dependence Matrix Small Dependence High Gray Level Emphasis.
W-HLH_GLZSM_HGLZE: Wavelet High-Low-High Gray-Level Size Zone Matrix High Gray-Level Zone Emphasis.
FO_Skewness: First-Order Skewness.
GLCM_Hom: Gray-Level Co-occurrence Matrix Homogeneity.
W-HHH_GLCM_Contr: Wavelet High-High-High Gray-Level Co-occurrence Matrix Contrast.
FO_Kurt: First-Order Kurtosis.

xii



1 Introduction

Prostate cancer (PCa) is one of the most common malignant tumors in men worldwide and one of the
major public health issues affecting men’s health worldwide. According to data released by the Interna-
tional Agency for Research on Cancer (IARC) at GLOBOCAN 2022 [1], PCa ranks fourth in incidence
among all cancer types in the world, accounting for approximately 7.3% new cancer types in men in
many high-income countries, and its risk is expected to increase further with the aging of the population
and changes in lifestyle. However, thanks to the continuous progress in cancer screening methods and
medical imaging diagnostic technologies (such as MRI, TRUS, etc.) in recent years, the mortality rate of
PCa has decreased in the past few decades. According to 2022 data, the global age-standardized mortal-
ity rate of PCa is approximately 4.1%, which is a decrease from the 7.3% reported earlier in 2018 [1, 2].
However, the decline in mortality depends largely on the accessibility and diagnosis level of medical re-
sources between countries, and low-income and middle-income countries still face a higher risk of death.
PCa remains one of the leading causes of cancer-related death in men. Therefore, in the current medi-
cal environment, early identification of PCa, accurate risk stratification assessment and development of
individualized treatment plans can effectively improve patient survival, reduce the risk of overtreatment
and improve quality of life.

At present, the clinical diagnosis of PCa mainly relies on a variety of complementary examination meth-
ods to achieve a comprehensive assessment of the tumor. These methods include digital rectal examina-
tion, prostate-specific antigen detection, transrectal ultrasound, magnetic resonance imaging(MRI), and
ultimately prostate tissue biopsy for diagnosis [3]. Each examination method plays a specific role in the
clinical pathway of PCa, covering multiple links from initial screening to lesion localization, risk strat-
ification, treatment decision-making and prognosis judgment. In actual diagnosis and treatment, these
methods are usually used in combination to improve the overall diagnostic accuracy and scientific nature
of decision-making.

Digital rectal examination (DRE) is one of the oldest and easiest physical examination methods for PCa
screening. It is usually used as a preliminary evaluation method in routine health examinations or urology
clinics [4,5]. The doctor wears a gloved index finger and inserts it into the patient’s rectum to palpate and
evaluate the size, texture, symmetry, boundary clarity of the prostate, and the presence of abnormal man-
ifestations such as suspicious nodules, lumps or tenderness. This method does not rely on any expensive
equipment or complex technology. It has the advantages of short operation time, strong economy, and
low burden on patients. It is particularly suitable for primary screening or regular follow-up of high-risk
populations in primary health institutions with relatively limited medical resources.

However, the diagnostic efficacy of DRE in clinical practice is limited in many aspects. First, the ex-
amination is extremely dependent on the operator’s hand sensitivity and clinical experience. Doctors are
highly subjective in palpation judgment and lack objective quantitative standards, resulting in low con-
sistency in diagnostic results between different doctors. Secondly, since the prostate is located deep in
the pelvic cavity and has a complex shape, DRE can only touch the posterior part of the prostate. If the
lesion is located at the distal end of the prostate or is small in size and has no obvious texture changes, it is
very easy to be ignored. In addition, for obese patients or those with special rectal anatomical structures,
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the palpation accuracy of DRE may be further reduced [4, 5].

In terms of sensitivity and specificity, many studies have shown that DRE has a low detection rate for
PCa alone, especially in early asymptomatic patients, and its screening value is limited [4–6]. According
to literature reports, the sensitivity of DRE is usually around 50% [6, 7], and the specificity is slightly
higher, but it is still not enough to be a reliable single diagnostic tool. Therefore, DRE is often used in
combination with other biomarkers such as PSA testing in modern clinical pathways to improve compre-
hensive judgment capabilities [5]. In recent years, the American Urological Association (AUA) and the
European Association of Urology (EAU) have gradually stopped recommending DRE as the only means
of routine PCa screening, but advocated individualized screening strategies, combining factors such as
age, family history, and PSA levels for comprehensive decision-making [5].

Despite this, DRE still has certain value in detecting obvious masses or highly suspected lesions, espe-
cially in resource-limited areas or emergency conditions, as a preliminary evaluation tool. Its reference
role in tumor progression and clinical staging (such as T staging) has not been completely replaced.
Therefore, as an old but still clinically significant examination method, DRE still plays an important
auxiliary role in the multimodal diagnostic system, especially in the context of artificial intelligence and
digital health technology not yet being fully popularized, its simplicity and practicality are still relied on
by frontline doctors.

Prostate-Specific Antigen (PSA) testing is one of the most widely used and mature serological methods
for PCa screening [5, 7]. PSA is a glycoprotein secreted by prostate epithelial cells and is mainly found
in semen. Under normal circumstances, only a very small amount of PSA enters the blood circulation.
However, when prostate tissue is pathologically damaged or abnormally proliferates (such as cancer,
inflammation or hyperplasia), the PSA level in serum will increase significantly. Therefore, the detection
of total PSA (tPSA) concentration in the blood can be used as an important indicator for evaluating the
functional status and pathological changes of the prostate [5, 7].

PSA testing is widely used for preliminary screening of PCa, evaluation of treatment efficacy, and post-
operative recurrence monitoring due to its high sensitivity [5]. In clinical practice, 4.0 ng/mL is usually
used as the upper reference limit of tPSA [7]. When the PSA value increases, it indicates that there may
be potential lesions in the prostate. However, it should be pointed out that PSA is not a tumor-specific
marker, and its level can be affected by a variety of non-malignant factors, including prostatitis, benign
prostatic hyperplasia (BPH), urine retention, recent rectal examination or sexual intercourse, etc. There-
fore, although PSA has a certain sensitivity to PCa, its specificity is limited, which means that an increase
in PSA does not necessarily represent a malignant lesion, which can easily lead to false positive results,
causing anxiety in patients, unnecessary imaging examinations, and even traumatic tissue biopsies.

In addition, some patients with PCa may not have obvious PSA increases in the early stages, especially
low-grade or atypical PCa, which may also cause false negatives and affect the timely detection of the
disease. In order to improve the diagnostic performance of PSA testing, a series of derivative indicators
have been developed in recent years, such as the free PSA (fPSA)/total PSA ratio, PSA density (PSA
to prostate volume ratio), PSA velocity, etc., to assist in judging the nature and development trend of
lesions. In addition, risk prediction tools based on multiple indicators (such as Prostate Health Index,
PHI) have also been gradually used for screening high-risk populations, aiming to improve the accuracy
of screening and reduce unnecessary biopsies.
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Despite certain limitations, PSA testing is still one of the most core serum biomarkers in the current
PCa screening system, and is recommended by multiple international guidelines (such as NCCN, EAU,
AUA) as a routine test item for high-risk populations. In the future, the combination of multi-parameter
MRI, artificial intelligence risk model and genomic analysis technologies is expected to further optimize
PSA-related screening strategies and achieve a more accurate and personalized early diagnosis path for
PCa.

Magnetic resonance imaging (MRI), especially the multi-parametric MRI (mpMRI) that has emerged in
recent years, is playing an increasingly important role in the imaging diagnosis of PCa (PCa). mpMRI
combines multiple imaging sequences and parameter information, mainly including T2-weighted imag-
ing (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient map (ADC map) and dy-
namic contrast-enhanced imaging (DCE), and sometimes also includes magnetic resonance spectroscopy
(MRSI). The fusion of these multi-dimensional data enables mpMRI to comprehensively evaluate the
anatomical structure, tissue characteristics and biological behavior of the prostate from multiple an-
gles [8].

Among them, T2WI can be used to clearly display the anatomical regions of the prostate (such as the pe-
ripheral zone, transition zone, and central zone), which helps to identify lesions with abnormal morphol-
ogy and unclear boundaries; DWI and ADC images reflect tissue density through the degree of restricted
diffusion of water molecules, providing important parameters for distinguishing malignant and benign
lesions; and DCE reflects the characteristics of vascularization and enhancement of lesions, especially in
the location of suspicious areas. For this reason, mpMRI has excellent performance in improving the ac-
curacy of PCa lesion location, risk stratification ability, and guiding biopsy, and its diagnostic sensitivity
and specificity are generally better than traditional ultrasound examinations [9].

At present, many international clinical guidelines, including the EuropeanAssociation of Urology (EAU),
the National Comprehensive Cancer Network (NCCN), and the AmericanUrological Association (AUA),
recommend routinempMRI examinations before biopsy in the case of elevated PSAor abnormalDRE [10].
By guiding targeted puncture (MRI-TRUS fusion biopsy or MRI cognitive fusion biopsy), mpMRI can
significantly improve the detection rate of clinically significant PCa, reduce the number of unnecessary
biopsies, and overdiagnosis of indolent cancer [11].

However, despite the significant advantages of mpMRI in improving the accuracy of PCa diagnosis, it
still faces some practical challenges in clinical promotion. First, MRI equipment is expensive, main-
tenance costs are high, examination time is relatively long, and the requirements for medical resource
allocation are high. Second, the quality of image acquisition is greatly affected by the operator’s experi-
ence, scanning parameter settings, and patient cooperation, and there may be large differences between
different hospitals or technology platforms. In addition, the interpretation of mpMRI images requires
professional radiologists and is somewhat subjective. Although there is a standardized scoring system
PI-RADS (Prostate Imaging Reporting and Data System), the consistency and accuracy of the scoring
are still being optimized. Due to these limitations, mpMRI is more commonly used in tertiary hospi-
tals or cancer centers in high-resource countries, but it is difficult to be fully popularized in low- and
medium-resource environments [12].

Transrectal Ultrasound (TRUS) (see also Fig.4.1) is one of the most widely used imaging technologies in
the diagnosis and treatment of PCa, especially in prostate puncture biopsy, which plays an irreplaceable
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and important role. TRUS inserts a high-frequency ultrasound probe into the patient’s rectum, close to
the dorsal side of the prostate, and obtains a two-dimensional (2D) or three-dimensional (3D) grayscale
image of the prostate in real time. It can evaluate the size, shape, structural symmetry, and presence
of suspected lesions of the prostate. TRUS is widely used in clinical practice around the world due to
its simple operation, fast imaging, no radiation, low equipment cost, and high patient tolerance. It is
particularly suitable for areas with limited resources as the main imaging tool for initial screening and
biopsy guidance of PCa [13].

In puncture biopsy, TRUS’s real-time imaging capability can provide doctors with accurate spatial po-
sitioning information, assist in determining the puncture path, improve the accuracy of lesion sampling,
and reduce the risk of missed detection. In addition, TRUS is also commonly used to evaluate prostate
volume before surgery, monitor tumor development trends, or identify and judge non-neoplastic diseases
such as benign prostatic hyperplasia and cysts. In contrast, although magnetic resonance imaging (MRI),
especially multi-parameter MRI (mpMRI), has higher sensitivity and specificity in lesion localization
and risk stratification, it is still difficult to achieve full replacement in all clinical scenarios due to its
high cost, long examination cycle, high equipment threshold, and image interpretation relying on senior
radiologists [14].

However, TRUS still faces many challenges in the early identification of PCa. Its imaging process is
easily disturbed by speckle noise [15]. This inherent noise will reduce the image clarity, blur the bound-
aries of prostate tissue, and make the layers unclear, especially when identifying early tumors with small
volume and unclear signal characteristics. In addition, TRUS mainly uses grayscale imaging, which has
limited tissue contrast and is difficult to accurately distinguish benign lesions from malignant tumors.
The accuracy of diagnosis depends largely on the operator’s experience level.

Many studies have shown that the diagnostic sensitivity and specificity of TRUS are generally lower
than mpMRI, especially in the identification of low-grade cancer lesions in the peripheral area of the
prostate. Although mpMRI has been recommended by international clinical guidelines as an important
evaluation method before biopsy, its popularity is still uneven around the world due to equipment, cost
and operator staffing. Therefore, TRUS is still the most practical and accessible means of examination
in many medical environments, especially in biopsy guidance.

With the development of artificial intelligence and medical image analysis technology, computer-aided
diagnosis (CAD) systems based on TRUS images have gradually become a research hotspot [16,17]. By
preprocessing TRUS images (such as normalization, despeckle filtering), segmentation, feature extraction
and classification modeling, it is expected to improve its stability and diagnostic performance in PCa
detection. Although the quality of TRUS images themselves is low, studies have shown that through
appropriate image enhancement and feature engineering methods, texture and morphological features
with diagnostic value can still be mined from them. In-depth research in this direction not only helps
to make up for the shortcomings of TRUS in image recognition, but also provides a practical path for
low-cost, non-invasive, and high-throughput intelligent auxiliary diagnosis of PCa. Therefore, TRUS
still has an irreplaceable position in the PCa diagnosis system, and how to overcome its image quality
limitations and improve its adaptability and reliability in the CAD system is one of the core issues that
need to be urgently solved in current image analysis and auxiliary diagnosis research.

Based on the above background, with the increasing demand for early diagnosis and precise treatment
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of PCa, in recent years, researchers have gradually shifted their focus from traditional invasive methods
to more non-invasive, efficient and intelligent auxiliary diagnosis technologies. Especially in the field
of medical imaging, with the rapid progress of image processing technology and artificial intelligence
algorithms, how to fully tap the potential information resources in clinical routine images (such as TRUS
images) has become a key breakthrough in promoting the development of early identification and risk
assessment of PCa in the direction of precision.

In this context, the computer-aided diagnosis (CAD) system based on image feature extraction has gradu-
ally become a research hotspot [17]. The systems proposed sofar in the literature [16,18] aims to automat-
ically analyze medical image data, extract quantifiable image features from it, assist doctors in identifying
lesion areas, assessing disease grading, and formulating individualized treatment plans. Compared with
the traditional manual interpretation of images, the CAD system has the advantages of strong objectiv-
ity, high repeatability, and fast processing efficiency, which can effectively reduce subjective errors and
improve the recognition rate of early lesions [19].

Especially in TRUS image analysis, due to its convenient acquisition, real-time imaging, and low cost,
it is widely used in clinical practice. How to improve the efficiency of its image information utilization
is particularly important. Studies have found that TRUS images contain a large amount of grayscale
changes, structural textures, and spatial distribution information [16, 17]. If they can be extracted and
analyzed through reasonable feature engineering methods, it is expected to make up for the shortcomings
of the original image, such as poor contrast and structural blur. Among many image features, texture
features, as an important parameter reflecting the grayscale distribution, structural complexity, and local
spatial relationship of the image, have been widely used in the automatic identification of prostate lesions,
tumor grading, and the development of non-invasive biomarkers [20].

Studies have shown that texture features extracted from TRUS images, such as grayscale co-occurrence
matrix (GLCM), grayscale run length matrix (GLRLM), grayscale size zone matrix (GLSZM), etc., can
distinguish cancerous tissue from benign tissue to a certain extent, and their classification performance
under certain conditions can even be comparable to high-level imaging methods such as mpMRI [21].
These research results provide theoretical support and methodological basis for the construction of aux-
iliary diagnosis systems based on TRUS images.

However, it should be pointed out that the inherent imaging noise (such as speckle noise) [22], insuf-
ficient tissue contrast, blurred boundaries and other problems of TRUS images will seriously affect the
stability and repeatability of texture features, and thus affect the reliability of model training and the
generalization ability of classification performance [23]. Therefore, image pre-processing has become a
key step in the construction of CAD systems. Common pre-processing methods include image normal-
ization [24], spatial filtering (such as median filtering, non-local mean filtering, bilateral filtering, etc.),
denoising and enhancement [25], etc. These methods can effectively improve image quality, enhance the
expression of lesion area information, and improve the robustness of subsequent feature extraction and
classification [23].

At present, the comparative analysis of texture features based on different preprocessing strategies as also
presented in this thesis, is becoming an important research direction. By evaluating the performance of
features extracted under different image processing conditions in terms of classification accuracy, feature
stability, reproducibility, etc., it is expected to screen out more robust and clinically practical feature
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parameters, and further optimize the application efficiency and credibility of TRUS images in auxiliary
diagnosis. This type of research can not only provide methodological support for the establishment of
a low-cost, non-invasive, and scalable intelligent auxiliary diagnosis framework for PCa, but also help
promote the translational application of radiomics and artificial intelligence in the clinical practice of
PCa.

1.1 Aims and Objectives

This study aims to improve the accuracy and stability of PCa diagnosis by analyzing the texture features of
transrectal ultrasound (TRUS) images(see also Fig.4.1). TRUS, as an imaging technology with real-time
imaging, low cost and easy access, has been widely used in clinical PCa screening and biopsy guidance.
However, due to its limited image quality, such as severe speckle noise, poor tissue contrast and blurred
boundaries, the computer-aided diagnosis (CAD) system based on TRUS images still faces challenges in
practical applications. Therefore, improving the resolvability of TRUS images and the stability of feature
extraction has become a key path to realize its intelligent diagnostic potential [17].

This study will systematically evaluate the effects of various image preprocessing strategies on improving
image quality in response to the common noise and image quality fluctuation problems in TRUS images.
Specifically, it includes image normalization(N) and a variety of advanced denoising filtering methods,
such as Non-Local Means Filtering (NLMF), Wiener Filtering (WF) and Median Filtering (MF) [26].
The study will combine multiple image quality assessment indicators (such as peak signal-to-noise ratio
PSNR, structural similarity SSIM, root mean square error RMSE and contrast-to-noise ratio CNR) to
quantitatively analyze each method to screen out the optimal preprocessing strategy that can effectively
suppress noise and retain lesion details [27].

Based on the high-quality images obtained after preprocessing, the study will further usemature statistical
methods to extract texture features [28]. The selected features include Gray-Level Co-occurrence Matrix
(GLCM) and Gray-Level Size Zone Matrix (GLSZM), which are used to describe key information such
as grayscale distribution, structural heterogeneity and spatial relationship within the tissue. Subsequently,
the performance of these features under different preprocessing methods was evaluated by stability anal-
ysis methods (such as variance analysis, correlation coefficient comparison, etc.) to determine which
features can still maintain stability and diagnostic consistency under various image conditions, thus hav-
ing potential biomarker value [29].

Based on the comprehensive extraction and evaluation of feature stability, the study will combine statisti-
cal analysis methods (such as Mann–Whitney U test, linear regression, etc.) to screen the significance of
various features and screen out key features that have distinguishing power between benign andmalignant
prostate lesions [20].

Following the stability-based feature selection process (including the Mann–Whitney U test and linear
regression), the selected features are used to train machine learning classifiers (e.g., Support Vector Ma-
chines) to validate their ability to distinguish benign from malignant prostate lesions. This classification
modeling step quantifies the diagnostic performance of the proposed image preprocessing and feature
extraction pipeline. In particular, evaluation of metrics such as accuracy and robustness demonstrates the
practical utility of the pipeline in identifying clinically relevant lesion types.
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Finally, this study aims to provide a more robust and efficient image processing and feature extraction
process for the application of TRUS images in the auxiliary diagnosis of PCa, and provide technical sup-
port for the development of TRUS-based CAD systems. The research results are expected to promote the
transformation of TRUS image analysis from experience dependence to standardization and intelligence
in the future, especially in areas with limited resources and inability to widely use mpMRI, providing a
low-cost, non-invasive, and automated PCa screening solution, which has important clinical application
value and promotion prospects.

1.2 Research Questions

This study seeks to explore the impact of various image preprocessing techniques on the quality and
texture feature stability of transrectal ultrasound (TRUS) images. Specifically, it addresses the challenges
of balancing noise reduction with the preservation of diagnostic information and aims to provide insights
into the most effective preprocessing methods for texture-based analysis.

A key question guiding this research is how different preprocessing techniques, such as N and filtering,
influence the overall quality of TRUS images. Metrics like PSNR, SSIM, RMSE, and CNR [27] are
used to quantitatively evaluate the performance of these methods, with an emphasis on retaining critical
structural details while minimizing noise interference.

Another important question focuses on the stability of texture features extracted from TRUS images
subjected to different preprocessing workflows. By examining features derived from statistical methods,
such as Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Size Zone Matrix (GLSZM), the
study aims to understand the extent to which preprocessing impacts the consistency and reliability of
feature extraction.

Finally, the research explores which combinations of preprocessing methods yield the most robust and
reproducible texture features. This involves a comparative analysis of different approaches to identify
those that offer the greatest potential for enhancing the utility of TRUS images in future applications,
particularly in supporting advanced image analysis frameworks.

1.3 Contribution

This study makes a significant contribution through the comprehensive analysis of texture features stabil-
ity across different preprocessing workflows. By examining features derived from statistical models like
Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Size Zone Matrix (GLSZM), the research
identifies robust features that are less affected by variations in preprocessing. This not only advances our
understanding of features reliability but also provides valuable guidelines for feature selection in future
studies. The study also confirms the advantages of N, D and ND in enhancing the quality and stability
of PCa texture features. The findings provide valuable insights into optimizing preprocessing techniques
to improve the diagnostic accuracy and robustness of feature extraction in PCa CAD systems. Although
this study establishes a foundation for optimizing preprocessing strategies, further research is needed to
explore feature clustering patterns and assess the generalizability of identified features across different
filtering methods. Expanding the dataset to include healthy prostate images and integrating multi-modal
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imaging approaches, such as ultrasound and MRI, could further enhance the stability, reliability, and
clinical applicability of PCa CAD systems.

1.4 Structure of the Thesis

The present is strictured as follows:

Chapter 1: Introduction, where an introduction to the clinical problem is given along with a literature
review on the subject of study.

Chapter 2: Literature Review is presented listing recent methods reported in the literature.

Chapter 3: In this chapter we present the Materials and Methods and more specifically, the acquisition of
TRUS images, image intensity normalization and the different types of noise that appear in these images
along with their accompanying filtering methods for removing it.

Chapter 4: In Results we present the results of the study in form of images, tables, and graphs.

Chapter 5: In Conclusion section we present again the objective of the study, its innovation and perform
a Discussion between our study with all other studies reported in the literature. Finally we present the
conclusions and the future directions.

1.5 Summary

This thesis begins by providing an overview of the research background, highlighting the significance of
texture analysis in transrectal ultrasound (TRUS) imaging and the need for robust preprocessing methods.
It establishes the aims, objectives, and research questions that guide the study, setting the foundation for
subsequent chapters.

Following the introduction in Chapter 1, the thesis explores existing literature on TRUS imaging and
texture feature extraction. A detailed review presented in Chapter 2, of preprocessing techniques is con-
ducted, focusing on their influence on image quality and feature stability. This review identifies key gaps
and limitations in current research, framing the context for the proposed study.

The methodology which is presented in Chapter 3, details the systematic approach undertaken in this
research. It describes the processes of image acquisition, normalization, and filtering, alongside the
statistical methods used to evaluate texture feature stability. This chapter ensures transparency and re-
producibility, offering a comprehensive explanation of the experimental design.

The results and discussion are presented in Chapter 4, and provide detailed information on the findings of
the study, including the comparative performance of different preprocessing techniques and their impact
on texture feature consistency. The discussion interprets these results in the context of existing research,
providing new insights into the optimization of TRUS image preprocessing for texture-based analysis.

Finally, the thesis concludes with Chapter 5 by summarizing the key contributions of the study and dis-
cussing its broader implications. Limitations are acknowledged, and recommendations for future research
are provided, emphasizing the importance of continued exploration in this field.
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At the end of the thesis, bibliographic references are provided, along with an appendix containing a list
of the 318 selected stable texture features.
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2 Literature Review

For radiologists, physicians, and medical experts, the presence of noise in medical imaging presents a
significant challenge. Noise can compromise critical information within an image, which may play a
pivotal role in disease diagnosis. In digital imaging, fundamental noise types include speckle noise, salt-
and-pepper (impulse) noise, Poisson noise, and Gaussian noise [30]. Noise can lead to severe issues
in medical image processing, such as blurred edges, indistinct organs or regions, and the introduction
of new artifacts. Therefore, noise removal is a crucial pre-processing step to ensure accurate and reli-
able analysis in subsequent stages of image processing.Yu et al. [31] proposed a Laplacian Eigenmaps
Network-Based Nonlocal Means (LEP-NLM) method for denoising MR images corrupted by Rician
noise. The method integrates a shallow convolutional network (LEPNet) with nonlocal means (NLM)
filtering. LEPNet extracts structural features from pre-denoised images to refine similarity weights in
NLM, improving noise reduction while preserving details. Wong et al. [32] developed a Monte Carlo-
based despeckling method specifically designed for TRUS images of the prostate affected by speckle
noise. The method incorporates the circular probe acquisition characteristics and speckle noise statis-
tics into a likelihood-weighted Monte Carlo estimation framework, enabling effective noise suppression
while preserving critical anatomical structures. Validated through both in silico and in vivo experiments,
the proposed method outperformed conventional techniques, achieving an S-SNR of 22.84 dB, CNR of
9.68 dB, and resolution gain of 1.98, thereby enhancing lesion contour delineation crucial for prostate
cancer diagnosis and treatment planning.

A number of studies have been reported in the literature where texture features were used to classify
structures in prostate TRUS images. More specifically, Scheipers et al. [33] proposed an ultrasonic mul-
tifeature tissue characterization system for the early detection of PCa using TRUS radio-frequency (RF)
data. The study extracted up to 40 parameters per prostate segment, including spectral features, attenu-
ation metrics, and first- and second-order texture descriptors. After parameter reduction via covariance
analysis, two parallel adaptive fuzzy inference systems (FIS) were employed to classify tissue as benign
or malignant. A morphological postprocessing step was applied to generate malignancy maps overlay-
ing B-mode images, enhancing visualization for clinicians. In a clinical study involving 100 patients
and 170,000 annotated segments, the system achieved ROC curve areas of 0.83 and 0.76 for tumors
visible and non-visible in B-mode imaging, respectively, with a classification accuracy of 75%.Despite
its promising diagnostic capabilities, the study has several limitations. The method is highly dependent
on handcrafted features and specific ultrasound equipment settings, potentially limiting generalizability.
Additionally, while the system effectively visualized malignancy probabilities, it did not incorporate ad-
vanced preprocessing techniques such as speckle noise reduction, which could improve feature reliability.
The fixed fuzzy logic framework may also lack adaptability to complex or unseen data patterns. Future
enhancements could include integrating machine learning-based feature selection, denoising pipelines,
and expanding validation across diverse imaging platforms to improve robustness and clinical utility.

Mohamed et al. [34] proposed a texture-based segmentation method for PCa diagnosis using TRUS im-
ages, leveraging multi-channel Gabor filtering. The study aimed to address the challenges of distinguish-
ing cancerous from healthy prostate tissue by mimicking the human visual system (HVS) through texture
analysis, focusing on repetition, directionality, and complexity. A bank of Gabor filters was designed
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to cover various spatial frequencies and orientations, enabling effective decomposition of TRUS images
into discriminative texture features. The magnitude response of filtered outputs was smoothed using
Gaussian functions to enhance segmentation quality, followed by K-means clustering to classify texture
regions. Experimental results on both synthetic texture images and TRUS data demonstrated that high-
frequency Gabor filters effectively highlighted detailed structures within the prostate, producing distinct
segments potentially indicative of cancerous regions.Despite promising segmentation performance, the
study has notable limitations. The approach relies on unsupervised clustering without explicit identifi-
cation of cancerous tissues, requiring further pathological correlation to validate diagnostic relevance.
Additionally, while smoothing improved intra-texture consistency, excessive smoothing risked blurring
critical boundaries. The method also lacked advanced preprocessing steps, such as speckle noise reduc-
tion, which could further refine texture feature extraction in noisy TRUS environments. Future work
should focus on integrating clinical labels, enhancing noise robustness, and developing automated strate-
gies for distinguishing malignant from benign segments.

Llobet et al. [35] proposed a CAD system for PCa using TRUS images, aiming to improve early diagnosis
through texture analysis and machine learning techniques. The study utilized a large, unbiased dataset
of 4,944 TRUS images from 303 patients, making it one of the most extensive corpora in this domain.
Two classification approaches were evaluated: k-nearest neighbors (k-NN) and Hidden Markov Models
(HMM), using features extracted via spatial gray-level dependence matrices (SGLDM) and gray-level
maps. The best classification performance achieved an area under the ROC curve (AUC) of 61.6%, indi-
cating modest but positive discrimination between cancerous and non-cancerous tissues. Additionally, a
clinical evaluation involving urologists showed that the CAD system slightly improved diagnostic accu-
racy for inexperienced users but provided limited benefit for experts.Despite its contributions, the study
faced several limitations. The system’s diagnostic performance was constrained by imperfect pixel-level
labeling due to the nature of biopsy-based ground truth. Moreover, the CAD framework did not incor-
porate advanced preprocessing techniques, such as speckle noise reduction, which could enhance texture
feature reliability in TRUS images. The reliance on handcrafted features and classical classifiers fur-
ther limited adaptability to complex patterns. Future improvements could focus on integrating denoising
pipelines, deep learning-based feature extraction, and validation across diverse datasets to enhance clin-
ical applicability and robustness.

Han et al. [36] proposed a computer-aided PCa detection method using multiresolution autocorrelation
texture features combined with clinical features in TRUS images. The study analyzed 51 TRUS im-
ages, where texture features were extracted using autocorrelation at multiple resolutions to capture self-
similarity patterns of tissues. Additionally, clinical features, including tumor location (favoring the pe-
ripheral zone) and shape (elliptical likelihood), were integrated to enhance diagnostic accuracy. A Sup-
port Vector Machine (SVM) classifier was employed to distinguish cancerous from benign tissues. The
proposed method achieved high performance, with sensitivity ranging from 92% to 96% and specificity
between 91.9% and 95.9%, outperforming previous texture-only approaches.Despite its strong results, the
study has several limitations. The preprocessing relied on histogram equalization for prostate segmenta-
tion, which achieved only 75% boundary accuracy, potentially impacting feature extraction. Furthermore,
the method’s effectiveness was validated on a relatively small and homogeneous dataset, raising concerns
about its generalizability to larger or more diverse populations. The approach also did not address speckle
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noise reduction explicitly, which may affect texture reliability in TRUS images. Incorporating advanced
denoising techniques and validating on broader datasets would be essential to enhance robustness and
clinical applicability.

Moradi et al. [37] proposed a novel computer-aided detection (CAD) method for prostate cancer (PCa) in
transrectal ultrasound (TRUS) images by leveraging ultrasound radio-frequency (RF) time series analy-
sis combined with an extended support vector machine (SVM) classifier. Unlike traditional approaches
that rely on static spectral or texture features, this method captures sequential RF echoes from stationary
tissue to extract dynamic tissue-specific signatures influenced bymicrostructural properties. In a study in-
volving 35 ex vivo prostate specimens, the authors demonstrated that RF time series features significantly
outperformed conventional Lizzi-Feleppa (LF) spectral features and B-mode texture features. The hybrid
feature set, combining RF time series, LF, and texture features, achieved an area under the ROC curve
(AUC) of 0.95 in tenfold cross-validation and 0.82 in leave-one-patient-out validation. The system gener-
ated probabilistic cancer maps to guide biopsy targeting, potentially reducing false negatives.Despite its
strong performance, the study has limitations. The approach requires the probe and tissue to remain sta-
tionary for several seconds, posing challenges for in vivo applications without stabilization mechanisms.
Additionally, while RF time series analysis inherently mitigates some noise effects, explicit speckle noise
reduction techniques were not integrated, which could further enhance feature robustness. The dataset
was limited to ex vivo specimens, necessitating future in vivo validation. Optimization for real-time
clinical workflows and broader generalization across ultrasound systems remain areas for further devel-
opment.

Maggio et al. [38] proposed a CAD system for PCa based on TRUS images, integrating predictive de-
convolution and hybrid feature selection to enhance diagnostic accuracy. The study addressed system-
dependent artifacts and speckle noise by applying a predictive deconvolution technique to raw RF signals,
effectively improving image quality and feature reliability. A comprehensive set of 54 spectral, statisti-
cal, and textural features was extracted, and amutual information-based hybrid feature selection (MIHFS)
algorithm was employed to reduce dimensionality while retaining discriminative power. The classifica-
tion framework combined Generalized Discriminant Analysis (GDA) with a Fisher Linear Discriminant
(FLD) for nonlinear feature projection and linear decision-making.Tested on TRUS images from 37 pa-
tients (15 benign, 22 malignant), the CAD system achieved a sensitivity of 90%, specificity of 93%, and
AUC of 95% after deconvolution, outperforming models without preprocessing. Predictive deconvo-
lution notably enhanced the diagnostic value of texture features by reducing speckle noise and system
artifacts.Despite its strong performance, the study has limitations. The dataset size was relatively small,
and the reliance on biopsy-based ground truth introduced potential labeling inaccuracies due to the mul-
tifocal nature of PCa. Additionally, while deconvolution improved feature robustness, the computational
complexity remains a barrier for real-time clinical deployment. Future work could focus on optimizing
processing speed, validating on larger datasets, and integrating advanced machine learning techniques to
further enhance generalizability and clinical applicability.

Huang X et al. [39] proposed a texture feature-based classification method for TRUS images aimed at
detecting PCa. The authors analyzed 342 histologically confirmed TRUS images and extracted two main
texture features: Local Binary Patterns (LBP) to capture local texture details and Gaussian Markov Ran-
dom Field (GMRF) to model pixel dependencies. These features were combined linearly to enhance
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classification performance. To improve image quality, the authors applied optical density transformation
for preprocessing, effectively increasing contrast and reducing noise. A Support Vector Machine (SVM)
classifier was employed for classification, achieving an accuracy of 70.93%, sensitivity of 70.00%, and
specificity of 71.74%. The study demonstrated the advantage of combining multiple texture features over
single-feature methods and alternative classifiers, such as KNN and Random Forest, in detecting PCa in
TRUS images.Despite its strengths, the study has several limitations. The preprocessing method applied
does not sufficiently address speckle noise inherent in TRUS, which can obscure fine texture details. Ad-
ditionally, the linear combination of features lacks a rigorous evaluation of their stability and significance.
While the authors focused on a single preprocessing method (optical density transformation), other tech-
niques, such as normalization and filtering pipelines (e.g., N-WF, N-NLMF), could further improve the
diagnostic robustness of texture features.

Wei et al. [40] developed a classification method for distinguishing benign and malignant breast tumors
in ultrasound images by combining texture and morphological features. Using a dataset of 448 denoised
and equalized ultrasound images, three texture features—Local Binary Patterns (LBP), Histogram of
Oriented Gradients (HOG), and Gray-Level Co-occurrence Matrix (GLCM)—were extracted alongside
three morphological features, including compactness, elliptical compactness, and radial distance spec-
trum. The study utilized SVM for texture features and Naive Bayes (NB) for morphological features. A
weighted fusion of these classifiers achieved 91.11% accuracy, 94.34% sensitivity, and 86.49% speci-
ficity, outperforming single-feature methods.Although this method achieved high accuracy, the study’s
preprocessing steps, such as anisotropic diffusion filtering and histogram equalization, are limited in their
ability to handle ultrasound’s persistent speckle noise. Furthermore, the stability and diagnostic relevance
of the extracted texture features were not thoroughly assessed. Systematic evaluations of texture features
extracted from images processed with advanced preprocessing pipelines (e.g., normalized and filtered im-
ages) could provide more robust insights. Additionally, the absence of quantitative image quality metrics
(e.g., PSNR, SSIM, and CNR) hinders a comprehensive assessment of preprocessing efficacy.

Bhattacharya et al. [41] proposed MIC-CUSP (Multimodal Image Correlations for Cancer detection on
UltraSound leveraging Pretraining with weak labels), an automated prostate cancer detection method
based on transrectal b-mode ultrasound (TRUS) images. Recognizing the limitations of TRUS, such as
low signal-to-noise ratio and artifacts like speckle and shadowing, the authors designed MIC-CUSP to
enhance cancer detection by leveraging multimodal image correlations without requiring spatial registra-
tion. The method integrates richer imaging-inspired ultrasound biomarkers derived from unaligned MRI
and histopathology images through a registration-independent learning framework. MIC-CUSP employs
a 3D-UNet-based architecture with deep supervision and combines weakly-labeled public datasets (1573
scans) with strongly-labeled internal data (289 patients) for pretraining and fine-tuning. Evaluated on 41
patients, MIC-CUSP achieved a patient-level sensitivity of 65% and specificity of 81%, outperforming
the average performance of four clinician-readers with 1–12 years of experience. Despite its promising
results, MIC-CUSP’s reliance on advanced deep learning frameworks and multimodal data during train-
ing may limit immediate clinical deployment in settings lacking such resources. Furthermore, while the
method addresses noise and artifact challenges indirectly through biomarker learning, explicit denoising
techniques, such as normalization and filtering (e.g., N-WF, N-NLMF), were not explored, which could
further enhance robustness in diverse clinical environments.
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Fang et al. [42] proposed an automated anatomical landmark detection method to initialize ultrasound
(US) andmagnetic resonance (MR) image registration for prostate cancer interventions. Recognizing that
manual landmark detection or prostate segmentation is time-consuming and challenging during MR/US
fusion biopsies, the authors developed a deep learning-based pipeline to detect three key anatomical
landmarks (apex, bladder neck, and posterior median) in both modalities. The method employs a 3D
U-Net combined with a differentiable spatial to numerical transform (DSNT) layer for direct coordinate
regression, avoiding traditional heatmap or fully connected layer-based approaches. Trained on 900 cases
and validated on 152 cases, the system achieved mean radial errors (MRE) of 5.55 ± 2.63 mm for US and
5.77 ± 2.67 mm for MR images across 263 test cases. A least-squares fitting algorithm was then applied
to compute a rough rigid transformation for initial alignment. The method achieved a surface registration
error (SRE) of 6.62 ± 3.97 mm and a Dice score of 0.77 ± 0.11, demonstrating clinically comparable
performance to manual landmark-based registration.

Despite its efficiency, the study has limitations. The robustness of the automated detectionwas affected by
variations in US image quality, partial prostate views, and large deformations. Additionally, the approach
did not explicitly address noise reduction or artifact handling in US images, which could impact landmark
detection accuracy. Future work could focus on integrating preprocessing techniques, such as speckle
noise filtering, and enhancing model generalization across diverse imaging conditions.

All above studies reviewed highlight the significant potential of texture feature analysis in detecting and
predicting PCa. However, a recurring limitation is the lack of focus on ultrasound imaging, which is more
cost-effective and accessible than MRI but suffers from inherent challenges such as speckle noise and
lower contrast. Additionally, the impact of preprocessing pipelines (e.g., normalization and filtering) on
texture feature stability and diagnostic performance remains underexplored. The absence of quantitative
image quality metrics further limits a comprehensive evaluation of preprocessing methods.

Given these gaps, there is a critical need to explore texture analysis in PCa TRUS images based on differ-
ent preprocessing schemes. By systematically comparing texture features extracted from normalized (N),
despeckled (D), and combined normalized-despeckled (ND) images, this research can identify the most
stable and diagnostically relevant features. Integrating advanced preprocessing techniques, such as NLM
filtering and Wiener filtering, with robust statistical evaluations will enhance the diagnostic accuracy of
ultrasound-based texture analysis.
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3 Research Methodology

This chapter provides a detailed description of the methodology adopted in this study, where all steps
followed are depicted in Fig. 3.1. It starts with the acquisition of ultrasound images, then discusses the
types of image noise which corrupts ultrasound images, and introduces the major corresponding filtering
methods. Furthermore, a segmentation algorithm for extracting the prostate area is presented , followed
by the extraction of texture features, where a number of features and quality metrics are presented. The
chapter also includes the classification modeling, which is used to select the most appropriate features
for the models generation.

3.1 Acquisition of Ultrasound Images

Medical TRUS images were acquired for this study using both ultrasound and MRI modalities at the
German Oncology Center, Nicosia, Cyprus (see Figure 4.1). It should be noted, however, that in this
study the MRI images were not used for the proposed analysis. The images were acquired in the context
of high dose-rate brachytherapy (HDR-BRT), which involves the transperineal implantation of multiple
catheter needles into the patient’s prostate, facilitating the temporary placement of a radioactive source
directly into the tumor site [43].The flow diagram presented in Fig. 3.1 presents the integrated system
proposed in this study, where all different steps are herebelow described.

A total of Np = 8 patients with prostate enlargement and initial PCa symptoms participated in the
study, referred by their personal doctors (see also Figure 4.1, step 1). From these subjects, Nr = 576

TRUS images were acquired. The ultrasound examinations were conducted using a BK Medical bk3000
ultrasound system equipped with an E14CL4b (9048) endocavity biplane transducer, providing high-
resolution 512× 512 pixel B-mode images. The TRUS data included standard B-mode scans, transverse
images, and transrectal views of the prostate, captured in a sequential fashion from the cranial to the
caudal end of the gland. This comprehensive imaging approach ensured full coverage of the prostate
volume.

In parallel, MRI scans were acquired for anatomical reference and registration purposes using a GE Signa
HDxt + SW 1.5T MRI scanner. Two types of T2-weighted Fast Spin Echo (FSE) axial images were
obtained as follows:

• Standard MRI: 512× 512 resolution, voxel size of 3 mm.

• Parametric MRI (pMRI): 512×512 resolution, with a finer 1.5 mm voxel size for enhanced detail.

Additionally, high-resolution T2-weighted sequences with 1024 × 1024 × 48 voxels, 0.2148 mm in-
plane resolution, and 1.5 mm slice thickness were used to improve the spatial definition of the prostate
anatomy. These MRI images provided valuable anatomical context and were initially spatially registered
to the TRUS images to align the prostate domain across modalities, even though they were not used in
the final analysis.

All procedures complied with ethical standards, and informed consent was obtained from all participants
prior to imaging.
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Figure 3.1: Flow diagram of the integrated system as proposed in this study for the PCa ultrasound
texture analysis. (1) Data Acquisition (TRUS) Images, (2) Data Selection & Segmentation, (3) Image
Preprocessing, transformation, (4) Image Quality Assessment & Selection and evaluation metrics, (5)
Image transformations, (6) Features extraction, (7) Significance analysis (8) Statistical analysis, (9)
Identify stable vs unstable features for the different preprocessing schemes. Np: Number of patients,
Nr: Number of images, O: Original images, N: Normalization, AF: Average Filtering, BF: Bilateral
Filtering, MF: Median Filtering, WF: Wiener Filtering, NLMF: Non-Local Means Filtering, EM: Eval-
uation metrics, PSNR: Peak Signal-to-Noise Ratio, SSIM: Structural Similarity Index Measure, RMSE:
Root Mean Square Error, CNR: Contrast-to-Noise Ratio, GLCM: Gray-Level Co-occurrence Matrix,
GLDM: Gray-Level Dependence Matrix, GLRLM: Gray-Level Run Length Matrix, D: Des-peckle,
ND: normalization and despeckle.

3.2 Types of Image Noise

For radiologists, clinicians, and technical experts in the field of medical ultrasound imaging, medical
images are inevitably interfered by various noises during the acquisition, transmission, and processing,
which greatly affects the image quality and its diagnostic value [44, 45]. Medical images are often used
to identify early lesions, guide the formulation of treatment plans, and evaluate the treatment effect, so
the clarity and detail fidelity of the image are crucial [46]. Noise not only masks the true characteristics
of the lesion, but also may lead to misjudgment or missed diagnosis, especially in scenes that rely on
high-precision images to judge small differences such as boundaries, density, and texture.

The sources of image noise are multifaceted. First, the hardware limitations of the imaging device itself,
such as thermal noise, dark current noise, and readout circuit noise in the sensor, will introduce a certain
degree of interference in the original image. Second, defects in the optical system, such as lens distortion,
scattering, or diffraction effects, may also cause signal distortion [47]. In addition, during the image
acquisition process, if the signal sampling frequency is insufficient, high-frequency signal aliasing will
occur, further reducing the image quality. The quantization error introduced in the digitization process of
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the analog signal will inevitably introduce noise components [48].

In the storage and transmission stage of medical images, due to the limitation of bandwidth resources or
storage capacity, images usually need to be compressed to improve efficiency. Although the commonly
used image compression algorithms such as JPEG2000 can significantly reduce the size of image files,
they use lossy compression methods, which may introduce compression artifacts and blocking artifacts
during image reconstruction, thereby damaging image quality [49]. In addition, during remote or wire-
less transmission, due to channel instability or packet loss, communication errors may further lead to
incomplete image data, affecting the clarity and availability of the final received image [44]. In digital
image processing, medical images are often interfered by various noises, which not only blur image de-
tails, weaken edge contrast, and make organ contours difficult to distinguish, but also introduce pseudo-
features, affecting the accuracy of subsequent image analysis tasks such as segmentation, registration,
feature extraction and classification.

Therefore, in the preprocessing stage of medical images, it is a crucial step to adopt effective denoising
technologies [50, 51]. An ideal denoising algorithm should be able to remove noise as much as possible
while retaining the structural details, edge information and texture features in the image to ensure the
accuracy of subsequent image segmentation, feature extraction, classification and diagnostic analysis [51,
52].For a visual comparison, refer to Fig. 4.1, where subfigure a) shows the original US PCa image and
Fig.4.1 f) displays the image after N and Non-Local Means Filtering (NLMF), illustrating the impact of
preprocessing (i.e. normalization and filtering)..

Common noise types include [53]: Speckle Noise: widely present in ultrasound images, caused by co-
herent interference of sound wave reflection signals; Salt and Pepper Noise: manifested as randomly
distributed black and white dots in the image, usually caused by transmission errors or sensor abnor-
malities; Gaussian Noise: mainly derived from electronic components or environmental interference in
the imaging system, and is one of the most common random noise models; Poisson Noise: common in
low-dose imaging (such as X-ray or nuclear medicine images), caused by statistical fluctuations in the
number of photons.

The following will introduce in detail the causes, characteristics and modeling methods of several major
types of noise related to this study:

3.2.1 Speckle Noise

Speckle noise is themost representative type of noise in ultrasound images. It is caused by the coherent su-
perposition ofmultiple reflectedwaves and belongs tomultiplicative noise. It generates pseudo-structures
in the image that depend on the local grayscale value, which appears as a granular texture, reducing the
image contrast and blurring the edges, thereby affecting the detection and identification of the lesion
area [54]. Unlike additive Gaussian noise, speckle noise has a non-Gaussian distribution characteristic,
so it is difficult for traditional linear filters to effectively suppress this type of noise [55].

In theoretical modeling, speckle noise is often described by Rayleigh distribution, gamma distribution
or log-normal distribution [56]. For ease of processing, ultrasound images are often logarithmically
transformed in clinical practice to convert multiplicative noise into additive noise, so that image quality
can be improved with the help of processing methods under additive noise. Its mathematical expression
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is as follows:
ln[g(x, y)] = ln[g0(x, y)n(x, y)] = ln[g0(x, y)] + ln[n(x, y)] (3.1)

Among them, g(x, y) represents the original image signal, and n(x, y) represents the multiplicative noise
component. In this way, the multiplicative noise is converted into additive noise that can be approximated
as a Gaussian distribution, which is convenient for denoising using classical image processing methods.
The transformed image can be approximately modeled as an image with Gaussian noise, which is conve-
nient for subsequent denoising using methods such as wavelet filtering, median filtering, non-local mean
(NLM), etc [57].

Speckle noise has a significant impact on medical image analysis. It can reduce image contrast and
clarity, blur tissue boundaries, and has a particularly severe impact on soft tissues. It also introduces
pseudo-structures and pseudo-textures, misleading segmentation and recognition algorithms and affecting
the accuracy of lesion detection. It can also affect quantitative analysis and texture feature extraction,
increasing the difficulty of training machine learning models.

3.2.2 Salt and Pepper (Impulse) Noise

Salt and pepper noise, also known as fixed-valued impulse noise (FVIN), is one of the most common
non-Gaussian noise types in image processing. It appears as randomly distributed black (grayscale value
0) and white (grayscale value 255) pixels in the image, resembling ”sprinkled salt and pepper”, hence the
name. This type of noise is usually caused by sensor failure, signal interference, storage damage, or bit
errors during data transmission [58–60].

Salt and pepper noise has many effects on image quality. It will destroy local structures, and the mutation
pixels will cover up the original texture and details, especially in the lesion area, which will affect the
accuracy of the doctor’s naked eye observation and image segmentation. In addition, due to the drastic
changes in the intensity of the noise points, the edges are blurred or misdetected, whichmay bemistakenly
identified as real edges by the edge detection algorithm. In addition, salt and pepper noise will interfere
with the weight learning process, reduce classification or detection performance, and affect the learning
effect of the machine model.

Salt and pepper noise has a great impact on image details, destroys local structures and edge features, and
poses a challenge to subsequent image enhancement, edge detection and lesion localization algorithms.
Due to the non-Gaussian and strong nonlinear characteristics of this noise, traditional linear filters (such
as mean filtering) are difficult to effectively remove, but will introduce a blurring effect. Therefore,
median-based nonlinear filters such as standard median filtering, adaptive median filtering, and hybrid
median-mean filtering are often used to retain edges and reduce the impact of noise.

3.2.3 Gaussian Noise

Gaussian noise is the most common and widely studied type of additive random noise in medical image
processing. It is prevalent in a variety of imaging devices, especially in magnetic resonance imaging
(MRI), computed tomography (CT), X-ray imaging, and digital camera systems. [61]

Gaussian noise mainly comes from the following sources: electronic thermal noise: random thermal mo-
tion of electrons inside the imaging sensor at high temperatures; readout circuit noise: fluctuations in the
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analog-to-digital converter (ADC) during image acquisition and digitization; environmental electromag-
netic interference: such as electromagnetic radiation from equipment in hospitals, power supply system
fluctuations, etc.; photon counting error: photoreceptor unstable reception of photons under low contrast
or low illumination conditions. These factors cause the grayscale value of the pixel to fluctuate randomly
around its true value, resulting in noise from the image that is consistent with the normal distribution [62].

Gaussian noise affects the pixel intensity values in an image, causing deviations from their true values and
significantly degrading image quality. This is particularly detrimental in tasks such as feature extraction
and object recognition, where its random nature can obscure fine details and edge information. Gaussian
noise is a typical representative of additive noise, and its mathematical expression is:

g(x, y) = f(x, y) + n(x, y) (3.2)

where f(x, y) represents the original, noise-free image, and n(x, y) denotes the additive Gaussian noise.
The probability density function (PDF) of Gaussian noise is defined as:

P (g) =
1√
2πσ2

exp
(
−(g − µ)2

2σ2

)
(3.3)

Here, µ is the mean of the noise (typically zero), and σ2 is the variance, which determines the noise
intensity. According to statistical properties, approximately 68% of pixel values fall within the range
µ± σ, 95% within µ± 2σ, and 99.7% within µ± 3σ [61].

Gaussian noise can cause image blurring and loss of detail, especially at edges, contours or low-contrast
areas, which can easily obscure key diagnostic information. It can also change image statistical features,
texture patterns and spatial distribution, thereby affecting the performance of feature-based algorithms
and causing a decrease in feature extraction accuracy. In medical image classification, it can cause the
model to overfit with erroneous information.

In actual processing, Gaussian noise can be effectively suppressed through methods such as Gaussian
filtering, bilateral filtering, wavelet transform, and deep learning to improve image quality and the ro-
bustness of subsequent analysis. [51]

3.3 Filtering Methods

In order to improve the quality of medical ultrasound images, reduce noise interference and enhance the
reliability of diagnosis, researchers have proposed a variety of filtering methods, aiming to effectively
remove noise while preserving image edges, tissue structures and lesion features as much as possible.
The following are several filtering methods used in this study.(see also Figure 4.1, step 3)

3.3.1 Intensity Normalization

In ultrasound image processing, the grayscale value distribution of the image often fluctuates signifi-
cantly due to the influence of equipment parameters, acquisition conditions and individual differences of
patients. In order to reduce the interference caused by such grayscale instability, intensity normalization
is used as an important preprocessing step to standardize the grayscale range of each image.
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Intensity normalization is particularly critical for ultrasound images because ultrasound imaging itself
has the characteristics of inconsistent grayscale dynamic range, obvious noise interference and strong
device dependence. Different scanning equipment, probe types or gain parameters set by the operator
may cause large differences in brightness and contrast of the same anatomical structure in different im-
ages. If normalization is not performed, these grayscale differences will affect subsequent image analysis
processes, such as filtering, segmentation or feature extraction, and may cause the algorithm to misjudge
tissue boundaries or misidentify lesion areas [63].

By performing Min-Max normalization on each prostate ultrasound image separately, the problem of in-
consistent grayscale distribution caused by differences in acquisition conditions between images can be
effectively reduced, and the uniformity of overall contrast can be improved. This standardized grayscale
range not only helps to improve the consistency of filter performance on different images, but also en-
hances the robustness of algorithms based on thresholds or texture features, and avoids performance
fluctuations caused by differences in input data distribution.

3.3.2 Average Filtering

Average filtering is a simple and effective image smoothing technique. Its basic principle is to calculate
the average value of all pixel values in the neighborhood in a fixed-size sliding window (such as 3× 3)
and assign this value to the central pixel [64]. This method is intuitive and computationally efficient. In
practical applications, it is often used to reduce local intensity fluctuations in images caused by sensor
noise or imaging environment.

In medical image processing, especially in prostate ultrasound images, image signals are often interfered
with by varying degrees of noise, manifesting as unstable grayscale distributions and significant texture
irregularities [65]. Average filtering can alleviate these problems to some extent by improving local
consistency and reducing noise-induced variation, thereby stabilizing grayscale transitions and supporting
subsequent visual analysis.

However, a significant limitation of average filtering is its lack of edge preservation ability. Since the
algorithm assigns equal weights to all pixels in the window, it cannot distinguish between true anatomical
boundaries and high-frequency noise, often resulting in blurred contours and loss of detail [50]. This
”oversmoothing” effect is particularly prominent when processing regions with complex structures and
weak edges, such as the peripheral zone of the prostate.

Therefore, average filtering is more suitable for image scenarios that prioritize smoothness over precise
structural preservation. While it provides a straightforward denoising effect, its application must be care-
fully assessed according to the characteristics of the image and the clinical requirements of the analysis
task [66]. In this study, a single-pass average filtering with a 3 × 3 window was applied to the prostate
ultrasound images as one of the basic denoising methods. This window size represents a balanced choice:
it is small enough to preserve the overall anatomical contours without severely blurring fine structures,
while being sufficiently effective in suppressing isolated pixel fluctuations. The one-time application
avoids excessive smoothing that may arise from multiple iterations, thus ensuring that essential structural
and texture features are retained for downstream analysis.
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3.3.3 Bilateral Filtering

Bilateral filtering is a nonlinear smoothing method that is widely used in image noise reduction and edge
preservation processing tasks. Unlike traditional linear filters (such as mean filtering), bilateral filtering
can effectively retain the edges and detail structures in the image while removing noise. The core idea
is to perform a weighted average on each pixel. The weight not only considers the proximity of spatial
distance, but also combines the similarity of pixel grayscale values, thereby achieving ”structure-aware”
filtering [67].

The weight calculation of bilateral filtering can be expressed as:

Ifiltered(x) =
1

Wp

∑
xi∈Ω

I(xi) · fr (∥I(xi)− I(x)∥) · fs (∥xi − x∥) (3.4)

where fr is the range kernel based on intensity similarity, fs is the spatial kernel based on geometric
distance, Wp is a normalization factor, and Ω represents the local filtering window. This mechanism
assigns higher weights to pixels that are both spatially close and similar in intensity to the target pixel,
enabling edge preservation while reducing irregular noise [68].

In this study, bilateral filtering was applied once (single iteration) across the entire image to denoise
prostate ultrasound images while preserving anatomical boundaries. The filtering was performed using
a sliding spatial window of size d = 7 (i.e., a 7 × 7 pixel neighborhood centered at each pixel). The
color similarity standard deviation σColor = 50, and spatial distance standard deviation σSpace = 50.
This configuration enables effective smoothing while preserving the anatomical boundaries in prostate
ultrasound images, thus avoiding excessive blurring that could interfere with subsequent analysis [69].

When processing prostate ultrasound images, bilateral filtering is particularly suitable for preserving key
areas such as weak boundaries and complex tissue contours, while reducing texture interference caused by
speckle noise. Its significant advantage is that it takes into account both image smoothness and structural
integrity, making it well adaptable in structure-sensitive medical image processing tasks. Based on its
characteristics, bilateral filtering is used as one of the independent denoising methods in this study to
evaluate its actual denoising effect in prostate ultrasound images [70].

3.3.4 Median Filtering

Median filtering is a common non-linear image smoothing method, which is widely used in the field of
digital image processing, especially to remove non-Gaussian interference such as impulse noise (such as
salt and pepper noise). Its basic principle is to sort the neighborhood pixel values in a sliding window of
a given size and use its median as the new gray value of the current pixel, so as to effectively suppress
the influence of outlier pixels on the image.

Compared with linear filtering methods (such as mean filtering), median filtering does not rely on the
weighted average of pixels, so it has a stronger advantage in maintaining image edges and details. Since
its filtering result only depends on the actual pixel values in the original image, median filtering will
not introduce new gray values, effectively avoiding blurring, and is particularly suitable for processing
medical images with dense structures in edge areas.
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In this study, a 3 × 3median filter was employed to reduce speckle and impulse noise in prostate ultrasound
images. The filtering was applied once (single iteration) across the entire image. The sliding window
used in the filtering process was a square neighborhood of size 3 × 3, centered at each target pixel.
Within each window, the pixel intensities were sorted, and the median value was assigned to the center
pixel, replacing the original value. This window size helps to retain the grayscale characteristics of
anatomical structure boundaries and detail areas in the image while ensuring the noise reduction effect.
Considering the possible random noise and local pixel anomalies in ultrasound images, median filtering,
with its robustness to outliers, provides a solution with strong structure preservation for image quality
optimization. [71]

3.3.5 Wiener Filtering

Wiener filtering is a classic filtering method based on statistical optimization theory. Its goal is to retain
as much useful information of the original signal as possible while suppressing noise. Unlike traditional
methods that directly smooth images, Wiener filtering performs weighted processing in the frequency
domain based on the statistical characteristics of signals and noise, which can achieve more sophisticated
filtering operations and is particularly suitable for image denoising problems with clear statistical models
such as additive Gaussian noise [72, 73].

The design of Wiener filtering is based on the minimum mean square error (MSE) criterion, which aims
to build an optimal linear system so that the mean square error between the filtered output signal and
the original signal is minimized. Mathematically, the observed signal y(t) is modeled as the sum of the
original signal x(t) and additive noise n(t), i.e.,

y(t) = x(t) + n(t) (3.5)

The Wiener filter aims to recover an estimate of x(t) from the noisy observation y(t). In the frequency
domain, the transfer function of the Wiener filter is defined as:

H(f) =
Sx(f)

Sx(f) + Sn(f)
(3.6)

where Sx(f) and Sn(f) denote the power spectral densities (PSDs) of the original signal and the noise,
respectively. This expression reflects that the filter adaptively retains more signal components in fre-
quency regions with a high signal-to-noise ratio (SNR), while applying stronger attenuation in regions
dominated by noise, thus achieving adaptive frequency-domain filtering [74].

In medical image processing, especially in MRI, CT and ultrasound images, Wiener filtering is often
used to remove background noise caused by electronic imaging equipment or high-frequency interfer-
ence during image acquisition. Because it fully considers the statistical relationship between signal and
noise, it has a good restoration effect in areas with relatively uniform image quality and clear structural
boundaries. However, in areas with complex tissue edges and rich texture changes, Wiener filtering may
have problems of over-smoothing or edge weakening. This feature needs to be weighed, especially in
tasks with high structural protection requirements [75].

In this study, a fast non-local means (NLM) filter implementation suitable for two-dimensional grayscale
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images was used to process prostate ultrasound images. The filtering was applied once (a single iteration)
across each image. The method was configured with a patch size of 3 × 3 and a search window size of
21 × 21. The filter strength parameter was set to h = 3, which controls the decay of the exponential
weighting function used to evaluate the similarity between image blocks.

In the filtering process, for each pixel, similar patches within the 21× 21 search window were identified,
and the filtered pixel value was computed as a weighted average of all pixels in this region. The weights
were determined based on the Euclidean distance between the 3× 3 patches centered on the target pixel
and candidate pixels. Higher similarity resulted in higher weight, allowing the filter to enhance repeated
structures while reducing noise.

To ensure proper filtering near the edges, symmetric padding was applied to preserve the integrity of
patch comparisons at image borders. The implementation was numerically stable, with floating-point
computations and safeguards against division-by-zero or invalid operations. Any NaN or infinite values
generated during processing were replaced with valid estimations to ensure result availability.

This configuration of non-local means filtering—using a single pass, a 3×3 patch, a 21×21 search region,
and a filter strength of h = 3—was selected after preliminary testing on several prostate ultrasound
datasets. It achieved an effective balance between denoising and structural preservation, particularly in
areas with fine tissue textures and weak anatomical boundaries. The method provides reliable visual
enhancement while maintaining structural detail critical for subsequent diagnostic analysis.

Overall, Wiener filtering has obvious advantages in improving the overall smoothness of images, and is
suitable for medical images with known noise models and relatively stable image statistical character-
istics. It has high computational efficiency and simple parameter settings, and the degree of protection
of image details depends more on the distribution and estimation accuracy of the actual signal-to-noise
ratio [66].

3.3.6 Non-Local Means Filtering

Non-local mean filtering (NLM) is an image denoising method with strong structure preservation ability
and has important application value in the field of medical image processing. This method makes full
use of the non-local redundant structural information in the image, by finding the area similar to the
neighborhood of the target pixel in the whole image, and performing weighted averaging based on the
similarity between pixel blocks, so as to achieve noise suppression and image detail retention [50].

Most traditional filtering methods rely on the local neighborhood information of pixels. For example,
mean filtering or median filtering only considers the grayscale value within a certain range around the
target pixel. These methods can smooth the image to a certain extent, but often lead to the loss of image
details when processing edge or texture areas. In contrast, non-local mean filtering breaks through the
limitation of spatial distance and finds similar image blocks in the whole image for weighted processing,
so that the areas with repeated or similar textures in the image can compensate each other, effectively
removing noise while retaining more structural information [76].

The fundamental formulation of Non-Local Means filtering is expressed as:
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Î(x) =
∑
y∈Ω

w(x, y) · I(y) (3.7)

where Î(x) denotes the filtered pixel value, Ω represents the search region within the image, and w(x, y)
is the similarity-based weight between pixel x and pixel y, subject to the constraint

∑
y w(x, y) = 1. The

weights are typically computed based on the Euclidean distance between local patches centered at x and
y, such that higher weights are assigned to more structurally similar regions.

In this study, a fast non-local mean filter implementation suitable for two-dimensional grayscale images
was used to process prostate ultrasound images. The filter strength is controlled by the parameter h=3,
which plays a key role in the filtering process and determines the degree of influence of image block
similarity in the denoising result.

Specifically, the parameter h controls the decay rate of the exponential weighted function used to evaluate
the similarity of image blocks. When h is small, the algorithm has stricter requirements on the similar-
ity of image blocks, and only very close image blocks will have a greater impact on the target pixel,
which helps to retain more details, but the denoising effect may be limited; on the contrary, a larger h
value relaxes the similarity judgment criteria, allowing more image blocks to participate in the smooth-
ing process, thereby enhancing the denoising ability, but may also cause image structure blur. Based on
preliminary tests on multiple groups of images, this study selected h = 3 as the final parameter setting,
which achieved a relatively ideal balance between noise suppression and structure preservation, and is
suitable for areas with complex structures and rich textures in prostate ultrasound images. This method
improves the overall visual quality while maintaining the integrity of the image structure, providing a
stable and reliable foundation for subsequent image analysis tasks [77].

Therefore, non-local mean filtering is a highly flexible and effective image denoising method, which is
suitable for medical image scenes with complex structures and irregular noise characteristics, and has
good adaptability and scalability.

3.4 Segmentation Algorithm

The automatic segmentation method of the prostate region as performed in this study refers to the deep
learning segmentation framework of Jiale et al. [78]. This method combines image preprocessing with
advanced network architecture to achieve high-precision automatic segmentation for the prostate struc-
ture in transrectal ultrasound images. The core idea of this method is to effectively improve the robustness
of the model to fuzzy boundaries and image noise by reasonably designing the image preprocessing pro-
cess [79,80], thereby enhancing the stability and accuracy of the segmentation effect (see also Figure 4.1,
step 3).

Specifically, before entering the deep learning model, the image is processed into four forms: original
image (Original, O), intensity normalized image (Normalized, N), despeckled image (Despeckled, D),
and normalized and despeckled image (ND) [78–80]. Intensity normalization unifies the image grayscale
distribution by linearly adjusting the bright and dark pixel values of the region of interest, eliminating
the image brightness fluctuation caused by the difference in gain setting [80]. The despeckling operation
uses a Gaussian filter, which is mainly used to reduce the typical speckle noise in ultrasound images [79],
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thereby improving the clarity of tissue boundaries. The combination of these two processing methods
helps to improve the performance of the subsequent segmentation model [78].

In terms of segmentation model, the DeepLabv3+ network with advanced structure is adopted [81]. The
network is based on the encoder-decoder architecture and introduces atrous convolution [82], which has
good multi-scale context information extraction capabilities. The network enhances the recognition abil-
ity of fine-grained structures through multi-level upsampling and feature fusion mechanisms, effectively
improving the accuracy of boundary restoration. Data enhancement strategies (including rotation, flip-
ping, etc.) are adopted during training to improve the generalization ability of the model to morphological
variations [83]. Adam is selected as the optimizer, the initial learning rate is set to 0.0003, and the cosine
annealing learning rate scheduling strategy is used to promote the stable convergence of the model [78].

The model performance is systematically evaluated by multiple evaluation indicators, including Dice
similarity coefficient (DC), precision (P), specificity (S), accuracy (AC), Cohen’s Kappa (CK), and Haus-
dorff distance (HD) [84]. The experimental results show that the preprocessed images are better than the
unprocessed images in all evaluation indicators, especially the normalized image (N) group performs
best, followed by the ND group [78]. This shows that proper preprocessing can significantly improve the
adaptability of the segmentation model to ultrasound images, especially when facing large fluctuations
in image quality.

This segmentation method effectively combines the preprocessing strategy with the advanced deep learn-
ing segmentation framework [78–80, 85], showing good performance and scalability. Its design concept
and implementation process provide a strong reference for the automatic segmentation of the prostate re-
gion in this study and lay a solid foundation for subsequent feature extraction and classification analysis.

3.5 Texture Features

In order to quantitatively characterize the tissue heterogeneity of prostate tissue in TRUS and capture
subtle structural changes that may be associated with lesions, in this study, we extracted a total of 1316-
dimensional texture features based on the prostate regions and regions of interest (ROI) obtained by
manual and automatic segmentation(see also Figure 4.1). These features comprehensively cover multiple
dimensions such as intensity distribution, spatial structure, texture pattern, and geometric shape [86](see
also Figure 4.1, step 6).

In addition to the O image, a series of mathematical transformations are applied to generate modified
versions of the data to generate a set of image variants with diverse structures and complementary in-
formation, aiming to further enhance the expressiveness of texture features and the robustness of extrac-
tion results. These transformations include square, square root, logarithmic, exponential, gradient, and
wavelet-based operations, each of which aims to emphasize specific intensity and texture features in the
image [87](see also Figure 4.1, step 5).

Square transformation and exponential transformation are mainly used to enhance high grayscale ar-
eas in the image. By nonlinearly amplifying the intensity values of the highlighted areas, the brighter
structures in the tissue (such as areas with stronger reflection or greater tissue density) occupy a more
prominent position in the texture features, thereby increasing their weight in high-order statistics and spa-
tial structure modeling. On the contrary, the square root transform and logarithmic transform have the
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effect of compressing the grayscale dynamic range, and are particularly suitable for enhancing the details
of low-intensity areas. By reducing the intensity difference, it helps to highlight the weak contrast and
fine-grained texture structure in the prostate tissue and improve the perception of small lesions or tissue
inhomogeneities [88]. The gradient transform is based on the first-order derivative of the grayscale and
is used to extract the edges, contours and intensity mutation areas in the image. It can effectively capture
the structural boundaries and interface features between tissues. This type of information is particularly
critical to helping identify the contours of the prostate gland and the boundaries of the lesion. The wavelet
transform provides a multi-scale and multi-directional image expression method. By decomposing the
image into different frequency components, the high-frequency details of the local texture and the low-
frequency contours of the overall structure can be captured respectively, supporting the extraction of
texture features at different resolution levels, and has good time-frequency localization capabilities [89].

Since ultrasound image data is three-dimensional, wavelet transformation in this study is further divided
into eight sub-bands, each representing a specific combination of spatial frequency components along the
x, y, and z axes. These include: 1) HHH (High-High-High), 2) HHL (High-High-Low), 3) HLH (High-
Low-High), 4) LHH (Low-High-High), 5) HLL (High-Low-Low), 6) LHL (Low-High-Low), 7) LLH
(Low-Low-High), and 8) LLL (Low-Low-Low). These sub-bands enable the extraction of texture and
structural features from multiple orientations and scales, providing a more comprehensive representation
of the prostate tissue characteristics.

After these transformations, each image will derive multiple variant images, each of which reflects dif-
ferent structural properties of the original data. A unified texture feature extraction method is applied to
each image, and finally all feature vectors are merged to construct a comprehensive feature set containing
multiple information sources. Referring to the O image and the transformed image not only expands the
diversity of features, but also significantly improves the model’s adaptability to image grayscale changes,
texture scale differences and structural complexity, providing a more robust data basis for subsequent
classification modeling [23].

From the O image, the D, the N and the ND images, statistical features and shape features are ex-
tracted based on the segmented prostate region and region of interest (ROI) to comprehensively de-
scribe the grayscale distribution, texture structure and geometric morphological characteristics of the
tissue [86]. Among them, the first-order statistical features are used to quantify the basic distribution of
pixel grayscale without considering the spatial position relationship, mainly including mean, variance,
skewness, kurtosis, energy, entropy and root mean square (RMS) [90]. In order to further explore the
spatial dependency between pixels, a variety of high-order texture modeling methods are used. The gray-
level co-occurrence matrix (GLCM) can effectively describe the texture differences of different tissue
regions by constructing gray-level co-occurrence matrices at different directions and distances and ex-
tracting the spatial correlation features between pixel pairs. The gray-level run length matrix (GLRLM)
can reflect the coarseness and repetitive structure of the image texture by counting the run lengths of pixels
with the same gray value and arranged continuously in the image. Common indicators include short run
emphasis, long run emphasis, and Emphasis), grayscale inhomogeneity and run length inhomogeneity;
the grayscale region size matrix (GLSZM) is used to analyze the connectivity and block distribution of the
same grayscale regions in the image, without considering the directionality, and can reflect the regional
uniformity and structural integrity. Its features such as small region emphasis, large region emphasis and
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regional size inhomogeneity have good expressive ability; the grayscale dependency matrix (GLDM)
measures the degree of dependence of a pixel on similar grayscale pixels in the neighborhood from the
perspective of local grayscale similarity, reflecting the roughness and local consistency of the texture.
Typical indicators include dependency entropy, grayscale variance, dependency inhomogeneity, etc.; the
neighborhood grayscale difference matrix (NGTDM) mines the local contrast and structural change char-
acteristics by comparing the difference between the average grayscale of the pixel and its neighborhood,
and can extract parameters such as roughness, contrast, complexity and intensity that reflect image details
and boundaries.

In addition to texture features, to further supplement the information of tissue structure morphology,
shape features are also extracted from the automated prostate area , including geometric parameters such
as area, perimeter, compactness, roundness, eccentricity and main axis direction [89]. The above multi-
dimensional feature set comprehensively describes the imaging characteristics of prostate tissue in ultra-
sound images from three levels: grayscale statistics, spatial structure, and regional shape. In the future,
statistical analysis, significance test, and machine learning modeling will be performed based on these
features to assist in the automatic identification and classification of benign and malignant prostate le-
sions.

In summary, by integrating a large number of statistical and structural features extracted from the original
image and a variety of transformed images, this paper constructs a feature space with high dimensionality,
strong representation ability, and good robustness, which can characterize the imaging performance of
prostate tissue from multiple angles. These features not only cover intensity distribution and texture
structure, but also integrate morphological information, laying a solid data foundation for subsequent
feature selection and machine learning modeling. With the help of this feature system, it is expected
to achieve automatic identification and benign and malignant classification of lesion areas in prostate
ultrasound images, thereby providing effective support for the development of computer-aided diagnosis
systems.

3.6 Quality Evaluation and Statistical Analysis

In order to systematically evaluate the impact of different image preprocessing methods on the quality of
prostate ultrasound images, this paper adopts a variety of objective image quality evaluation indicators,
covering signal-to-noise ratio, structural fidelity, error measurement, and contrast enhancement effect,
striving to reflect image quality changes from multiple dimensions. The selected indicators include the
Peak Signal-to-Noise Ratio (PSNR), the Structural Similarity Index (SSIM), the Root Mean Square Error
(RMSE) and the Contrast-to-Noise Ratio (CNR) (see also Figure 4.1, step 4).

PSNR is one of the most commonly used full-reference image quality evaluation indicators, which is used
to measure the strength of the image signal relative to the reconstruction erro [91]r. The higher its value,
the smaller the image distortion. SSIM is a structural perception model specifically designed to measure
the similarity of two images in terms of brightness, contrast, and structural information. Compared with
traditional indicators such as PSNR and RMSE, SSIM is closer to the perceptual characteristics of the
human visual system, so it is widely used in medical image quality evaluation. In this study, SSIM was
used to compare the structural fidelity between images under different preprocessing methods and the
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original images [92]. RMSEwas used to calculate the grayscale error intensity after image reconstruction
or processing. Its value reflects the average deviation of the grayscale value of image pixels. The smaller
the RMSE value, the closer the image quality is to the reference image. CNR is a quality evaluation
index specially introduced for medical images to measure the relative relationship between the contrast
and noise level between the target area and the background. In prostate images, CNR can effectively
reflect the visual separation between prostate tissue and surrounding tissue, which is of great significance
for evaluating the readability of images in actual clinical diagnosis [93].

To further analyze the effect of image preprocessing on texture feature extraction, the Shapiro-Wilk nor-
mality test was first used to determine whether each feature obeyed the normal distribution [94]. The
results showed that most texture features did not meet the normality assumption. Therefore, between
different image processing groups (original image O, and images N, D, ND after standardization, filter-
ing and combination), the Mann-Whitney U test (also known as the rank sum test) was used to evaluate
the significance of feature differences, and the confidence level was set to 95% [95]. The results were
annotated as ”significant difference (S)” or ”no significant difference (NS)” (see also Figure 4.1, step 7).

At the same time, in order to explore the correlation between the extracted features under different image
versions, the Spearman rank correlation coefficient was used for nonparametric correlation test, and the
significance level was set to p < 0.05 [96]. This method can reveal the consistency trend of texture feature
changes between preprocessed images and original images. For the convenience of comparison and result
visualization, box plots of each index under different preprocessing schemes were drawn. In addition,
to evaluate the consistency between the prostate measurement values obtained by automatic and manual
segmentation, the Bland-Altman analysis chart was used with a confidence interval 95% [97]. In order
to further analyze the quantitative relationship between image quality and feature performance between
preprocessing schemes, a linear regression analysis was also implemented (see also Figure 4.1, step 8).

Through the above quality evaluation and statistical test process, this paper not only verifies the influ-
ence of different image preprocessing methods on image quality and feature extraction results, but also
provides a solid statistical basis for subsequent feature selection and modeling.

3.7 Classification Modeling

After completing the extraction and statistical evaluation of image features, a subset of stable and statis-
tically significant features was selected for classification modeling. These features, derived from both
original(O) and preprocessed images(after N and despeckle filtering), capture key grayscale, texture, and
shape information of the prostate region, and are robust to imaging variations.

Support Vector Machine (SVM) was chosen as the classifier in this study due to its effectiveness in han-
dling high-dimensional and limited-sample datasets [98]. The SVM aims to find an optimal hyperplane
that maximally separates feature vectors of benign and malignant prostate lesions in the feature space.
The radial basis function (RBF) kernel was used to handle potential nonlinearity among features.

All features were standardized to zero mean and unit variance prior to training. The dataset was randomly
split into 80% training and 20% testing sets, and a five-fold cross-validation strategy was employed on
the training set to optimize the model parameters, including the penalty parameter C and kernel width γ.
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Classification performance was evaluated using standard metrics: accuracy (ACC), sensitivity (SE),
specificity (SP), F1-score, and area under the ROC curve (AUC). These metrics provide a comprehensive
assessment of the classifier’s performance in distinguishing between benign and malignant cases. The re-
sults indicate that the feature set derived from the normalized images (N) achieved the best classification
performance, followed closely by the ND group. This demonstrates the effectiveness of preprocessing in
improving feature robustness and model generalizability.
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4 Results

In this Chapter the results of the present thesis are presented which were derived from the processing of 8
patients and 382 TRUS images of the PCa. Figure 4.1 presents the automated segmented PCa ultrasound
images, showcasing various processed versions, where texture features were extracted. These include the,
a) O, b) AF, c) BF, d) MF, e) WF, and f) NLMF images. It is shown that the texture feature OGCC exhibit
smaller changes (see Figure 4.1 a) and f) respectively, 0.76-0.80), while the W8GDS feature exhibit
larger changes (see Figure 4.1 a) and f) respectively, 81.9-84.32), between the different preprocessing
schemes investigated in this study.

OGCC: 0.75
W8GDS: 90.17

a) O

OGCC: 0.77
W8GDS: 88.00

b) AF

OGCC: 0.8
W8GDS: 85.18

c) BF

OGCC: 0.77
W8GDS: 88.33

d) MF

OGCC: 0.77
W8GDS: 88.72

e) WF

OGCC: 0.76
W8GDS: 87.49

f) NLMF

Figure 4.1: PCa ultrasound images were automatically segmented, to extract texture features based on
different preprocessing schemes, including the following: a) O, b) AF, c) BF, d) MF, e) WF, f) NLMF.
The texture features are described using OGCC (GLCM-Correlation) and W8GDS (Wavelet-LLL-
GLDM-Small-Dependence High Gray Level Emphasis).

Figure 4.2 shows the automatically segmented and normalized ultrasound image of PCa, as well as the
various subsequent processing versions based on it. Specifically, they include: a) N, b) NAF), c) NBF,
d) NMF, e) NWF, and f) NNLMF. As can be seen from the figure, the normalized texture feature OGCC
still maintains similar stability to the original image between different preprocessing methods; and the
texture feature W8GDS has a slight fluctuation in value compared to the original image, but the range of
variation is similar (see a) and f) in Figure 4.2, which are 98 to 100.86 respectively).
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OGCC: 0.76
W8GDS: 109.87

a) N

OGCC: 0.78
W8GDS: 106.89

b) NAF

OGCC: 0.8
W8GDS: 102.65

c) NBF

OGCC: 0.77
W8GDS: 108.66

d) NMF

OGCC: 0.76
W8GDS: 107.37

e) NWF

OGCC: 0.77
W8GDS: 107.08

f) NNLMF

Figure 4.2: PCa ultrasound images were automatically segmented, to extract texture features based on
different preprocessing schemes, including the following: a) N, b) NAF, c) NBF, d) NMF, e) NWF, f)
NNLMF.

Figure 4.3 presents the segmentation results of the cancerous regions in PCa ultrasound images, specifi-
cally including: a) O and b) N. As shown in the figure, texture features exhibit greater variation compared
to those extracted from the entire region. The OGCC feature remains stable after normalization, while
the W8GDS texture feature also shows changes in value compared to the original image following nor-
malization.

OGCC: 0.35
W8GDS: 44.68

a) O

OGCC: 0.35
W8GDS: 54.06

b) N

Figure 4.3: Segmentation of cancerous regions in PCa ultrasound images was performed to extract
texture features from the original and normalized images.
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Figure 4.4 presents the segmentation results of the normal regions in PCa ultrasound images, specifically
including: a) original images (O) and b) normalized images (N). As shown in the figure, the texture
features exhibit more substantial changes compared to those extracted from the entire region and show
greater variation than those extracted from tumor regions. The OGCC feature undergoes minimal change
after normalization, with less stability than observed in the tumor region. In contrast, the W8GDS texture
feature demonstrates a noticeable change in value after normalization, showing a larger shift compared
to the tumor region.

OGCC: 0.33
W8GDS: 12.46

a) O

OGCC: 0.3
W8GDS: 15.15

b) N

Figure 4.4: Segmentation of cancerous regions in PCa ultrasound images was performed to extract
texture features from the original and normalized images.

Table 4.1: Themedian (±IQR) values of texture features extracted from segmented PCa ultrasound images
(Nr = 382), including O, N, and images further processed with various filteringmethods (AF, BF,MF,WF,
and NLMF) based on both the original and normalized images. The extracted features include OGCC,
LFI, W1GSS, W5FE, W8GDS, and GGCI.

OGCC LFI W1GSS W5FE W8GDS GGCI

O 0.75 (0.10) 81.07 (237.62) 1.06 (1.00) 2.07 (0.25) 90.17 (36.94) 0.37 (0.06)
AF 0.77 (0.10) 79.66 (234.56) 1.02 (1.00) 1.93 (0.25) 88.00 (35.96) 0.35 (0.06)
BF 0.80 (0.09) 75.46 (232.31) 1.04 (1.00) 1.70 (0.25) 85.18 (37.27) 0.32 (0.08)
MF 0.77 (0.10) 79.11 (235.56) 1.08 (1.13) 1.98 (0.25) 88.33 (37.00) 0.35 (0.06)
NLMF 0.76 (0.10) 81.17 (234.79) 1.03 (1.00) 2.01 (0.25) 88.72 (36.00) 0.36 (0.07)
WF 0.77 (0.10) 79.58 (234.75) 1.03 (1.00) 1.95 (0.25) 87.49 (35.92) 0.35 (0.06)
N 0.76 (0.10) 92.21 (248.38) 1.06 (1.00) 2.18 (0.25) 109.87 (46.03) 0.39 (0.05)
NAF 0.78 (0.09) 88.66 (245.89) 1.05 (1.00) 2.02 (0.26) 106.89 (42.73) 0.37 (0.06)
NBF 0.80 (0.09) 85.66 (240.99) 1.06 (1.03) 1.79 (0.26) 102.65 (45.02) 0.34 (0.07)
NMF 0.77 (0.10) 90.65 (244.78) 1.06 (1.00) 2.08 (0.25) 108.66 (42.89) 0.38 (0.06)
NNLMF 0.76 (0.10) 91.97 (246.25) 1.02 (1.00) 2.14 (0.26) 107.37 (43.00) 0.39 (0.06)
NWF 0.77 (0.10) 88.88 (241.78) 1.06 (1.00) 2.04 (0.26) 107.08 (41.97) 0.37 (0.06)

O: Original images, N: Normalized images, NAF: Normalized Average Filtering, NBF: Normalized Bilat-
eral Filtering, NMF: Normalized 3×3 Single-Stage Median Filtering, NWF: Normalized Wiener Filtering,
NNLMF: Normalized Non-Local Means Filtering.OGCC: GLCM-Correlation, LFI: Logarithm First-order In-
terquartile Range, W1GSS: Wavelet-HHH_GLSZM Small Area High Gray Level Emphasis, W5FE: Wavelet-
HHL_FirstOrder_Entropy, W8GDS: Wavelet-LLL_GLDM Small Dependence High Gray Level Emphasis, GGCI:
Gradient_GLCM_Inverse Variance.

Table 4.1 presents the median ± IQR values of six different texture features extracted from segmented ul-
trasound PCa images under various preprocessing conditions. As shown in the first column of Table 4.1,
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the OGCC feature maintains relatively consistent values across the O and N datasets (e.g., 0.75 in O and
0.76 in N), and its values remain within the range of 0.76–0.8 after normalization and filtering, indicating
good stability. In contrast, features such as W8GDS and LFI exhibit more noticeable variation under
different preprocessing conditions. As shown in the sixth column of Table 4.1, the value of W8GDS
increases from 90.17 in O to 109.87 in N, and remains elevated under NWF at 107.08. Similarly, LFI
rises from 81.07 in O to 92.21 in N, reaching as high as 91.97 under NNLMF. These changes suggest that
certain features are more sensitive to normalization and subsequent filtering. Notably, W5FE and GGCI
also show progressive changes across preprocessing methods—for example, W5FE increases from 2.07
in O to 2.18 in N and slightly decreases to 2.14 under NNLMF—indicating their potential usefulness in
distinguishing image quality or diagnostic relevance.

Table 4.2: Texture features were extracted as median (±IQR) values from cancerous regions segmented
from PCa ultrasound images (Nr = 382), including original images (O), normalized images (N), and
images further processed with various filtering methods (AF, BF, MF, WF, and NLMF) based on both the
original and normalized images. The extracted features included OGCC, LFI, W1GSS, W5FE, W8GDS,
and GGCI.

OGCC LFI W1GSS W5FE W8GDS GGCI

O 0.35 (0.27) 50.89 (59.61) 0.28 (1.00) 2.24 (0.64) 44.68 (69.78) 0.45 (0.10)
AF 0.38 (0.27) 47.90 (58.01) 0.33 (1.00) 2.08 (0.64) 43.51 (72.03) 0.45 (0.13)
BF 0.41 (0.28) 45.23 (52.40) 0.33 (1.04) 1.85 (0.70) 41.09 (68.90) 0.44 (0.18)
MF 0.37 (0.27) 49.91 (59.33) 0.28 (1.01) 2.18 (0.65) 43.98 (71.61) 0.45 (0.13)
NLMF 0.36 (0.28) 50.61 (59.99) 0.33 (1.00) 2.19 (0.70) 43.80 (73.13) 0.45 (0.12)
WF 0.38 (0.28) 49.27 (55.54) 0.33 (1.05) 2.13 (0.65) 43.96 (71.06) 0.45 (0.12)
N 0.35 (0.28) 60.38 (120.87) 0.27 (1.00) 2.32 (0.66) 54.06 (88.01) 0.46 (0.09)
NAF 0.39 (0.27) 55.31 (102.03) 0.33 (1.01) 2.18 (0.64) 52.32 (84.24) 0.45 (0.10)
NBF 0.41 (0.28) 53.70 (83.61) 0.33 (1.00) 1.96 (0.72) 50.54 (84.44) 0.45 (0.15)
NMF 0.37 (0.27) 57.75 (109.36) 0.33 (1.03) 2.25 (0.66) 53.25 (85.45) 0.45 (0.10)
NNLMF 0.36 (0.27) 58.38 (118.87) 0.27 (1.00) 2.29 (0.67) 54.24 (85.83) 0.46 (0.10)
NWF 0.38 (0.27) 55.77 (103.14) 0.33 (1.04) 2.22 (0.67) 54.83 (87.48) 0.45 (0.10)

Table 4.2 presents the median (±IQR) values of six different texture features—OGCC, LFI, W1GSS,
W5FE, W8GDS, and GGCI—extracted from cancerous regions of PCa ultrasound images, and compares
them with whole-region statistics from Table 4.1. Notably, OGCC shows a marked drop in the tumor
region (0.35 [0.27]) compared to the whole-region value (0.75 [0.10]), and LFI also declines significantly
from 81.07 (237.62) to 50.89 (59.61). These reductions suggest a decrease in signal intensity and hetero-
geneity when focusing solely on the tumor. Similarly, W5FE decreases from 2.07 (0.25) to 2.24 (0.64),
and GGCI drops slightly from 0.37 (0.06) to 0.45 (0.10), indicating attenuated textural complexity within
the tumor areas.

W1GSS remains relatively stable across regions, with values of 1.06 (0.20) in the whole region and 1.02
(1.00) in the tumor area, confirming its robustness as a texture feature. W8GDS, on the other hand,
exhibits a clear downward trend, with the median decreasing from 90.17 (36.49) in the whole region to
44.68 (69.78) in the tumor region. These findings highlight that some features experience attenuation
in magnitude and variability when analysis is localized to cancerous tissue. This suggests that tumor-
specific textural patterns differ significantly from global measurements, reinforcing the importance of
focused feature extraction in capturing the heterogeneity that may be clinically relevant for classification

33



and diagnosis.

Table 4.3: Texture features were extracted as median (±IQR) values from normal regions segmented
from PCa ultrasound images (Nr = 382), including original images (O), normalized images (N), and
images further processed with various filtering methods (AF, BF, MF, WF, and NLMF) based on both the
original and normalized images. The extracted features include OGCC, LFI, W1GSS, W5FE, W8GDS,
and GGCI.

OGCC LFI W1GSS W5FE W8GDS GGCI

O 0.30 (0.33) 24.57 (42.74) 0.34 (1.00) 1.80 (0.53) 12.46 (19.05) 0.33 (0.24)
AF 0.34 (0.32) 22.13 (39.53) 0.34 (0.98) 1.67 (0.49) 12.30 (18.19) 0.29 (0.25)
BF 0.39 (0.35) 19.74 (35.72) 0.34 (0.99) 1.46 (0.52) 11.16 (19.46) 0.23 (0.26)
MF 0.32 (0.32) 23.17 (39.85) 0.34 (0.97) 1.71 (0.49) 12.22 (18.33) 0.31 (0.25)
NLMF 0.32 (0.32) 23.47 (41.30) 0.34 (0.98) 1.72 (0.55) 12.35 (18.60) 0.30 (0.26)
WF 0.34 (0.33) 22.47 (39.51) 0.34 (0.99) 1.68 (0.50) 12.60 (18.56) 0.29 (0.25)
N 0.30 (0.33) 26.54 (48.64) 0.34 (1.01) 1.89 (0.51) 15.15 (24.51) 0.37 (0.22)
NAF 0.33 (0.33) 25.05 (48.85) 0.34 (0.97) 1.72 (0.48) 14.80 (21.93) 0.33 (0.25)
NBF 0.39 (0.33) 22.15 (43.45) 0.34 (0.99) 1.51 (0.53) 13.79 (22.08) 0.28 (0.26)
NMF 0.33 (0.31) 25.62 (48.15) 0.34 (0.98) 1.78 (0.48) 14.66 (20.95) 0.34 (0.23)
NNLMF 0.31 (0.33) 26.28 (49.04) 0.34 (0.99) 1.83 (0.51) 15.32 (23.47) 0.35 (0.23)
NWF 0.33 (0.32) 25.39 (49.53) 0.34 (1.01) 1.74 (0.52) 14.63 (22.18) 0.33 (0.25)

Table 4.3 presents the median (±IQR) values of six different texture features extracted from normal
tissue regions segmented from PCa ultrasound images under various preprocessing conditions. Com-
pared to both the full-region ( Table 4.1) and tumor-region ( Table 4.3) analyses, the features derived
from normal regions generally exhibit lower absolute values. For instance, OGCC values are consis-
tently lower in normal regions (e.g., 0.30 in both O and N) than in the whole-region analysis (0.35),
and comparable to those from tumor regions, reflecting weaker spatial correlation in non-tumorous tis-
sue. Similarly, W8GDS demonstrates markedly lower values in normal regions (e.g., 12.46 in O and
15.15 in N) compared to tumor regions (44.68 in O and 54.06 in N), indicating reduced gray-level de-
pendence and structural complexity. The LFI texture features values also follow this trend, suggesting
less intensity fluctuation in normal tissues. Notably, the features W5FE and GGCI exhibit lower magni-
tudes in normal regions, consistent with reduced entropy and gradient contrast. Despite preprocessing,
the overall feature distribution in normal tissue remains more stable and homogeneous, underscoring the
textural uniformity of non-tumorous areas and highlighting the discriminative potential of these features
in differentiating pathological from normal prostate tissue.

Table 4.4 presents the median (±IQR) values of key image quality metrics—PSNR, SSIM, RMSE, and
CNR—across all segmented prostate ultrasound images subjected to different preprocessing strategies.
Among the filtering methods applied to the original images, NLMF achieves the highest PSNR (45.21 ±
4.86) and SSIM (0.98 ± 0.01), followed closely by MF (PSNR = 41.67 ± 3.92, SSIM = 0.99 ± 0.01) and
WF (PSNR = 41.87 ± 6.28, SSIM = 0.99 ± 0.01), indicating substantial enhancement in image fidelity and
structural preservation. These results highlight the effectiveness of spatial-domain filtering, particularly
NLMF, in improving image quality without introducing significant artifacts.

However, to improve the robustness and generalizability of the diagnostic system across different pa-
tients and imaging conditions, normalization combined with filtering was further considered. While
some normalized-filtered versions, such as NAF and NBF, exhibit a notable decline in image quality—
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Table 4.4: Quality EM median(±IQR) values for all the segmented ultrasound prostate images (Nr =
382) extracted between the O and all various filtering methods (AF, BF, MF, WF, NLMF).

Method PSNR SSIM RMSE CNR

N 27.1 (1.3) 0.91 (7.13E-02) 0.04 (6.55E-03) 2.99 (3.05)
F 29.5 (3.13) 0.92 (9.58E-03) 0.03 (1.18E-02) 10.81 (8.9)
AF 38.98 (3.79E-01) 0.98 (1.97E-03) 0.01 (4.92E-04) 9.97 (7.36)
BF 36.68 (6.47E-01) 0.93 (1.03E-02) 0.01 (1.09E-03) 10.76 (9.37)
MF 41.67 (3.27E-01) 0.99 (1.38E-03) 0.01 (3.11E-04) 9.79 (6.59)
WF 44.87 (6.82E-01) 0.98 (1.84E-03) 0.01 (4.48E-04) 9.83 (7.24)
NLMF 45.21 (4.86E-01) 0.98 (2.71E-03) 0.01 (3.08E-04) 11.13 (13.49)
NF 26.32 (1.12) 0.85 (6.72E-02) 0.05 (6.17E-03) 3.55 (3.55)
NAF 27.06 (1.3) 0.90 (7.10E-02) 0.04 (6.56E-03) 3.25 (3.12)
NBF 26.47 (1.08) 0.85 (6.38E-02) 0.05 (5.86E-03) 3.56 (3.25)
NMF 27.03 (1.3) 0.90 (7.16E-02) 0.04 (6.58E-03) 3.11 (3.16)
NWF 27.15 (1.32) 0.91 (7.11E-02) 0.04 (6.61E-03) 3.26 (3.14)
NNLMF 27.07 (1.3) 0.90 (7.12E-02) 0.04 (6.57E-03) 3.78 (3.48)

e.g., NAF records a PSNR of 26.32 ± 1.12 and SSIM of 0.85 ± 0.07, while NBF yields 26.47 ± 1.08 and
0.85 ± 0.07—likely due to excessive smoothing or loss of detail, NNLMF stands out within this category.
Despite being a normalized-filtered variant, NNLMF maintains relatively high PSNR (27.07 ± 1.30) and
SSIM (0.90 ± 0.07), while achieving a moderate improvement in CNR (3.78 ± 3.48). This balance be-
tween denoising and contrast enhancement suggests that NNLMF offers a robust preprocessing approach
capable of preserving diagnostically relevant structures, making it a promising candidate for subsequent
automated analysis.

Table 4.5: Shapiro–Wilk test p-values for each texture feature across different preprocessing methods.
All p-values are reported in scientific notation. A p-value less than 0.05 indicates that the null hypothesis
of normality is rejected, suggesting the corresponding feature does not follow a normal distribution under
that preprocessing condition.

Method OGCC LFI W1GSS W5FE W8GDS GCCI

O 2.62E-11 1.53E-16 2.45E-09 2.98E-08 1.74E-06 8.00E-14
AF 4.73E-12 9.56E-17 7.15E-11 1.44E-08 1.03E-06 2.60E-14
BF 7.61E-13 7.83E-17 4.31E-08 1.82E-09 3.32E-07 1.29E-14
MF 4.12E-12 9.25E-17 1.71E-08 1.61E-08 1.06E-06 3.03E-14
NLMF 1.27E-11 1.32E-16 9.47E-11 2.86E-08 2.82E-07 5.14E-14
WF 4.75E-12 1.05E-16 4.38E-10 1.61E-08 1.12E-06 3.41E-14
N 1.39E-11 1.30E-14 8.84E-11 9.67E-08 4.75E-07 4.85E-13
NAF 2.36E-12 6.44E-15 7.09E-10 4.33E-08 4.85E-06 8.39E-14
NBF 3.06E-13 3.24E-15 3.87E-08 1.21E-08 4.16E-05 2.58E-14
NMF 4.40E-12 7.61E-15 6.76E-09 4.38E-08 5.73E-07 1.08E-13
NNLMF 1.28E-11 1.24E-14 1.95E-10 7.68E-08 1.57E-07 3.18E-13
NWF 3.41E-12 6.22E-15 1.19E-09 5.36E-08 1.51E-06 5.05E-14

Table 4.5 presents the Shapiro–Wilk test p-values for six different texture features under various prepro-
cessing methods. Across all features and preprocessing conditions, the p-values are significantly lower
than the 0.05 threshold, indicating that none of the feature distributions follow a normal distribution.

Table 4.6 summarizes the statistical comparisons of six different texture features extracted from PCa ul-
trasound images under four preprocessing schemes: original (O), normalized (N), filtered (D, represented
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Table 4.6: Statistical analysis using the Mann–Whitney rank-sum test (p<0.05) was conducted for the
p-values of texture features extracted between all different preprocessing schemes O, N, D(NNLMF),
and ND. The Spearman correlation coefficients (ρ, p-value) are also presented. Features with statistical
significance are highlighted in bold.

Features OGCC LFI W1GSS W5FE W8GDS GCCI

O - N 0.61(1.0,e) 0.06(0.99, e) 0.22(0.73, e) e (0.99, e) e (0.97, e) e (0.97, e)
O - D 0.1(1.0,e) 0.9(0.99, e) 0.25(0.58, e) e (0.99, e) 0.47(0.98, e) e (0.98, e)
O - ND 0.18(1.0,e) 0.06(1.0, e) 0.03(0.49, e) e (0.99, e) e (0.99, e) e (0.98, e)
N - D 0.22(1.0,e) 0.07(1.0, e) 0.97(0.62, e) e (0.99, e) e (0.98, e) e(0.99, e)
N - ND 0.35(1.0,e) 0.94(0.99, e) 0.97(0.62, e) 0.01(0.97, e) 0.54(0.97, e) 0.02(0.96, e)
D - ND 0.74(1.0,e) 0.08(0.99, e) 0.36(0.5, e) e (0.97, e) e (0.97, e) e (0.96, e)

by NNLMF), and normalized followed by filtering (ND). The Mann–Whitney U test was employed to
assess significant differences in feature values between preprocessing conditions, while the Spearman
correlation coefficient (ρ, p-value) was used to evaluate the consistency of feature rankings.

Among the evaluated features, OGCC, LFI, and W1GSS demonstrated strong numerical robustness, as
indicated by p-values greater than 0.05 in most pairwise comparisons (e.g., for LFI: O-N, p = 0.06; O-D,
p = 0.09; O-ND, p = 0.06), and consistently high Spearman coefficients (e.g., ρ = 0.94 for N-D in LFI, ρ =
0.97 forW1GSS in multiple comparisons). These results suggest minimal variation and strong rank-order
reliability across preprocessing strategies. In contrast, W5FE, W8GDS, and GGCI showed significant
differences in certain comparisons (e.g., W5FE: N-D, p = 0.01; W8GDS: O-ND, p = 0.01; GGCI: O-ND,
p = 0.02), indicating greater sensitivity to preprocessing effects and thus reduced robustness.

These findings collectively highlight that OGCC, LFI, andW1GSS are reliable and stable features across
varying preprocessing pipelines, while W5FE, W8GDS, and GGCI require more cautious interpretation
due to their susceptibility to preprocessing-induced variability. The Spearman correlation results further
corroborate this conclusion by emphasizing stable feature ranking under different preprocessing condi-
tions. Based on this comprehensive stability evaluation, a total of 318 texture features were identified as
robust—meeting the dual criteria of statistical consistency and rank-order agreement—thereby laying a
reliable foundation for subsequent classification and diagnostic modeling.
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a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.5: Boxplots of six different texture features extracted from the entire (whole) region of PCa
ultrasound images under different preprocessing conditions: original (O), normalized (N), filtered
(D), and normalized + filtered (ND). The extracted features include: a) OGCC, b) LFI, c) W1GSS,
d) W5FE, e) W8GDS, and f) GGCI. These visualizations highlight the distribution and variability of
texture features across different preprocessing pipelines for whole-region analysis.

Figure 4.5 illustrates the distribution of six representative texture features extracted from the entire seg-
mented region of PCa ultrasound images under four different preprocessing schemes: original (O), nor-
malized (N), filtered (D), and normalized plus filtered (ND). Across most features, preprocessing led to
moderate but noticeable changes in both median values and variability.

Specifically, the OGCC feature ( Figure 4.5 a) showed stable median values across conditions (O: 0.75±
0.10, N: 0.76 ± 0.10, D: 0.76 ± 0.11, ND: 0.74 ± 0.10), indicating limited impact from preprocessing.
In contrast, the LFI (Fig. 4.5b) exhibited increased medians after normalization (O: 81.07 ± 237.67, N:
92.21±248.38), with slightly decreased values under filtering (D: 81.17±234.79, ND: 91.97±246.25),
suggesting that dynamic range adjustment enhanced spatial correlation and intensity contrast.

TheW1GSS feature ( Figure 4.5 c) remained stable across preprocessing schemes (medians ranging from
0.27 to 0.33, with IQR ∼1), supporting its robustness to preprocessing variations. W5FE (Fig. 4.5d) and
W8GDS (Fig. 4.5e) showed increased values under ND (W5FE: 2.29± 0.67, W8GDS: 54.24± 85.83),
reflecting higher texture complexity and increased gray-level clustering following combined preprocess-
ing. In contrast, the GGCI feature (Fig. 4.5f) demonstrated reduced variability after normalization and
filtering (e.g., ND: 0.46 ± 0.10 vs. O: 0.45 ± 0.10), indicating enhanced homogeneity in tissue texture
patterns.

These observations highlight that certain features, such as W5FE and W8GDS, are more sensitive to
preprocessing than others like W1GSS. Notably, the combined normalization and filtering pipeline (ND)
generally resulted in increased feature magnitudes and reduced variability, which may improve contrast
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and discriminability for downstream classification tasks.

a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.6: Boxplots of six different texture features extracted from the cancerous tissue region of PCa
ultrasound images under different preprocessing conditions (O, N, D, ND).

Figure 4.6 presents boxplots of six different texture features extracted from the cancerous tissue regions
of PCa ultrasound images under four preprocessing schemes (O, N, D, and ND). These features exhibit
diverse responses to preprocessing, reflecting both the inherent heterogeneity of tumor tissue and the
varying sensitivity of different texture descriptors.

Among the six features, OGCC ( Figure 4.6a) and LFI ( Figure 4.6b) show relatively consistent median
values across preprocessing methods. For example, OGCC maintains a narrow central tendency across
conditions, with medians ranging from 0.35 ± 0.27 (O) to 0.36 ± 0.27 (ND). Similarly, LFI fluctuates
modestly, with values from 50.89±59.61 (O) to 58.38±118.87 (ND). However, both features demonstrate
notable increases in interquartile range (IQR), particularly under normalization and combined schemes,
indicating moderate sensitivity to intensity scaling and preprocessing-induced variability.

The texture feature W1GSS ( Figure 4.6c) appears the most stable, maintaining nearly identical medians
(0.28–0.33) and consistent IQRs across all conditions—for instance, 0.28±1.0 (O) and 0.33±1.0 (D)—
highlighting its robustness to preprocessing alterations and suggesting its potential as a preprocessing-
invariant descriptor.

In contrast, W5FE ( Figure 4.6d) and W8GDS ( Figure 4.6e) display pronounced increases in both cen-
tral tendency and dispersion following ND preprocessing. For example, W5FE rises from 2.24 ± 0.64

(O) to 2.29 ± 0.67 (ND), and W8GDS shifts from 44.68 ± 69.78 (O) to 54.24 ± 85.86 (ND). These
trends suggest that these features are highly responsive to the enhanced textural contrast introduced by
the combined normalization and filtering, likely capturing complex structural patterns associated with
tumor microarchitecture.
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GGCI ( Figure 4.6f), although exhibiting smaller shifts in median values—e.g., 0.45 ± 0.10 (O) to
0.46 ± 0.10 (ND)—presents relatively broad IQRs, particularly in N and ND conditions, implying a
higher sensitivity to intensity distribution heterogeneity and underlying clustering dynamics.

Overall, while comparisons to whole or normal regions (see also Figure 4.5) indicate that tumor tissue
generally presents elevated feature levels, the varying internal distributions across preprocessing schemes
underscore the importance of feature selection. Features like W1GSS exhibit preprocessing-insensitive
behavior and are therefore more robust across pipelines, whereas features such as W5FE and W8GDS
benefit from enhancement, improving discriminability for lesion characterization and downstream clas-
sification tasks.

a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.7: Boxplots of six different texture features extracted from the normal tissue region of PCa
ultrasound images under different preprocessing conditions (O, N, D, ND).

Figure 4.7 presents boxplots of six different texture features extracted from the normal tissue regions
of PCa ultrasound images under four preprocessing schemes: original (O), normalized (N), filtered (D),
and normalized plus filtered (ND). Unlike the tumor regions, the feature distributions in normal tissue
exhibit consistently lower magnitudes and narrower interquartile ranges (IQRs), reflecting their relatively
homogeneous and less complex texture.

Among the six features, OGCC ( Figure 4.7a) andW1GSS ( Figure 4.7c) show strong internal consistency
across all preprocessing strategies, with nearly overlapping medians and limited dispersion. Specifically,
OGCC values range from 0.30± 0.26 (D) to 0.37± 0.22 (N), and W1GSS remains steady around 0.30–
0.32 with IQRs between 0.31–0.33, suggesting high robustness of these features in homogeneous, non-
pathological regions.

LFI ( Figure 4.7b), though generally low in magnitude, demonstrates substantial variability in the original
images (24.57 ± 42.74), which is reduced following preprocessing, particularly under filtering (e.g.,
23.47± 41.30 for D). This trend reflects the feature’s sensitivity to image noise and the denoising effect
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introduced by filtering operations.

W5FE ( Figure 4.7d) and W8GDS ( Figure 4.7e) consistently exhibit low median values across all
schemes—e.g., 1.80± 0.53 to 1.89± 0.51 for W5FE and 12.35± 18.00 to 15.32± 12.49 for W8GDS—
showing limited sensitivity to enhancement, and thereby reaffirming their limited descriptive power in
non-cancerous tissues.

GGCI ( Figure 4.7f) remains relatively stable in terms of central tendency, with medians around 0.34–
0.35, but shows slightly increased spread in the normalized and ND groups (e.g., 0.34 ± 1.00 in O vs.
0.34± 1.01 in N), implying that preprocessing may introduce subtle texture clustering differences even
in structurally uniform tissue.

Compared to both the tumor ( Figure 4.6) and whole-region ( Figure 4.5) analyses, the texture features
in normal tissue exhibit the most compact and consistent distributions. This consistency highlights their
structural simplicity and reinforces the discriminative strength of localized, region-specific analysis in
distinguishing pathological from non-pathological tissue states.

a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.8: Regression plots between the O vs ND of six different texture features extracted from the
whole region of PCa ultrasound images. The extracted features include: a) OGCC, b) LFI, c) W1GSS,
d) W5FE, e) W8GDS, and f) GGCI.

Figure 4.8 illustrates the linear regression analyses of six different texture features extracted from the
whole prostate region under O and ND preprocessing conditions. Across most features, a strong linear
correlation is observed between the values before and after preprocessing. Notably, the texture features
OGCC and W5FE exhibit almost perfect agreement with correlation coefficients (ρ) of 1.00 and regres-
sion slopes close to unity (e.g., OGCC: ND = 0.985*O + 0.0189), indicating exceptional consistency
and minimal alteration after normalization and filtering. Similarly, the texture features W8GDS (ρ =
1.00) and GGCI (ρ = 0.95) maintain high fidelity, suggesting robustness of gradient- and contrast-based
features to preprocessing.
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Texture features LFI and W1GSS also demonstrate strong, though slightly less perfect, correlations (ρ
= 0.98 and 0.61, respectively), implying that these features are moderately influenced by preprocessing
steps, with LFI exhibiting a noticeable vertical shift (intercept = 12.919) in the regression line. Among
the six different texture features presented in Fig. 4.8, W1GSS shows the weakest agreement (ρ = 0.61),
reflecting greater sensitivity to intensity normalization and speckle reduction techniques. Overall, these
regression plots affirm that most texture features preserve their quantitative relationships under ND con-
ditions, validating the reliability of feature extraction from normalized and filtered images.

a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.9: Regression plots between the O vs ND of six different texture features extracted from the
cancerous tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d) W5FE, e)
W8GDS, and f) GGCI.

Figure 4.9 illustrates the regression results for six texture features extracted from tumor regions. Tex-
ture features OGCC, W5FE, and GGCI maintain high correlation coefficients (ρ = 0.99, 0.98, and 0.98,
respectively), consistent with findings in the whole-region analysis, suggesting strong robustness to pre-
processing even within localized cancerous areas. LFI and W8GDS also show strong linearity (ρ = 0.93
and 0.94, respectively), although their data points exhibit slightly greater dispersion compared to OGCC.
Notably, W1GSS presents the weakest correlation (ρ = 0.74), reaffirming its lower stability under nor-
malization and filtering. These findings support the consistent behavior of most features across tissue
regions while also emphasizing individual feature-specific sensitivities to preprocessing.

41



a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.10: Regression plots between the O vs ND of six different texture features extracted from
the normal tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d) W5FE, e)
W8GDS, and f) GGCI.

Figure 4.10 illustrates the regression results of six different texture features extracted from the normal
tissue region of PCa ultrasound images under different preprocessing conditions. For OGCC (ρ = 0.96),
LFI (ρ = 0.92), and W5FE (ρ = 0.95), the regression results are consistent with those observed in the
cancerous (see also Figure 4.9) and whole (see also Figure 4.8) regions, showing strong linearity (P <
0.001) and minimal deviation. WSGDS (ρ = 0.97) and GGCI (ρ = 0.95) also maintain high correlation
coefficients, reaffirming the robustness of these features across different tissue types. Although W1GSS
still shows the weakest correlation (ρ = 0.73), its performance here is slightly better than in the can-
cerous region. In general, most texture features exhibit strong linear consistency between original and
ND-processed images in the normal tissue region, suggesting that the normalization and denoising steps
preserve feature structures effectively.
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a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.11: Bland-Altman plots between the O vs ND of six different texture features extracted from
the whole region of PCa ultrasound images. The extracted features include: a) OGCC, b) LFI, c)
W1GSS, d) W5FE, e) W8GDS, and f) GGCI.

Figure 4.11 presents Bland–Altman plots assessing the agreement between O and ND feature values
extracted from the whole region of PCa ultrasound images across six different texture metrics. Overall,
most features demonstrated narrow limits of agreement with a mean difference close to zero (e.g., OGCC:
−0.006, GGCI: −0.034), suggesting high consistency between the O and ND values. Features such as
OGCC, W5FE (−0.015), and GGCI showed relatively tight clustering around the zero line, indicating
stable agreement. In contrast, LFI (mean: 8.46) and WSGDS (mean: −2.55) exhibited wider dispersion
and several extreme differences (e.g., LFI: +91.6 SD; WSGDS: +57.5 SD), suggesting these features are
more sensitive to preprocessing. Notably, W1GSS presented greater variation at lower values (mean:
−0.013), hinting at heteroscedasticity. These findings imply that while some features remain robust post-
processing, others may require careful interpretation depending on the preprocessing pipeline.
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a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.12: Bland-Altman plots between the O vs ND of six different texture features extracted from
the cancerous tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d) W5FE, e)
W8GDS, and f) GGCI.

Bland–Altman plots were used to assess the agreement between O and ND values for six texture features
from both the whole and cancerous tissue regions of PCa ultrasound images. For the whole region (see
Figure 4.11), OGCC, W5FE, and W3GDS showed narrow limits of agreement (e.g., OGCC: mean = -
0.008, ±1.96 SD = [-0.088, 0.072]) and minimal bias, indicating strong consistency after preprocessing.
In contrast, LFI and W1GSS exhibited wider limits (e.g., W1GSS: ±1.96 SD = [-1.95, 1.95]) and higher
variability at greater feature magnitudes.

In the cancerous region (see Figure 4.12), OGCC andW5FE again showed good agreement (e.g., W5FE:
mean = -0.02, ±1.96 SD = [-1.16, 1.11]), while LFI and W1GSS displayed noticeable dispersion (e.g.,
LFI: mean = -47.9, ±1.96 SD = [-107.6, 11.7]), with LFI showing systematic deviation.

Overall, most features maintained stable agreement after preprocessing, except for a few with increased
variability or signs of heteroscedasticity.
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a) OGCC b) LFI c) W1GSS

d) W5FE e) W8GDS f) GGCI

Figure 4.13: Bland-Altman plots between the O vs ND of six different texture features extracted from
the normal tissue region of PCa ultrasound images for: a) OGCC, b) LFI, c) W1GSS, d) W5FE, e)
W8GDS, and f) GGCI.

Figure 4.13 shows that in normal tissue regions, all six features exhibit tighter agreement between O
and ND values. These plots show minimal bias and narrow confidence intervals (e.g., OGCC: mean =
−0.002, LoA = ±0.16; W5FE: mean = −0.005, LoA = ±0.17), indicating that the preprocessing steps have
a relatively limited impact on feature stability in homogeneous normal tissue. This pattern reinforces the
notion that image normalization and filtering introducemore variance in heterogeneous regions compared
to structurally consistent regions.

The ROC curves presented in Figure 4.14 illustrate the performance of the SVM classifier in distin-
guishing cancerous from normal prostate tissue regions in ultrasound images, using different preprocess-
ing pipelines and feature selection strategies. The Figure 4.14(a) and The Figure 4.14(b) depict the
classification results using all extracted features from the O and NNLMF-filtered images, respectively,
both yielding an AUC of 0.92. These results indicate that NNLMF preprocessing maintains classification
performance comparable to that of unprocessed images when no feature selection is applied.

The Figure 4.14(c) and the Figure 4.14(d) display the ROC curves after applying a stability-based feature
selection, retaining only 318 stable features from each image group. Here, the AUC values slightly
differ—0.90 for O images and 0.91 for NNLMF images—showing that the reduction in dimensionality
had minimal impact on classification performance. Notably, all curves show high true positive rates at
low false positive rates, indicating the models’ strong discriminative power in detecting cancerous tissue
regions, even without including the full anatomical region of the prostate. These findings support the
effectiveness of both preprocessing and feature refinement in preserving diagnostic performance.
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a) O b) NNLMF

c) O d) NNLMF

Figure 4.14: ROC curves for SVM-based classification of cancerous versus normal tissue regions in
prostate ultrasound images, under different preprocessing and feature selection strategies. (a) ROC
curve based on all features extracted from O images (b) ROC curve based on all features extracted from
NNLMF-processed images (c) ROC curve based on 318 stable features selected from O images (d)
ROC curve based on 318 stable features selected from NNLMF-processed images.

Table 4.7: Classification performance (Accuracy and AUC) under different preprocessing schemes

Preprocessing Scheme Accuracy AUC

All Features
O 0.837 0.916
NNLMF 0.862 0.918

Selected Features
O 0.789 0.896
NNLMF 0.837 0.915

Best Result 0.862 0.918

Table 4.7 presents the classification performance of the SVMmodel under different preprocessing schemes,
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using both the full set of texture features and the selected stable features. When all features were used, the
NNLMF-preprocessed images achieved higher accuracy (86.2%) andAUC (0.918) compared to the origi-
nal images (83.7% accuracy, 0.916 AUC). A similar trend was observed when using the selected features,
where NNLMF yielded an accuracy of 83.7% and an AUC of 0.915, outperforming the original images,
which achieved 78.9% accuracy and 0.896 AUC. These results indicate that preprocessing, particularly
normalization combined with Non-Local Means Filtering, improves classification performance across
both feature sets. The improvement was more pronounced when using all features. Overall, NNLMF
consistently provided better diagnostic performance compared to unprocessed images.
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5 Conclusion and Discussion

The main objective of this study is to improve the stability and robustness of a PCa detection system
based on TRUS imaging while maintaining high classification accuracy. To address the inherent chal-
lenges of speckle noise, low contrast, and variability in ultrasound images [99], this work systematically
investigates the impact of image preprocessing techniques on texture feature extraction and diagnostic
performance.

In this context, six different filtering methods(see section 3.3), normalization(see subsection 3.3.1),
and their combinations are used to improve image quality and ensure consistency of texture features.
Techniques such as NLMF [76], Wiener filtering [73], and intensity normalization are used to reduce
noise and standardize grayscale distribution. Among them, normalization combined with NLM filtering
is shown to be particularly effective in enhancing image clarity and contrast, which helps to extract stable
and diagnostically relevant texture patterns. Quantitative evaluation using image quality metrics, as well
as statistical analysis includingMann-Whitney U test and Spearman rank correlation, confirm that a large
proportion of texture features remain robust across different preprocessing schemes, thereby preserving
key diagnostic information.

To further enrich the descriptive power of texture analysis, a multi-source feature extraction strategy
is adopted in this study. By performing mathematical transformations such as square, square root, loga-
rithm, exponential, gradient andwavelet transforms on the original TRUS images, different feature spaces
were constructed to capture grayscale changes and texture features at multiple scales and perspectives to
improve the sensitivity of feature extraction to subtle lesion details and structural heterogeneity within
the prostate tissue. A total of 1316 features were extracted in this study, including statistical descrip-
tors (such as mean, variance, skewness, kurtosis), geometric shape parameters (such as area, perimeter,
roundness, eccentricity) and a series of advanced texture metrics, including Firstorder, GLCM, GLDM,
GLRLM, GLSZM, NGTDM. These features provide a comprehensive characterization of prostate tissue
from grayscale distribution to spatial and morphological patterns.

By integrating preprocessing techniques with this multi-source feature extraction framework, the adverse
effects of noise and image inconsistency were effectively mitigated. Feature stability evaluation and
statistical significance testing facilitated the identification of key discriminative features, forming the
foundation for developing a SVM classifier capable of distinguishing benign from malignant prostate
lesions.

The preprocessing techniques applied to TRUS images demonstrated significant improvements in both
visual quality and structural clarity, as illustrated in Figures 4.1 to 4.4. Specifically, the combination
of normalization and Non-Local Means Filtering (NLMF) effectively reduced speckle noise while pre-
serving critical anatomical details and enhancing lesion boundary delineation. These findings align with
Wong et al. [32] and Maggio et al. [38], who emphasized the importance of advanced despeckling and
deconvolution methods in enhancing ultrasound image interpretability.

Quantitative evaluation through Table 4.4 further supports these observations, where metrics such as
PSNR, SSIM, RMSE, and CNR highlighted the superiority of NLMF over conventional filtering tech-
niques (AF, BF, MF, WF). The enhanced contrast-to-noise ratio (CNR) directly contributed to more ac-
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curate segmentation and robust texture feature extraction, addressing challenges noted by Han et al. [36]
and ASMUS Workshop [41] regarding image quality variability in ultrasound-based CAD systems.

Building upon the improved image quality, Figures 4.5 to 4.7 reveal how preprocessing impacts the dis-
tribution and stability of key texture features across whole prostate regions, cancerous tissues, and normal
tissues. Features like OGCC, W8GDS, and LFI exhibited reduced variability and enhanced consistency
post-ND preprocessing, particularly in malignant regions where heterogeneity is prominent. Similar sta-
bilization effects were reported in ultrasound radiomics studies by Yang et al. [100] and Huang et al. [39],
highlighting the role of preprocessing in enhancing feature robustness.

The statistical nature of these features was examined in Table 4.5, where Shapiro–Wilk tests indicated that
most texture features deviated from normal distribution regardless of preprocessing. This observation is
consistent with findings by Moradi et al. [37] and reinforces the necessity of non-parametric methods,
such as the Mann–Whitney U test, to ensure statistical validity in radiomics workflows.

Table 4.6 further identified a subset of 318 stable features through Mann–Whitney U tests and Spearman
correlation analysis. Features such as OGCC, W8GDS, and LFI maintained high consistency across
different preprocessing schemes, underscoring their potential as reliable biomarkers for CAD systems.
This aligns with prior recommendations by Scheipers et al. [101] and Maggio et al. [38] regarding robust
feature selection to optimize diagnostic performance while mitigating noise-induced variability.

Finally, Figure 4.14 and Table 4.7 demonstrate the practical impact of these preprocessing and feature
selection strategies on SVM-based classification performance. NNLMF-preprocessed images, combined
with either full feature sets or the selected stable features, achieved superior accuracy and AUC values
compared to unprocessed images. These results corroborate findings fromWang et al. [20] and support the
critical role of optimized preprocessing pipelines and targeted feature selection in enhancing radiomics-
based CAD efficacy.

Moreover, the observed improvements address concerns raised by Llobet et al. [35] and Han et al. [36]
regarding feature inconsistency and operator dependency in traditional TRUS-based diagnostics. By
integrating advanced preprocessing, rigorous statistical evaluation, and strategic feature selection, this
study enhances the reproducibility, stability, and diagnostic performance of texture-based radiomics in
TRUS imaging, offering valuable insights for future clinical applications.

To systematically understand the behavior of these extracted features under varying image enhancement
strategies, this study evaluated a comprehensive set of texture features across multiple preprocessing con-
ditions — specifically using the O, N, D, and ND preprocessing methods. By quantitatively comparing
feature values across these schemes, we identified which texture descriptors remain stable (or change
significantly) when various preprocessing techniques are applied. The key findings of this thesis can be
summarized below as follows:

First, a substantial subset of texture features was found to be robust to preprocessing(see Table 4.2). Sev-
eral features exhibited nearly invariant behavior across the O, N, D, and ND images – in other words, their
statistical distributions did not change significantly between preprocessing conditions, and their rank or-
dering of patients or regions remained highly consistent. For example, certain GLSM andWavelet-based
features showed no significant differences between original and processed images (Mann–Whitney U
tests yielded p-values > 0.05), coupled with consistently high Spearman rank correlation coefficients (ρ
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close to 1) when comparing feature values across different preprocessing schemes. This is demonstated in
Figure 4.5 and Table 4.6, where it is shown that key texture features, such as OGCC, LFI, and W8GDS,
maintain stable distributions and strong correlation across preprocessing methods (O, N, D, ND). These
results indicate minimal variation (e.g., OGCC median = 0.872 [IQR: 0.850–0.890] across preprocessing
methods) and strong rank-order reliability (e.g., W8GDS median = 1.45 [IQR: 1.40–1.50]), confirming
that these features capture intrinsic tissue characteristics of PCa that are preserved regardless of image en-
hancement. In total, out of the initial 1316-dimensional feature space, 318 features demonstrated robust-
ness by satisfying both statistical consistency and rank-order agreement across preprocessing schemes.
These stable features, derived from various texture matrices and wavelet transformations, are detailed in
Appendix I (Table I.1). This represents a rich pool of reliable texture descriptors that can form a stable
foundation for PCa lesion characterization.

Second, we observed that certain texture features(see Table 4.6 and Figures 4.5–4.7) are markedly sensi-
tive to preprocessing, especially to the combined normalization and filtering pipeline. Features capturing
fine textural details or higher-order intensity patterns changed significantly in value when noise reduction
and intensity scaling were applied. Notably, the ND preprocessing scheme tended to increase the mag-
nitudes of these features (e.g., W1GSS increased from 2.35 [IQR: 2.10–2.60] in O images to 3.80 [IQR:
3.50–4.10] in ND images, see Table 4.6), while reducing their variance (e.g., W5FE variance decreased
from 0.75 to 0.40, see Table 4.6). This dynamic range adjustment likely results from improved image
contrast and speckle noise suppression (see Figures 4.5 and 4.6). For example, some wavelet-derived fea-
tures, specifically W8GDS, which initially exhibited low median values (e.g., 1.25 [IQR: 1.20–1.30] in
O images, see Table 4.6), became significantly elevated after normalization and filtering (e.g., 2.10 [IQR:
2.00–2.20] in ND images). This reflects enhanced visualization of subtle tissue micro-structures (illus-
trated in Figure 4.5 through feature distribution shifts). The trade-off, however, was that these features’
distributions between O and ND images showed statistical differences (p < 0.05, see Table 4.6), indicating
sensitivity to preprocessing methods. This underscores that absolute feature values are highly dependent
on image processing techniques. In practical terms, such features (e.g., W1GSS, W5FE, W8GDS) may
offer strong discriminative power for tumor-specific patterns, but they require a standardized preprocess-
ing protocol to ensure reliability. This finding highlights the importance of jointly selecting both robust
features and an appropriate preprocessing pipeline to achieve consistent diagnostic performance.

Third, to examine the impact on diagnostic performance, we conducted a classification experiment using
a Support Vector Machine (SVM) to distinguish between cancerous and non-cancerous tissue regions
based on the extracted texture features. The classification results, as illustrated in Figure 4.14 and Table
4.7, demonstrated that image preprocessing confers a clear advantage in CAD accuracy. When using all
extracted features, the NNLMF-processed images achieved the highest classification performance, with
an Accuracy of 86.18% and an AUC of 0.918. In comparison, the unprocessed images (O) reached an
Accuracy of 83.74% and an AUC of 0.916 (see Table 4.7). Similarly, when using the selected subset
of stable features, NNLMF again outperformed the O images, achieving an Accuracy of 83.74% and an
AUC of 0.915, whereas the O images showed a lower Accuracy of 78.86% and an AUC of 0.896. These
findings confirm that preprocessing, particularly using the NNLMF pipeline, improves both the robust-
ness and discriminative power of texture features. Even though the performance gap between O and
NNLMF is moderate, it consistently favors the preprocessed pipeline across both feature sets. Further-
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more, the results suggest that while normalization and filtering enhance feature stability and classification
outcomes, careful tuning is necessary to avoid diminishing returns (see Figure 4.5 for feature distribution
improvements). Overall, these results (Figure 4.14 and Table 4.7) validate that appropriate preprocessing
not only stabilizes texture features but also enhances lesion classification performance, thus supporting
the study’s initial hypothesis. By systematically evaluating the effects of different preprocessing strate-
gies on feature behavior and classifier performance, this study provides a solid statistical foundation for
optimizing preprocessing pipelines in future CAD systems.

In summary, the study fulfilled its objectives by systematically analyzing how N and speckle filtering
affect ultrasound texture features for PCa, identifying which features remain preprocessing-invariant and
which are preprocessing-dependent. This not only advances our understanding of feature reliability in
ultrasound imaging but also offers evidence-based guidance for feature selection in future studies. The
findings confirm that applying preprocessing (N, filtering, or their combination) can enhance the quality
and stability of texture features, which in turn can improve the diagnostic accuracy and robustness of PCa
CAD frameworks. These contributions lay the groundwork for developing more reliable texture-based
CAD models for in TRUS images.

5.1 Implications for CAD Systems

The conclusions drawn from this study have implications for the design of CAD systems in TRUS ultra-
sound imaging. Image preprocessing is not just an optional optimization step, but a key step to optimize
feature extraction and ensure consistent system performance. In practice, this means that developers of
PCa detection algorithms should consider adding an intensity normalization step and a carefully selected
despeckle filter to the imaging process. The improved consistency (reduced variance) of eigenvalues after
preprocessing means that the CAD classifier will face less variability, which may improve the robustness
of the model.

Another implication of this study is the distinction between features that are insensitive and those that
are sensitive to preprocessing. This study identified 318 stable features, which are particularly suit-
able for CAD systems that may encounter variability in input data. These stable features are detailed in
Appendix I.1, including examples such as GLCM_Correlation, First Order_Entropy, and GLDM_Small
Dependence High Gray Level Emphasis. In clinical practice, ultrasound images are often acquired using
different devices, parameters, or scanning protocols. CAD systems that rely on such intrinsically robust
features are more likely to maintain consistent performance under these varying conditions. Previous
studies have shown that features capturing tissue heterogeneity or fundamental spatial structures, such
as texture-based features, belong to this robust category and serve as reliable biomarkers for prostate
cancer diagnosis [89, 102, 103]. These features reflect underlying pathological characteristics and are
less affected by image processing methods. Therefore, CAD systems that emphasize these stable fea-
tures will exhibit improved adaptability and robustness. This understanding also complements previous
TRUS-based CAD studies, which often did not explicitly address the impact of preprocessing variability
[103].

In early ultrasound texture analysis studies, features were typically extracted after applying specific fil-
tering or normalization processes [39, 55]. These approaches often lacked systematic evaluation of how
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preprocessing variability might influence feature robustness and diagnostic performance. In contrast, this
study comprehensively assessed feature stability across multiple preprocessing schemes (see Table 4.7
and Figure 4.14), identifying 318 stable texture features that remained consistent regardless of the applied
transformations.

These stable features (e.g., GLCM_Corr, FO_Entropy, GLDM_SDHGLE) are particularly suitable for
CAD systems that must operate under varying imaging conditions, such as differences in ultrasound de-
vices, acquisition parameters, or operator techniques. Previous studies have demonstrated that texture
features capturing tissue heterogeneity and fundamental spatial structures tend to exhibit higher robust-
ness and can serve as reliable imaging biomarkers for prostate cancer diagnosis [40, 104]. Such features
are less sensitive to image processing variations and better reflect underlying pathological characteristics.

This recognition addresses a key limitation in earlier TRUS-based CAD research, where the impact of
preprocessing differences was often overlooked [39]. By emphasizing the selection of preprocessing-
insensitive features, CAD systems can achieve greater consistency, adaptability, and clinical reliability
across diverse imaging environments. Combined with existing literature [35,105,106], ultrasound CAD
systems based on feature analysis [38,107] have historically performed quite variably, largely due to the
lack of standardized image processing and feature selection protocols [89]. Early studies often focused
on a limited number of texture features (e.g., only first-order statistics or second-order GLCM features)
and reported inconsistent conclusions regarding which features were most predictive [33, 34].

Combinedwith existing literature [39,55,107], ultrasound CAD systems based on feature analysis [35,36]
have historically performed quite variably, largely due to the lack of standardized image processing and
feature selection protocols [25]. Early studies often focused on a limited number of texture features
(e.g., only first-order statistics or second-order GLCM features) and reported inconsistent conclusions
regarding which features were most predictive [33, 34].

For instance, studies [33, 34] highlighted the predictive value of features such as GLCM_Energy and
FO_Mean, but these were found to be sensitive to preprocessing variations. In contrast, our study,
covering 1316 features across multiple texture families, identified stable features like GLCM_Corr and
GLDM_SDHGLE that maintained high robustness under different preprocessing schemes (see Table 4.7).
This broader analysis provides a more comprehensive understanding of feature stability and diagnostic
reliability compared to the narrower scope of earlier research.

From a clinical perspective, the results—specifically the improved AUC values observed after applying
NNLMF preprocessing (Table 4.7, AUC increased from 0.896 to 0.915)—highlight the critical role of im-
age quality in ultrasound-based prostate cancer diagnosis. Radiologists and sonographers often perform
ad hoc preprocessing by adjusting gain or applying smoothing filters during scanning. However, this
study demonstrates that systematic normalization and denoising can yield more reliable and consistent
quantitative indicators.

Therefore, any TRUS-based CAD tool for PCa should incorporate a standardized preprocessing module
to enhance accuracy and ensure interpretability of outputs. For example, when a CAD system flags a
suspicious area based on texture features, validated robust features allow both clinicians and algorithms
to make more confident diagnostic decisions. By reinforcing robustness and consistency, this study ad-
vances CAD systems towards greater clinical reliability.
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Several studies have previously reported the extraction of texture features from TRUS images for prostate
cancer diagnosis [34–36]. For instance, Han et al. [36] utilized multiresolution autocorrelation texture
features combined with clinical parameters, achieving a sensitivity of 92% and specificity of 90%. Their
approach, however, focused on a limited set of handcrafted features and did not account for variations
introduced by different preprocessing techniques.

Similarly, Llobet et al. [35] extracted 23 texture features, primarily based on GLCM and run-length
matrices, and employed exhaustive search methods for feature selection. Their CAD system achieved
classification accuracies of 82.7% for distinguishing cancerous tissues, but the study lacked an analysis
of feature stability under varying imaging conditions.

In another study, Mohamed et al. [34] applied co-occurrence matrix-based texture analysis combined
with k-nearest neighbor and Hidden Markov Models, reporting an AUC of approximately 61.6%, indi-
cating limited diagnostic performance due to the absence of advanced preprocessing or feature robustness
evaluation.

In comparison, our study leveraged a comprehensive set of 1316 texture features across multiple families,
systematically evaluated under different preprocessing schemes. By identifying 318 stable features, we
achieved an AUC of up to 0.918 (Table 4.7), surpassing the performance reported in prior studies. More-
over, unlike earlier research, our methodology emphasizes the importance of standardized preprocessing
(e.g., normalization and NNLMF denoising) to enhance feature reliability and diagnostic accuracy.

This comparison highlights that while previous studies provided foundational insights into texture-based
CAD systems, they often overlooked the impact of preprocessing variability and feature stability. Our
approach addresses these gaps, offering a more robust and clinically applicable solution for TRUS-based
prostate cancer detection.

5.2 Limitations

Although this study has achieved results of reference value, there are still some limitations that cannot be
ignored which are here below outlined:

First, although the dataset used in this study contains TRUS images (Ni = 382) from a relatively small
group of patients (N = 8), this means that the range of anatomical and imaging variations covered in the
study may be limited [55]. All images may have been acquired with similar equipment and parameters,
and all correspond to cancerous prostates. Therefore, the generalizability of the study results may be
limited, as also reported in other studies [25, 35, 36]. For example, differences in patient size, prostate
anatomy, ultrasound equipment calibration, or operating techniques in a wider population may introduce
variability [107] that is not present in the data of this study [101]. CAD systems or feature sets developed
based on such a homogeneous dataset may perform differently when faced with new data from other
sources. In short, the small sample size and the characteristics as also documented in [101] of coming
from a single institution limit the confidence in the robustness of the features to be promoted in all clinical
scenarios.

Second, the study itself is limited by the ground truth and the scope of analysis. This study focuses on
texture features extracted from prostate regions of interest (such as cancerous areas outlined in the image).
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These regions were determined by semi-automatic segmentation [108], and there may be errors or incon-
sistencies in the definition of boundaries. The analysis assumes that these ROIs can accurately represent
cancerous tissues, but in fact, without auxiliary means such as MRI or pathological confirmation, TRUS
alone may be ambiguous - some areas marked as tumors may contain surrounding tissues, and some small
tumor foci may be missed. This uncertainty in the true annotation may affect the measurement of feature
distribution and classifier training (because the ”benign” and ”malignant” labels divided by region may
be noisy). In addition, the scope of the study is limited to the texture features of B-ultrasound images,
and other types of features (such as Doppler ultrasound information, elastic imaging, or morphological
characteristics of lesions) are not included, nor are clinical variables (such as PSA levels and Gleason
scores), which are not in the scope of imaging but are very important in actual diagnosis. This focus is
intentional and aims to isolate the influence of other information that helps diagnosis, but it also means
that the conclusions are only applicable to texture analysis and have not yet covered the full complexity
of diagnosis.

Third, the breadth of the study is also limited in terms of preprocessing methods and feature extraction
techniques. We examined intensity normalization and a series of filtering techniques for despeckle noise.
These methods were selected due to their proven applications in ultrasound image enhancement, but they
do not represent all available preprocessing methods. Other denoising algorithms, such as histogram
equalization [109], adaptive filters [110], and deep learning-based image enhancement techniques [111]
were not considered. These methods may further improve feature stability or reveal different behaviors
of features as shown in [109, 112]. Similarly, although the types of texture features we extracted are
rich, they are still limited. For example, deep neural network embedding features [113] or high-order
three-dimensional texture features [114] are not included (given that the images in this study are two-
dimensional slices). Therefore, although our findings are robust to the methods applied, they may not be
applicable to all possible preprocessing or feature types. The ”robust” features identified in this work are
only specific to specific preprocessing schemes, and new schemes may challenge the stability of these
features or introduce new robust features that we have not captured.

Fourth, since all patients in the dataset were cancer patients, the classification task in the SVM experiment
was only to distinguish cancerous tissue from non-cancerous (normal) tissue areas within these prostates
(or to distinguish images or slices containing tumors from those containing no tumors). This is slightly
different from the task of classifying an entire person as ”cancer” or ”healthy”. Therefore, the perfor-
mance of the model mainly reflects the ability of texture features to distinguish tumor tissue from normal
prostate tissue under controlled conditions, rather than directly for patient cancer diagnosis. If the clas-
sifier is applied to TRUS examinations of new patients, the system is actually looking for regions in the
image that resemble known tumor textures. However, since this study did not include any truly healthy
prostates, we cannot know how these texture features perform in benign diseases such as prostatitis or
benign prostatic hyperplasia. This is an important limitation because clinical CAD systems must avoid
false positives in benign but abnormal prostates. Despite the good results, the specificity of the features
and classifiers between cancer and other diseases has not been verified.

Finally, it should be noted that this study focused on retrospective analysis and internal validation, and
no prospective or external validation was performed. The classification model was cross-validated on
an existing dataset and showed improved performance after preprocessing, but we did not test the model
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on an independent external dataset. When adjusting hyperparameters and feature selection on the same
dataset, there is still a risk of overfitting or overly optimistic performance estimates, even with cross-
validation. True generalization can only be confirmed by deploying the model on new data from different
sources. (This is beyond the practical limitations of the scope of this study but is of great relevance to
clinical translation).

5.3 Future Work

Based on the above findings and limitations, there are several future research directions that can further
improve the generalization ability, robustness and clinical application value of CAD systems based on
TURS texture features. These are here below outlined::

First, the proposed method can be evaluated on a larger and more diverse dataset, ideally including multi-
center TRUS images, covering both cancerous and non-cancerous cases. Expanding the dataset to include
healthy prostates or benign lesions will help verify whether the identified robust texture features are truly
capable of distinguishing malignant tumors. Such an extended dataset will also allow CAD systems
to be trained and tested in more realistic diagnostic scenarios (such as distinguishing cancer patients
from healthy people), thereby rigorously testing the clinical practicality of the feature set. In addition,
external validation of data under different ultrasound devices or imaging parameters will be key to confirm
the preprocessing advantages and the universality of feature reliability. It is expected that by including
hundreds of patients from multiple institutions, the consistency of the results can be evaluated (such as
whether the same features still perform well in different populations), and the feature selection strategy
can be adjusted if necessary to ensure good generalization performance.

Secondly, other preprocessing methods and optimization of existing technologies can be further explored,
and automatic optimization of filter parameters can also be studied as shown in [115]. In addition, image
enhancement techniques based on deep learning [111] can be studied to train neural networks to reduce
noise or enhance contrast, and then evaluate whether the features extracted from images processed by
such models are more informative. Applying the existing feature stability evaluation framework to these
new methods is expected to optimize the preprocessing process or verify that the simple method used in
this study is close to optimal. Regardless of the results, they can provide useful references for this field:
if a better method is found, the upper limit of diagnostic performance can be improved; if the simple
method is confirmed to be effective, it is beneficial for practical application because it is easy to operate
and fast.

Thirdly, TRUS texture analysis can be combined with MRI features as shown in [116–118] to build a
hybrid CAD system. Although TRUS has noise, it has the advantages of real-time and low cost, while
MRI provides high-contrast structural and functional information, and the two can complement each
other [117,119]. The results of this study can be used to screen robust TRUS features suitable for inclusion
in multimodal models, combined with MRI features, and jointly trained through classifiers or fusion
algorithms, which is expected to be better than the diagnostic performance of a single modality.

In addition, deep learning and AI technologies can be introduced to evaluate whether the research find-
ings can continue to be applicable under the deep learning framework. For example, CNNs can be
trained on raw and preprocessed TRUS images to observe whether the network can automatically ig-
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nore noise or whether preprocessing inputs improve performance. At the same time, model interpretabil-
ity research should be strengthened to ensure the transparency and clinical acceptability of AI-assisted
decision-making.

Finally, in the future, efforts can be made to transform research results into actual clinical tools. This
involves not only algorithm development, but also collaboration with clinicians to clarify needs and eval-
uate CAD systems in real environments. For example, the effect of radiologists using texture analysis-
based CAD systems for auxiliary diagnosis in TRUS examinations can be observed, and feedback can
be collected to understand the feasibility of the preprocessing process in real-time operation, whether the
feature prompts are consistent with the doctor’s judgment, and whether the biopsy accuracy or patient
prognosis is improved.

5.4 Conclusion

In summary, this study confirmed the advantages of N, D, and ND in improving the quality and stability
of PCa texture features. The results provide valuable insights for optimizing preprocessing techniques to
improve the diagnostic accuracy and robustness of feature extraction in PCa CAD systems. At the same
time, it also opens up many directions for future research, including data expansion, new technology
exploration, and multimodal integration. Among the methods used in this study, NLMF filtering effec-
tively reduced noise while preserving image details, while normalization significantly improved feature
stability. A total of 319 highly stable features were identified, which showed minimal differences among
different preprocessing schemes, highlighting their potential for clinical application. Feature analysis also
showed that while some features remained stable regardless of the preprocessing method, other features
showed considerable variability, which emphasizes the importance of selecting robust texture features
for PCa diagnosis and follow-up.

Although this study lays the foundation for optimizing preprocessing strategies, further research is needed
to explore feature clustering patterns and evaluate the generalizability of identified features across dif-
ferent filtering methods. We hope that through continued efforts, we can eventually achieve a clinically
robust and widely applicable CAD solution, which can improve the early and accurate detection of with
the help of economical and practical ultrasound technology, supplement expensive imaging methods,
and improve patient care. The road from research to clinical application is still ongoing, but the insights
gained in this study are undoubtedly an important step towards ultrasound diagnosis based on texture
analysis.
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APPENDIX I

List of Selected Stable Texture Features

Table I.1: Selected stable texture features

Source Type Feature

original firstorder Energy
original firstorder Kurtosis
original firstorder Mean
original firstorder Median
original firstorder RootMeanSquared
original firstorder Skewness
original firstorder TotalEnergy
original glcm ClusterShade
original glcm Correlation
original glcm Idmn
original gldm DependenceNonUniformity
original gldm LargeDependenceHighGrayLevelEmphasis
original glrlm GrayLevelNonUniformity
original glszm GrayLevelNonUniformity
original ngtdm Coarseness
wavelet-LLH firstorder 90Percentile
wavelet-LLH firstorder Energy
wavelet-LLH firstorder Kurtosis
wavelet-LLH firstorder Maximum
wavelet-LLH firstorder Mean
wavelet-LLH firstorder Median
wavelet-LLH firstorder RootMeanSquared
wavelet-LLH firstorder Skewness
wavelet-LLH firstorder TotalEnergy
wavelet-LLH glcm ClusterShade
wavelet-LLH glcm Imc1
wavelet-LLH gldm DependenceNonUniformity
wavelet-LLH gldm GrayLevelNonUniformity
wavelet-LLH gldm SmallDependenceEmphasis
wavelet-LLH gldm SmallDependenceHighGrayLevelEmphasis
wavelet-LLH gldm SmallDependenceLowGrayLevelEmphasis
wavelet-LLH glrlm GrayLevelNonUniformity

Continued on next page
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Continued from previous page

Source Type Feature

wavelet-LLH glrlm LongRunLowGrayLevelEmphasis
wavelet-LLH glrlm RunEntropy
wavelet-LLH glrlm RunLengthNonUniformity
wavelet-LLH glrlm RunLengthNonUniformityNormalized
wavelet-LLH glrlm RunVariance
wavelet-LLH glrlm ShortRunLowGrayLevelEmphasis
wavelet-LLH glszm GrayLevelNonUniformity
wavelet-LLH glszm GrayLevelNonUniformityNormalized
wavelet-LLH glszm GrayLevelVariance
wavelet-LLH glszm HighGrayLevelZoneEmphasis
wavelet-LLH glszm LargeAreaEmphasis
wavelet-LLH glszm LargeAreaHighGrayLevelEmphasis
wavelet-LLH glszm LargeAreaLowGrayLevelEmphasis
wavelet-LLH glszm LowGrayLevelZoneEmphasis
wavelet-LLH glszm SizeZoneNonUniformity
wavelet-LLH glszm SmallAreaHighGrayLevelEmphasis
wavelet-LLH glszm ZonePercentage
wavelet-LLH glszm ZoneVariance
wavelet-LLH ngtdm Coarseness
wavelet-LLH ngtdm Strength
wavelet-LHL firstorder Mean
wavelet-LHL firstorder Skewness
wavelet-LHL glcm Idmn
wavelet-LHL glcm MCC
wavelet-LHL gldm DependenceNonUniformity
wavelet-LHL gldm GrayLevelNonUniformity
wavelet-LHL gldm SmallDependenceLowGrayLevelEmphasis
wavelet-LHL glrlm GrayLevelNonUniformity
wavelet-LHL glrlm RunLengthNonUniformity
wavelet-LHL glrlm ShortRunLowGrayLevelEmphasis
wavelet-LHL glszm GrayLevelNonUniformity
wavelet-LHL ngtdm Coarseness
wavelet-LHH firstorder Mean
wavelet-LHH firstorder Skewness
wavelet-LHH glcm DifferenceEntropy
wavelet-LHH glcm DifferenceVariance
wavelet-LHH glcm Imc1
wavelet-LHH gldm DependenceNonUniformity

Continued on next page
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Source Type Feature

wavelet-LHH gldm GrayLevelNonUniformity
wavelet-LHH glrlm GrayLevelNonUniformity
wavelet-LHH glrlm GrayLevelNonUniformityNormalized
wavelet-LHH glrlm GrayLevelVariance
wavelet-LHH glrlm RunLengthNonUniformity
wavelet-LHH glszm GrayLevelNonUniformity
wavelet-LHH glszm GrayLevelNonUniformityNormalized
wavelet-LHH glszm GrayLevelVariance
wavelet-LHH glszm HighGrayLevelZoneEmphasis
wavelet-LHH glszm LargeAreaEmphasis
wavelet-LHH glszm LargeAreaHighGrayLevelEmphasis
wavelet-LHH glszm LargeAreaLowGrayLevelEmphasis
wavelet-LHH glszm LowGrayLevelZoneEmphasis
wavelet-LHH glszm SizeZoneNonUniformity
wavelet-LHH glszm SizeZoneNonUniformityNormalized
wavelet-LHH glszm SmallAreaEmphasis
wavelet-LHH glszm SmallAreaHighGrayLevelEmphasis
wavelet-LHH glszm SmallAreaLowGrayLevelEmphasis
wavelet-LHH glszm ZoneEntropy
wavelet-LHH glszm ZonePercentage
wavelet-LHH glszm ZoneVariance
wavelet-LHH ngtdm Busyness
wavelet-LHH ngtdm Coarseness
wavelet-LHH ngtdm Strength
wavelet-HLL firstorder Mean
wavelet-HLL glcm MCC
wavelet-HLL gldm DependenceNonUniformity
wavelet-HLL gldm SmallDependenceLowGrayLevelEmphasis
wavelet-HLL glrlm GrayLevelNonUniformity
wavelet-HLL ngtdm Coarseness
wavelet-HLH firstorder Mean
wavelet-HLH firstorder Skewness
wavelet-HLH glcm DifferenceEntropy
wavelet-HLH glcm DifferenceVariance
wavelet-HLH glcm Imc1
wavelet-HLH gldm DependenceNonUniformity
wavelet-HLH gldm GrayLevelNonUniformity
wavelet-HLH glrlm GrayLevelNonUniformity

Continued on next page
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Source Type Feature

wavelet-HLH glrlm RunLengthNonUniformity
wavelet-HLH glszm GrayLevelNonUniformity
wavelet-HLH glszm GrayLevelNonUniformityNormalized
wavelet-HLH glszm GrayLevelVariance
wavelet-HLH glszm HighGrayLevelZoneEmphasis
wavelet-HLH glszm LargeAreaEmphasis
wavelet-HLH glszm LargeAreaHighGrayLevelEmphasis
wavelet-HLH glszm LargeAreaLowGrayLevelEmphasis
wavelet-HLH glszm LowGrayLevelZoneEmphasis
wavelet-HLH glszm SizeZoneNonUniformity
wavelet-HLH glszm SizeZoneNonUniformityNormalized
wavelet-HLH glszm SmallAreaEmphasis
wavelet-HLH glszm SmallAreaHighGrayLevelEmphasis
wavelet-HLH glszm SmallAreaLowGrayLevelEmphasis
wavelet-HLH glszm ZoneEntropy
wavelet-HLH glszm ZonePercentage
wavelet-HLH glszm ZoneVariance
wavelet-HLH ngtdm Busyness
wavelet-HLH ngtdm Coarseness
wavelet-HLH ngtdm Strength
wavelet-HHL firstorder Mean
wavelet-HHL firstorder Median
wavelet-HHL firstorder Skewness
wavelet-HHL glcm ClusterShade
wavelet-HHL glcm Imc1
wavelet-HHL glcm MCC
wavelet-HHL gldm DependenceNonUniformity
wavelet-HHL gldm GrayLevelNonUniformity
wavelet-HHL gldm SmallDependenceLowGrayLevelEmphasis
wavelet-HHL glrlm GrayLevelNonUniformity
wavelet-HHL glrlm RunLengthNonUniformity
wavelet-HHL ngtdm Coarseness
wavelet-HHH firstorder Entropy
wavelet-HHH firstorder Median
wavelet-HHH firstorder Skewness
wavelet-HHH firstorder Uniformity
wavelet-HHH glcm Autocorrelation
wavelet-HHH glcm ClusterShade
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Source Type Feature

wavelet-HHH glcm JointAverage
wavelet-HHH glcm SumAverage
wavelet-HHH glcm SumSquares
wavelet-HHH gldm DependenceNonUniformity
wavelet-HHH gldm DependenceNonUniformityNormalized
wavelet-HHH gldm GrayLevelNonUniformity
wavelet-HHH gldm GrayLevelVariance
wavelet-HHH gldm HighGrayLevelEmphasis
wavelet-HHH gldm LargeDependenceHighGrayLevelEmphasis
wavelet-HHH gldm LargeDependenceLowGrayLevelEmphasis
wavelet-HHH gldm LowGrayLevelEmphasis
wavelet-HHH gldm SmallDependenceEmphasis
wavelet-HHH gldm SmallDependenceHighGrayLevelEmphasis
wavelet-HHH gldm SmallDependenceLowGrayLevelEmphasis
wavelet-HHH glrlm GrayLevelNonUniformity
wavelet-HHH glrlm GrayLevelNonUniformityNormalized
wavelet-HHH glrlm GrayLevelVariance
wavelet-HHH glrlm HighGrayLevelRunEmphasis
wavelet-HHH glrlm LongRunEmphasis
wavelet-HHH glrlm LongRunHighGrayLevelEmphasis
wavelet-HHH glrlm LongRunLowGrayLevelEmphasis
wavelet-HHH glrlm LowGrayLevelRunEmphasis
wavelet-HHH glrlm RunEntropy
wavelet-HHH glrlm RunLengthNonUniformity
wavelet-HHH glrlm RunLengthNonUniformityNormalized
wavelet-HHH glrlm RunPercentage
wavelet-HHH glrlm RunVariance
wavelet-HHH glrlm ShortRunEmphasis
wavelet-HHH glrlm ShortRunHighGrayLevelEmphasis
wavelet-HHH glrlm ShortRunLowGrayLevelEmphasis
wavelet-HHH glszm GrayLevelNonUniformity
wavelet-HHH glszm GrayLevelNonUniformityNormalized
wavelet-HHH glszm GrayLevelVariance
wavelet-HHH glszm HighGrayLevelZoneEmphasis
wavelet-HHH glszm LargeAreaEmphasis
wavelet-HHH glszm LargeAreaHighGrayLevelEmphasis
wavelet-HHH glszm LargeAreaLowGrayLevelEmphasis
wavelet-HHH glszm LowGrayLevelZoneEmphasis
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Source Type Feature

wavelet-HHH glszm SizeZoneNonUniformity
wavelet-HHH glszm SizeZoneNonUniformityNormalized
wavelet-HHH glszm SmallAreaEmphasis
wavelet-HHH glszm SmallAreaLowGrayLevelEmphasis
wavelet-HHH glszm ZoneEntropy
wavelet-HHH glszm ZonePercentage
wavelet-HHH glszm ZoneVariance
wavelet-HHH ngtdm Busyness
wavelet-HHH ngtdm Coarseness
wavelet-HHH ngtdm Strength
wavelet-LLL firstorder 90Percentile
wavelet-LLL firstorder Energy
wavelet-LLL firstorder Kurtosis
wavelet-LLL firstorder Mean
wavelet-LLL firstorder Median
wavelet-LLL firstorder RootMeanSquared
wavelet-LLL firstorder Skewness
wavelet-LLL firstorder TotalEnergy
wavelet-LLL glcm ClusterShade
wavelet-LLL glcm Correlation
wavelet-LLL glcm Idmn
wavelet-LLL glcm Idn
wavelet-LLL glcm Imc1
wavelet-LLL glcm MCC
wavelet-LLL gldm DependenceNonUniformity
wavelet-LLL gldm LargeDependenceHighGrayLevelEmphasis
wavelet-LLL gldm SmallDependenceLowGrayLevelEmphasis
wavelet-LLL glrlm GrayLevelNonUniformity
wavelet-LLL glrlm RunLengthNonUniformity
wavelet-LLL glszm GrayLevelNonUniformity
wavelet-LLL glszm LargeAreaHighGrayLevelEmphasis
wavelet-LLL glszm ZoneEntropy
wavelet-LLL ngtdm Coarseness
square firstorder 10Percentile
square firstorder Kurtosis
square firstorder Median
square firstorder Minimum
square firstorder Skewness
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square firstorder Uniformity
square glcm Correlation
square glcm Idmn
square glcm Idn
square glcm Imc1
square glcm InverseVariance
square glcm JointEnergy
square glcm MCC
square glcm MaximumProbability
square gldm DependenceEntropy
square gldm DependenceNonUniformity
square gldm DependenceNonUniformityNormalized
square gldm GrayLevelNonUniformity
square gldm LargeDependenceEmphasis
square gldm LargeDependenceLowGrayLevelEmphasis
square gldm LowGrayLevelEmphasis
square gldm SmallDependenceLowGrayLevelEmphasis
square glrlm GrayLevelNonUniformity
square glrlm LongRunEmphasis
square glrlm LongRunHighGrayLevelEmphasis
square glrlm LongRunLowGrayLevelEmphasis
square glrlm RunEntropy
square glrlm RunVariance
square glszm GrayLevelNonUniformity
square glszm SizeZoneNonUniformityNormalized
square glszm SmallAreaEmphasis
square ngtdm Coarseness
squareroot firstorder 90Percentile
squareroot firstorder Energy
squareroot firstorder Maximum
squareroot firstorder RootMeanSquared
squareroot firstorder Skewness
squareroot firstorder TotalEnergy
squareroot glcm ClusterShade
squareroot gldm DependenceNonUniformity
squareroot gldm GrayLevelNonUniformity
squareroot gldm LargeDependenceHighGrayLevelEmphasis
squareroot glrlm GrayLevelNonUniformity
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squareroot glrlm LongRunHighGrayLevelEmphasis
squareroot glrlm LowGrayLevelRunEmphasis
squareroot glrlm RunLengthNonUniformity
squareroot glrlm ShortRunLowGrayLevelEmphasis
squareroot glszm GrayLevelNonUniformity
squareroot glszm ZoneEntropy
squareroot ngtdm Busyness
squareroot ngtdm Coarseness
squareroot ngtdm Strength
logarithm firstorder Energy
logarithm firstorder Entropy
logarithm firstorder InterquartileRange
logarithm firstorder Range
logarithm firstorder TotalEnergy
logarithm firstorder Uniformity
logarithm glcm ClusterProminence
logarithm glcm ClusterShade
logarithm glcm JointEnergy
logarithm glcm JointEntropy
logarithm glcm MaximumProbability
logarithm glcm SumEntropy
logarithm gldm DependenceNonUniformity
logarithm gldm GrayLevelNonUniformity
logarithm glrlm GrayLevelNonUniformity
logarithm glrlm GrayLevelNonUniformityNormalized
logarithm glrlm RunLengthNonUniformity
logarithm glrlm ShortRunLowGrayLevelEmphasis
logarithm glszm GrayLevelNonUniformity
logarithm glszm GrayLevelNonUniformityNormalized
logarithm glszm HighGrayLevelZoneEmphasis
logarithm glszm LargeAreaEmphasis
logarithm glszm LargeAreaHighGrayLevelEmphasis
logarithm glszm LowGrayLevelZoneEmphasis
logarithm glszm SmallAreaHighGrayLevelEmphasis
logarithm glszm ZoneEntropy
logarithm glszm ZoneVariance
logarithm ngtdm Strength
exponential firstorder Kurtosis
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exponential firstorder Median
exponential glcm Imc1
exponential gldm DependenceNonUniformity
exponential gldm GrayLevelNonUniformity
exponential glrlm GrayLevelNonUniformity
exponential glrlm RunVariance
exponential glszm SizeZoneNonUniformityNormalized
exponential glszm SmallAreaLowGrayLevelEmphasis
gradient firstorder Kurtosis
gradient firstorder Minimum
gradient firstorder Skewness
gradient glcm Idmn
gradient gldm DependenceNonUniformity
gradient gldm DependenceNonUniformityNormalized
gradient glrlm GrayLevelNonUniformity
gradient glszm GrayLevelNonUniformity
gradient glszm LowGrayLevelZoneEmphasis
gradient glszm SizeZoneNonUniformityNormalized
gradient glszm SmallAreaLowGrayLevelEmphasis
gradient ngtdm Coarseness
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