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ABSTRACT

With the rapid development of digital video technology, people’s demand for video quality is getting
higher and higher. Super resolution video task aims to improve the visual clarity of video by improving
the spatial resolution of video frames, which is of great significance for video surveillance, video confer-
encing, film and television post-production and other fields. video super-resolution (VSR) is the process
of reconstructing a low-resolution video sequence into a high-resolution video sequence. In the study of
video super resolution, diffusion model can not only process the image clarity of single video frame, but
also generate clearer and more coherent video frame. Such models often involve complex mathematical
algorithms and deep learning techniques that automatically learn and simulate complex relationships be-
tween video frames to achieve transitions from low resolution to high resolution. In short, video super
resolution technology is an important direction of the development of digital video technology, it is of
great significance for improving video quality, enhancing user experience and promoting the develop-
ment of related industries. As technology continues to advance, we can expect to see more efficient,
high-quality video super resolution solutions emerge in the future.

Keywords: Deep Learning; Artificial Intelligence; Video Super-resolution; Diffusion Model;
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1 Introduction

1.1 Aims and Objectives

Video Super-Resolution (VSR) technology aims to reconstruct high-resolution (HR) video sequences
from their low-resolution (LR) counterparts. As a critical task in video enhancement and restoration, VSR
has wide-ranging applications in areas such as medical imaging, video surveillance, digital archiving, and
entertainment media, where legacy or low-quality video content often needs to be upscaled for modern
high-resolution displays.

With the rapid proliferation of high-definition (HD) and ultra-high-definition (UHD) devices, user de-
mand for high-quality video content continues to grow, making VSR an increasingly essential research
direction in both academia and industry. However, the VSR task is considerably more challenging than
its image counterpart due to the complex spatiotemporal dynamics of video, such as frame-wise motion,
temporal consistency, and varying degradation patterns across time. Achieving both high spatial fidelity
and temporal coherence in reconstructed videos remains a fundamental difficulty.

Recently, diffusion models have emerged as a powerful generative paradigm, demonstrating state-of-
the-art performance in image generation, editing, and super-resolution tasks. Compared to traditional
methods such as convolutional neural networks (CNNs) or generative adversarial networks (GANs),
diffusion-based models offer superior training stability, fidelity, and diversity of output. Their capacity to
model complex data distributions through iterative denoising has positioned them as a leading approach
in modern image synthesis research.

Despite their success in static image domains, applying diffusion models to video super-resolution re-
mains a highly non-trivial extension. This is primarily due to the higher dimensional complexity of video
data. In particular, whereas images are typically represented as 4D tensors [B,C,H,W], video inputs in-
troduce an additional temporal dimension, resulting in 5D tensors [B,C,T,H,W], where T denotes the
number of frames. This increases both the computational load and the memory footprint significantly,
making model training and inference more resource-intensive.

Furthermore, the inclusion of the temporal dimension introduces additional challenges: the model must
not only reconstruct spatial details within each frame but also learn inter-frame dependencies to maintain
temporal consistency and avoid artifacts such as flickering or ghosting. In practice, this requires more
sophisticated architectures and training strategies, especially when dealing with real-world degradation
factors like compression noise, motion blur, and dynamic lighting.

Another practical limitation arises from the difficulty in dataset construction. High-quality paired datasets
for VSR are limited, and existing ones—such as REDS or UDM10—often involve large-scale video col-
lections that demand long training times and high-performance hardware to process. This data bottleneck
further complicates the deployment of large generative models like diffusion models in video restoration
tasks.

To address these challenges, recent studies have explored two primary directions: (1) modifying the
UNet-based denoising architecture of diffusion models to handle 3D spatiotemporal inputs, often by
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integrating 3D convolutions or frame-wise attentionmodules; and (2) designing fully 3D diffusionmodels
that treat the entire video clip as a unified 3D data volume. While both strategies have shown promising
results in video generation and restoration, they often involve significant architectural changes and high
computational costs.

In summary, while diffusion models offer a promising framework for tackling video super-resolution
tasks, scalability, efficiency, and adaptability remain key research bottlenecks. There is a growing need
for solutions that can leverage the power of pre-trained diffusion backbones without requiring task-
specific redesign. Addressing these limitations could pave the way for more generalizable, lightweight,
and plug-and-play VSR solutions suitable for real-world deployment. As technology advances, it is
expected that VSR powered by generative diffusion models will become more capable and accessible,
enabling a broad spectrum of applications across industries.

1.2 Research Questions

The primary objective of this study is to explore how to effectively enhance the spatial resolution of low-
resolution video sequences while maintaining their temporal consistency across frames. Video Super-
Resolution (VSR) is not merely a frame-wise upsampling problem—it fundamentally requires the model
to capture and reconstruct high-frequency spatial details while also ensuring coherent motion and visual
smoothness over time. This leads to a complex interplay between spatial fidelity and temporal stability,
both of which are essential to generating perceptually pleasing and realistic video outputs.

To this end, the research is guided by the following central questions:

-How can we design a conditional generative framework that enables accurate reconstruction of high-
resolution frames from low-resolution video inputs without sacrificing temporal consistency?

-In the context of diffusion models, which have shown strong performance in image generation, how can
we leverage their generative capabilities to serve the needs of video super-resolution tasks, especially in
real-world settings with unknown degradation?

-Can we reuse existing text-to-video diffusion models in a zero-shot or minimally supervised manner by
adapting their input conditioning mechanism to accept visual (rather than textual) cues, and still achieve
high-quality super-resolution?

-What kind of conditioning representation best guides the denoising process in diffusion-based VSR: Is
it possible to “disguise” visual tokens as language embeddings and inject them into cross-attention layers
to activate pre-trained generative capabilities without retraining the entire model?

-To what extent does the choice of UNet backbone (e.g., task-specific versus generic text-to-video) im-
pact the final VSR quality, and what is the role of the adapter in balancing detail recovery and motion
consistency?

-What architectural or algorithmic components are most critical in preserving high-frequency texture
details while avoiding common temporal artifacts such as flickering, ghosting, or misalignment across
frames?

-How can we systematically evaluate the performance of a VSR system not only in terms of traditional
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metrics like PSNR and SSIM, but also with respect to perceptual quality and temporal stability across
diverse datasets?

This study aims to address these questions through the design and empirical validation of an adapter-based
VSR framework. By reformatting low-resolution video features into pseudo-language tokens compati-
ble with pre-trained text-to-video diffusion models, we explore a novel plug-and-play strategy for high-
quality video restoration. The overarching hypothesis is that an effective cross-modal adapter can serve
as a minimal yet powerful intervention to unlock the generative potential of large-scale diffusion models
in video super-resolution applications.

1.3 Contribution

To address these limitations, we propose a novel adapter-based conditional modeling framework for video
super-resolution (VSR). The central idea is to repurpose a pre-trained text-to-video diffusion model for
super-resolution taskswithoutmodifying its original architecture. Specifically, we introduce a lightweight
adapter module that reformulates low-resolution video frames into pseudo-textual embeddings. These
embeddings are structurally aligned with the language inputs that the diffusion model was originally
trained on, allowing seamless integration into the model’s cross-attention layers as encoder hidden states.
This enables the original diffusion backbone—comprising the UNet and VAE—to be reused in a zero-
modification and zero-finetuning setting.

Our contributions are summarized as follows:

• Architecture-preserving design: The proposed method operates without altering the backbone
of the pre-trained diffusion model. This eliminates the need for retraining large-scale generative
components such as the UNet, significantly reducing the computational cost of adaptation.

• Modularity and plug-and-play deployment: The adapter is self-contained and easily attachable
to any existing text-to-video diffusion framework. It supports flexible integration with a wide range
of generative backbones, facilitating fast adaptation to downstream tasks like VSR.

• Competitive performance without task-specific supervision: Despite its simplicity, the adapter-
based conditioning mechanism achieves performance that is comparable to or better than existing
VSR-specific models across multiple benchmarks (REDS, UDM10, VID4). Our model delivers
strong results not only in pixel-wise reconstruction metrics such as PSNR and SSIM, but also in
perceptual quality indicators like LPIPS and temporal consistency scores.

• Enhanced high-frequency detail recovery: Qualitative and quantitative results reveal that the
adapter module plays a pivotal role in restoring fine-grained textures and structural details, which
are often lost in baseline generative models. This suggests that the adapter effectively bridges the
modality gap between visual and language representations, providing more informative condition-
ing signals to guide the denoising process.

• Toward scalable, unified generative modeling: By decoupling the conditioning modality from
the model architecture, our method paves the way for modality-adaptive transfer learning in video
generation. It demonstrates a practical path for reusing powerful pre-trained generative models in
novel tasks without architectural redesign or full fine-tuning.
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1.4 Structure of the Thesis

This study primarily focuses on the structural innovation and optimization of neural network architec-
tures within the diffusion model paradigm. The goal is to adapt and repurpose pre-trained text-to-video
diffusion models for video super-resolution tasks through lightweight and modular conditional design.

Specifically, Section 2 provides a theoretical and literature-based foundation for our work. Section 2.1
presents a concise derivation of the denoising diffusion probabilistic model and introduces the archi-
tecture of the latent diffusion model (LDM), which serves as the backbone for most modern generative
models. Section 2.2 reviews recent progress in applying diffusionmodels to image super-resolution, high-
lighting the differences between pixel-space and latent-space denoising strategies. Section 2.3 extends
the discussion to video generation and video super-resolution, summarizing how temporal consistency,
conditioning, and cross-modal adaptation have been addressed in prior works.

Section 3 introduces the proposed methodology. It details our adapter-based conditional modeling frame-
work, which enables the reuse of existing diffusion backbones without retraining. The section covers the
design of the visual-to-language adapter, the integration strategy with pre-trained U-Net architectures,
and the novel conditioning pipeline built on ViT-based visual tokens.

Section 4 presents comprehensive experimental results and analysis. This section is structured into several
key evaluations. We first provide training details and baseline settings. Then, we systematically com-
pare the impact of various components, including post-color correction modules, initialization strategies
for denoising, inference timestep configurations, and different choices of U-Net and VAE backbones. A
long-term temporal consistency evaluation is conducted to assess video-level stability. We benchmark
our approach against state-of-the-art VSR models across multiple datasets and perform ablation studies
to analyze the influence of input frame number, adapter layer design, and conditioning strategies. Ad-
ditionally, we present a detailed comparison of computational complexity, including inference time and
parameter count, to highlight the efficiency of our method.

Finally, Section 5 summarizes the conclusions of this study, reflecting on the effectiveness of the proposed
framework and its implications for future research in scalable, plug-and-play diffusion-based generative
modeling for video restoration tasks.

1.5 Summary

Video super-resolution (VSR) technology based on diffusionmodels is emerging as a highly promising re-
search direction, driven by the rapid advancements in deep learning and generative modeling techniques.
Diffusion models, initially successful in image generation and restoration tasks, have demonstrated re-
markable capability in modeling complex data distributions and generating high-fidelity visual content.
Their application in the domain of video super-resolution opens up new possibilities for recovering fine-
grained spatial details while simultaneously preserving temporal coherence across frames.

As deep learning algorithms continue to evolve, particularly in terms of network architectures, training
stability, and data representation, the integration of diffusion models into video processing workflows
has shown substantial potential for enhancing video quality. Unlike traditional VSR methods that often
rely on deterministic upsampling or optical flow-based alignment, diffusion-based VSR models offer a
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generative framework that can better handle diverse degradation types and complex motion patterns in
video sequences.

However, despite these promising prospects, the field still faces several significant technical challenges.
One key issue lies in controlling the inherent randomness introduced during the diffusion and reverse
sampling processes, which can lead to temporal inconsistencies or flickering artifacts in the reconstructed
video. Another critical challenge is maintaining the structural consistency and fine detail alignment be-
tween consecutive frames, especially in scenarios involving fast motion or occlusion. Achieving high
detail fidelity while avoiding artifacts such as ghosting or unnatural textures remains an open problem.

Furthermore, controlling the temporal continuity and ensuring semantic coherence across generated frames
are essential for producing realistic and visually pleasing videos. These challenges necessitate the devel-
opment of more sophisticatedmodel architectures, improved temporal attentionmechanisms, and tailored
loss functions that balance spatial detail restoration with temporal smoothness.

With ongoing breakthroughs in generative modeling and computational resources, it is expected that
video super-resolution solutions based on diffusionmodels will become increasinglymature and efficient.
Such advancements will not only improve user experiences in applications such as video streaming and
mobile entertainment but also significantly enhance video analysis capabilities in fields like intelligent
surveillance, remote conferencing, medical imaging, and film and television post-production. As the
demand for high-definition and ultra-high-definition video content continues to rise, the development
of robust, high-performance VSR systems will play a crucial role in shaping the future of digital media
technology.
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2 Literature Review

With the continuous progress in the field of deep learning, the diffusionmodel has become themainstream
model for tasks such as image generation and image super-resolution due to its excellent generation
performance and powerful generation capabilities. Next, this article will introduce papers in related
fields from the following three aspects: First, introduce the derivation process of the denoising diffusion
model and the basic structure of the current mainstream diffusion model LDM (latent difffusion model).
Second, introduce the relevant literature on the diffusion model in the field of image super-resolution.
Third, introduce the relevant literature on the diffusion model in the field of video super-resolution and
generation.

2.1 Diffusion Model

2.1.1 DDPMModel

The Denoising Diffusion Probabilistic Model (DDPM), first proposed by Jonathan Ho et al. [1] in 2020,
marked a pivotal advancement in the field of generative modeling. Unlike earlier methods such as Gen-
erative Adversarial Networks (GANs) [2], which often suffer from unstable training dynamics, mode
collapse, and incomplete data distribution coverage, DDPM offers a theoretically grounded and empir-
ically stable alternative. Its design draws inspiration from non-equilibrium thermodynamics and proba-
bilistic inference, framing the image generation process as a learned reversal of a predefined stochastic
degradation process.

At its core, the DDPM framework is based on the idea of learning to reverse a Markovian diffusion
process. This process consists of twomain stages: the forward diffusion process and the reverse denoising
process. As illustrated in Figure 2.1, the forward process incrementally corrupts an image x0 by adding
Gaussian noise over T discrete time steps. With each step, the image becomes increasingly noisy until
it approaches an isotropic Gaussian distribution. Mathematically, the forward process is modeled as a
Gaussian Markov chain:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (2.1)

where βt is a predefined variance schedule that controls the rate of noise addition at each step t.

The reverse process, in contrast, is learned. It aims to reverse the diffusion trajectory by progressively
denoising a sample drawn from the prior noise distributionN (0, I). The model learns to predict the mean
of the reverse distribution at each timestep:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σt), (2.2)

where µθ is parameterized by a neural network, typically a U-Net architecture, and Σt is either fixed or
learned.
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In practice, the training objective is derived by minimizing the variational bound on the negative log-
likelihood of the data. This is often simplified into a mean squared error (MSE) loss between the true
noise added in the forward process and the model’s predicted noise. Formally, the training loss becomes:

Lsimple = Et,x0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
, (2.3)

where ϵθ denotes the noise predicted by the denoising network at timestep t.

Once training is complete, the model can be used to generate images by sampling from a standard normal
distribution and iteratively applying the reverse denoising steps. Each reverse step refines the noisy
latent toward a coherent sample from the learned data distribution. Despite its simplicity, this framework
produces high-quality, diverse samples and avoidsmany of the pitfalls associatedwith adversarial training
methods.

DDPM’s design reflects a physical analogy to molecular diffusion, wherein particles diffuse from high
concentration to low concentration states over time. By simulating this process in the latent space of im-
ages, DDPM provides a stable, tractable, and interpretable route to image synthesis. Furthermore, it sup-
ports extensions such as conditional generation, classifier guidance, and improved sampling techniques
(e.g., DDIM [3]), which expand its applicability across domains including super-resolution, inpainting,
video synthesis, and more.

In conclusion, DDPM offers a principled and scalable approach to generative modeling. Its theoretical
elegance, training stability, and strong empirical performance have laid the foundation for a wide range
of subsequent advancements in diffusion-based image generation.

Figure 2.1: Denoising Diffusion Model Process

Figure 2.2 is the formula for training and verification. The training part on the left means that after adding
noise step by step by inputting the original image X0 , the predicted noise composed of the noisy image
and time steps calculated by the model is compared with the real noise in the denoising process to achieve
the function of fitting the distribution of the noisy process. The right side is the verification part. Once
each noise distribution is fitted, we can use the formula to subtract the noise distribution predicted by the
neural network from the original noise image, so that the denoised image can be obtained.

7



Figure 2.2: Noise addition and denoising formula

2.1.2 LDMModel

Since the introduction of the Denoising Diffusion Probabilistic Model (DDPM) in 2020, diffusion-based
generative models have received widespread attention due to their impressive ability to synthesize high-
fidelity images with diverse semantics and stable training dynamics. However, DDPM suffers from two
significant limitations: (1) it operates directly in the high-dimensional pixel space, leading to extremely
high computational cost during training and inference; (2) it lacks conditioning mechanisms, making it
difficult to guide generation toward user-specified outputs.

To address these limitations, Rombach et al. [4] proposed the Latent Diffusion Model (LDM) in 2022,
which improves upon the DDPM framework by introducing two critical modules: a Variational Autoen-
coder (VAE) and a Conditioning Network. As illustrated in Figure ??, the LDM architecture enhances the
original DDPM pipeline (depicted in green) by integrating the VAE module (red) and the condition mod-
ule (white), enabling the model to operate more efficiently and flexibly on real-world image generation
tasks.

TheVAEmodule in LDM is composed of an encoder and a decoder. Its primary function is to project high-
resolution images from the pixel space into a lower-dimensional latent space before the diffusion process
begins. This step dramatically reduces computational complexity by allowing the denoising operations
to be performed in the latent domain. In practice, the encoder downsamples the input image by a factor
of 4 or 8, resulting in a latent space that is 16 or 64 times smaller in terms of spatial resolution. After the
diffusion model performs the generative process in this compact space, the decoder upsamples the latent
representation back to the original image resolution, yielding a high-fidelity reconstruction. This design
effectively addresses the computational inefficiency of the original DDPM, making it feasible to process
high-resolution images using moderate hardware.

In addition to the VAE, LDM introduces a conditioning module to incorporate external information (e.g.,
class labels, text descriptions, or reference images) into the generative process. Unlike the unconditional
DDPM framework—where the same image is used for both input and output, making controlled gener-
ation impossible—LDM enables guided sampling. The conditioning network processes external inputs
and reshapes them into feature embeddings compatible with the U-Net-based denoising network. These
embeddings are then injected into the cross-attention blocks of the diffusionmodel, guiding the generation
process toward producing content that aligns with the given conditions.

During training, the model learns to reconstruct images from noisy latent codes under the influence of
conditioning inputs. This process ensures that the learned latent space remains semantically meaningful
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Figure 2.3: LDM model structure

and responsive to conditional guidance. During inference, pure Gaussian noise along with the desired
condition (e.g., a prompt or reference image) is fed into the model. The denoising process then produces
an image that not only resembles real data but also adheres to the specified condition.

The integration of these two components—VAE for latent compression and the conditioning module for
controllability—makes LDM a powerful and efficient generative model. It addresses the inefficiency and
lack of flexibility in standard DDPMs while maintaining high generative quality. As a result, LDM has
become the de facto architecture for modern image synthesis, powering a wide range of tasks including
text-to-image generation (e.g., Stable Diffusion), image inpainting, style transfer, and super-resolution.

In conclusion, the Latent Diffusion Model represents a significant step forward in diffusion-based gener-
ative modeling. Through architectural innovation and principled design, it combines the computational
benefits of latent-space modeling with the controllability of conditional generation. This not only opens
the door to high-resolution, high-quality image synthesis but also establishes a versatile framework for
future research in multi-modal generation, cross-domain translation, and scalable generative learning.

2.1.3 DDIMModel

With the introduction of the Denoising Diffusion Probabilistic Model (DDPM), significant breakthroughs
have been achieved in the field of generative modeling, particularly in high-quality image generation,
image super-resolution, and semantic image editing. DDPM formulates the data generation process as a
gradual denoising procedure that starts from pure Gaussian noise and progressively reconstructs a clean
image through a sequence of learned denoising steps. Each step corresponds to a conditional probabil-
ity distribution, grounded in a well-defined variational inference framework. This method provides a
theoretically sound alternative to GANs, offering stable training and high sample diversity.

However, one of the major drawbacks of DDPM lies in its computational inefficiency. The sampling
process typically requires hundreds or even thousands of iterative denoising steps to generate high-fidelity
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outputs, as it is designed to reverse a finely discretized diffusion trajectory. At each step, a forward pass
through a neural network is required, leading to substantial computational overhead during inference.
This makes DDPM less suitable for real-time applications and motivates the search for faster alternatives.

To address this issue, Song et al. [3] proposed the Denoising Diffusion Implicit Model (DDIM), which
extends the DDPM framework with several important innovations. First, DDIM reformulates the reverse
diffusion process to be deterministic by removing the stochastic sampling of the variance term in the
reverse step. Instead of drawing random noise at each timestep, DDIM uses the predicted noise directly
to compute the denoised latent variable. This results in a deterministic sampling trajectory that preserves
sample quality while eliminating the inherent variance of stochastic generation.

Second, DDIM relaxes the strict Markov assumption used in DDPM. While DDPM treats noise addition
and removal as a Markov chain—requiring step-by-step conditional sampling—DDIM re-derives the
process without this constraint. This decoupling from Markovian assumptions allows DDIM to define a
non-Markovian path in the latent space, enabling high-quality generation in significantly fewer steps.

This deterministic reparameterization shares the same training objective as DDPM, yet defines a more
efficient sampling path. The implications are profound for downstream tasks requiring high throughput
and low latency, including real-time image synthesis, mobile inference, and video frame generation.

DDIM has also inspired further research into acceleration techniques for diffusion models. Its determin-
istic formulation supports adaptive-step samplers, hybrid stochastic-deterministic schedulers, and plug-
and-play conditioning mechanisms. These advances expand the applicability of diffusion models to a
broader set of real-world tasks where both sample quality and efficiency are paramount.

In summary, DDIM provides a principled and effective enhancement to the original DDPM framework.
By eliminating stochasticity in the denoising process and relaxing the reliance on Markovian assump-
tions, it enables faster and more efficient generation without compromising quality. These improvements
are especially valuable in compute-intensive scenarios such as image and video super-resolution, where
balancing speed and fidelity is crucial.

Figure 2.4: DDIM Format

2.2 Image Super-Resolution Task of Diffusion Model

Image super-resolution is a classic image restoration problem that involves reconstructing a high-resolution
image from a low-resolution image [5–8]. With the development of digital image processing technology,
the demand for high-resolution images is growing day by day, because they can provide more detailed
information, thus bringing significant improvements in visual quality and application effects. Tradi-
tional image super-resolution methods, such as nearest neighbor interpolation, bilinear interpolation and
bicubic interpolation, etc., although simple in calculation, often cannot effectively restore the detailed
information of the image, especially in high-frequency areas. With the rise of deep learning technol-
ogy, learning-based methods, especially methods based on convolutional neural networks, have made
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breakthrough progress in the field of image super-resolution. These methods are able to learn complex
mapping relationships from low-resolution to high-resolution images, thereby generating more visually
satisfying results. However, despite the success of deep learning methods in image super-resolution,
they usually require a large amount of high-resolution training data and may perform poorly in the face
of unknown degradation models or complex scenes. In addition, these methods still face challenges in
generating high-frequency details and maintaining image naturalness. To address these issues, we intro-
duce diffusion models, a powerful generative model that generates data by simulating a gradual process
from a data distribution to a noise distribution and then reversing the process. Diffusion models have
shown their powerful capabilities in multiple fields such as image synthesis, image inpainting, and image
super-resolution. The research on super-resolution images can be divided into the following research
directions: the first one is to use the DDPMmodel to learn the mapping relationship from low-resolution
images to high-resolution images; the second one is to use the LDMmodel as the main structure, and use
the low-resolution images as the guide of the denoising process to guide the generation of high-resolution
images; the third one is to combine the diffusion model and the GAN model to learn the interpolation
between the generated image of the diffusion model network and the real image to achieve the process
of generating high resolution. The first one uses the DDPM model to learn the direct mapping relation-
ship between high and low. This idea is consistent with the idea of convolutional neural networks and
GAN neural networks. During the training phase, the model receives low-resolution and high-resolution
image pairs as input and output. In this way, the network is trained to predict the conversion from low-
resolution images to high-resolution images. This process involves not only upsampling of the image,
but also extraction and reconstruction of features to ensure the generation of high-resolution images .

In the field of deep learning, one of the early applications of convolutional neural networks (CNNs) is
image processing tasks, especially in the field of image super-resolution [9–12] . The core goal of this
task is to use deep learning models to convert low-resolution images into high-resolution images while
retaining or enhancing the details and quality of the images. This type of neural network uses modules
such as convolution and residual networks. During training, low-resolution image pairs are introduced
as the input and output of the model, and the network learns the mapping relationship between the two.

GAN-related networks [13–16] aim to use the GAN network to input LR images and output a fake high-
resolution image, and then compare it with the real image for discriminator discrimination. When the
discriminator cannot distinguish between the real and the fake, it means that the model has completed
training. In practical applications, network models such as ESRGAN, BSRGAN, and SRGAN optimize
certain modules, modify the operation logic of the discriminator, and add complex degradation logic, so
that the model can cope with different degradation environments when processing this task and enhance
the ability to reconstruct and capture image details. The above advantages of GAN and convolutional
neural networks are clear ideas and relatively simple network design. However, due to the simple design
of neural networks, they cannot process large data, and the GAN network generation is unstable and
the parameter adjustment is complex, resulting in unsatisfactory super-resolution effects. REFUSSION
[17]is based on DDPM and uses SDE to derive the formula. The resulting network transforms the low-
resolution image into a high-resolution one from the perspective of probability distribution, as shown in
Figure 2.5. Compared with the GAN network, its generation process is closer to the denoising process of
the diffusionmodel, and the final result is better than the other two. In summary, the advantage of learning
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the mapping relationship from low-resolution images to high-resolution images is that the idea is clear
and the network design is relatively simple. However, since a linear mapping relationship is established, it
is inevitable that it is difficult to establish complex degradation problems. Since it is difficult to establish
complex degradation relationships, most of these networks can only be used for already set data sets, and
the results are often not satisfactory for the complex degradation causes in the real world.

Figure 2.5: Refusion infrastructure

The second type uses the LDMmodel as the main structure to generate high-resolution images. This type
of research focuses more on using low-resolution images as a guide condition and optimizing or replacing
the denoising network to achieve better denoising generation. The papers based on the DDPM structure
focus on improving the unet network of the denoising process, by replacing the number of network layers
and the network itself to achieve better results.The SR3 [18]paper achieves super-resolution by using
different numbers of layers for different depths and improving the residual block network. It is also the
earliest paper to use the diffusion model for super-resolution tasks. The paper uses the high-resolution
image and the noisy image as a whole after splicing them together, and adjusts some residual modules of
the denoising network to better extract features.

Figure 2.6: LWTDM basic structure

As shown in Figure 2.6, LWTDM [19] uses the attention structure to replace the structure of the unet
network to implement the diffusion model. This article also provides guidance for using the diffusion
model as a denoising architecture in the future. The subsequent DIT, VIT [20, 21] and other structures
all use the attention structure to complete image-related tasks. Experiments have shown that when the
data set is large and the amount of information is rich, the experimental results of attention are better than
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those of the unet network, so many studies are trying to use attention for image-related tasks. The pa-
per Denoising Diffusion Probabilistic Model for Retinal Image Generation and Segmentation [22] uses
the DDPM model to complete retinal segmentation and super-resolution tasks . It learns the texture and
retinal parts separately. After combining them, they can be better distinguished from each other and the
edge texture of the image can be more obvious. This article also uses the cosine noise scheduler and re-
reading training technology. The cosine noise scheduler controls the addition of noise through the cosine
function, making the change of noise intensity smoother and more gradual, thereby affecting the training
speed and generation effect of the model; the re-reading training technology (RTT) uses the same data
to retrain the model. When denoising, the final result will be different due to the influence of noise, so
the same input has different structures. Therefore, the same data can be used for training multiple times
during training. In this way, the loss function of a training data will be smaller, and the model will be
better able to maintain performance unchanged for changes and perturbations in the input data. By adding
these two technologies, the paper successfully created a dataset related to retinal segmentation. DDNM
[23] uses the zero-value domain decomposition method for mathematical derivation and concludes that
for some processes from high-resolution images to low-resolution images due to position degradation,
the value domain of the original image remains unchanged after degradation, and the zero domain disap-
pears. Therefore, when we perform super-resolution tasks, we are essentially predicting the data of the
disappeared zero domain. Therefore, based on the DDPM structure, this paper adds part of the original
image to the predicted image at each step to generate a fused image, and uses this image as Xt-1 for the
next prediction operation, as shown in the figure.

Figure 2.7: DDNM structure

The IDM [7] network solves the two problems of fixed magnification and artifacts. The architecture
mainly fuses the LR and HR noise images, with the goal of better fusion and better integration of features
into the image. As shown in the figure, the yellow part is used to extract features, and the blue part
on the right adds position information. The final LR+HR noise image + position information is sent to
the denoising network. First analyze the left side: X is the LR image, S is the scaling factor, which is
used to select the scaling ratio. EDSR is a residual block network that establishes the initial features
and then performs bicubic magnification. The final α is composed of three types of information: the
first top branch converts the scaling factor S into a map and adds it to the image. The second branch
U concats the LR and HR noise images, then downsamples and extracts features. Which one is more
or less is determined by the ratio S. The final input to the downsampling is the LR magnification + LR
magnification and HR noise fusion. Then, the coordinate information is added during the upsampling
process to obtain the final result.
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Figure 2.8: IDM structure

The LDDPM [24] network adopts the structure of the LDM network, but after the conditional guided
input, a conditional feature extraction network is run in parallel to better fuse all the information of
the two images. By fusing the information of the original denoising network and the feature extraction
network, a better generated image and edge detail result is obtained. The pyramid-shaped PDDPM [25]
network structure in the paper performs two times upsampling after each denoising, and after combining
multiple upsampling, the upsampling size I need is obtained. In addition, this paper innovatively uses
position encoding as input together with the image, that is, when inputting the low-resolution image, the
extracted position information is encoded and the image is spliced as input, which contains more position
information and the output image will not be deformed or distorted. This article fully demonstrates the
importance of position encoding. More research focuses on the tasks of the LDM structure. Since the
LDM structure itself does not learn the linear relationship of the image, the use of the LDM structure can
represent more nonlinear relationships and the output is more flexible, which is why researchers favor
this model. The biggest difference between the LDM architecture and other structures is that it uses low-
resolution images as the conditions to guide the denoising process of the denoising model. Many papers
and experiments modify the structure by modifying the conditional input structure, denoising network
selection, high-resolution image input method, etc. to obtain better experimental results. SRDiff [26]
did not use the attention method input when modifying the input structure, but used the interpolation
of high-resolution and low-resolution images as input. The entire model predicts interpolation for noise
prediction. This experiment shows that interpolation can extract more features, and further proves that
the more conditional information is extracted and the more it is integrated into the denoising process, the
better the generated image will be. The LDDPM article also proves the above conclusions well. In the
main unet structure, the most important replacement method is to modify it into a unet structure. Among
them, the most advanced structure is the SD3 model, which has achieved good output results on large
data sets. The denoising network is designed to successfully predict noise and fuse LR images. Under
the LDM framework, it can be roughly divided into the following categories: 1. Neural networks based

14



on unet, which are also the most common networks. They are usually modified by changing the residual
blocks in unet, using different normalization layers, or combining attention with unet, and using attention
at the bottom layer. 2. Neural networks with attention as the main structure. This structure is based on the
VIT- DIT - SD3 [27] networks as the main idea. The reason for using attention is that the inductive bias of
U-Net is not critical to the performance of the diffusion model. They can be easily designed according to
the standard, and attention has been shown to have better training results when the amount of data is large.
Finally, let’s talk about the pre-training of HR images. In Latent Diffusion Models (LDMs), the encoder-
decoder structure is used to compress image data into a low-dimensional latent space and then decode it
back to the original data form. The encoder is usually a deep neural network, which is responsible for
encoding high-dimensional image data into a low-dimensional latent space representation. This latent
space representation captures the main features of the image and can process and generate images more
efficiently due to its low dimensionality. The decoder is the inverse process of the encoder, which restores
the representation of the latent space to the original image data. In LDM, the decoder is usually a network
symmetrical to the encoder structure, which gradually restores the details of the image through a series
of upsampling and convolution operations. The reason for adding encoders and decoders to LDM is to
enable images to enter the latent domain for better calculation. There are relatively few studies in this
area. The article that improves on this is REUSSION, which uses the jump connection of unet to make
the input and output more matched.

Many articles have demonstrated that when LR is used as a conditional input, the more and richer the
input features are, the better the effect and quality are. [13, 28, 29] In addition, during the denoising pro-
cess, the higher the proportion of LR images, the more the image meets expectations, which is also what
high-resolution tasks want, that is, to improve the resolution while retaining the original features (the
parameter guidance scale represents the proportion of the condition. The higher the value, the more qual-
ified images are generated; the lower the value, the greater the degree of freedom of the image obtained.
In short, for super-resolution tasks, more conditions need to be considered ) . Some methods to solve
this problem include: multi-feature extraction with the goal of obtaining as high frequency information
as possible (IDM, SD3); directly enlarging LR images and training with differences (SRdiff); direct and
noise addition (LWTDM), and the synthetic caption method of DALL-E 3 [30] are all effective. DALL-E
3 is OpenAI’s latest progress in the field of text-to-image generation. Its core innovation is to improve the
model’s prompt following ability by improving the image description. In previous studies, text-to-image
models often have difficulties in processing detailed image descriptions, and often ignore or confuse the
meaning of prompt words. This is mainly because the image descriptions in the training dataset are noisy
and inaccurate. DALL-E 3 solves this problem by training a specialized image description generator and
using it to regenerate the descriptions of the training dataset . The training process of DALL-E 3 consists
of two stages: first, a small dataset that only describes the main body of the image is constructed for fine-
tuning to generate short synthetic captions (SSC); then a large dataset of detailed description captions is
created to generate descriptive synthetic captions (DSC). These captions not only describe the subject of
the image, but also describe the environment, background, text, style, color and other details in the image
. In the experiment, DALL-E 3 was compared with models such as DALL-E 2 and Stable Diffusion XL.
The results showed that DALL-E 3 outperformed other models in terms of prompt following, style and
consistency, and was favored by human evaluators. The article fully proves that using synthetic captions
to get more semantic information for training will get better results. This point is also used in various
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papers. Since most of the input conditional information is vague and lacking, the use of synthetic captions
can obtain more refined conditional guidance generation. The results show that conditional captions may
lead to unsatisfactory output results due to errors and insufficient descriptions. Therefore, richer descrip-
tive descriptions are synthesized before input to make the conditional guidance more sufficient. This idea
is also cited in the SD3 paper, which uses 50 persents of synthetic captions as conditions. I think it is
possible to design a pre-trained network that allows LR images to combine position information and time
information, expand some features, and enrich input features.

Figure 2.9: DDGAN network

The third idea is to use the DDGAN network for image generation [30–33] . This model was first pro-
posed by Zhisheng Xiao in 2002. This network combines the GAN network and the diffusion model,
which reduces the running time of the model based on the diffusion model. In traditional generative
models, such as GAN, VAE, and Normalizing Flows, it is usually necessary to make a trade-off between
the three requirements of quality, running speed, and generation diversity. For example, GAN can gener-
ate high-quality samples and has a fast sampling speed, but often lacks diversity. Although the denoising
diffusion model can generate high-quality and diverse samples, the sampling process is slow and the
computational cost is high. To address this problem, the authors of DDGAN [33] proposed a new model
that uses conditional GAN to align the denoising distribution at each step, rather than assuming that the
denoising distribution is a Gaussian distribution. This approach allows the use of larger step sizes for de-
noising, thereby reducing the number of sampling steps required and speeding up sampling. Experiments
on the CIFAR-10 dataset show that this new approach is more competitive in terms of sample quality and
diversity than the original diffusion model. In addition, the model demonstrates better mode coverage
and sample diversity when compared to traditional GANs. To the best of the authors’ knowledge, this is
the first model that reduces the sampling cost of the diffusion model to a level that can be economically
applied to practical applications. The paper also discusses the limitations of the Gaussian assumption of
the denoising distribution under different conditions and proposes a multimodal distribution approach to
better model the denoising process, especially when the marginal distribution of the data is not Gaussian.
A key advantage of this approach is that it allows the model to be more stable during training and is
able to generate more diverse samples. Overall, this paper proposes an innovative approach to solve the
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trilemma in generative learning and experimentally verifies its effectiveness. This work provides valu-
able insights and directions for the future development of generative models. SRDDGAN, SRDIGAN
[31, 32] are all modified through this related model to adapt to super-resolution tasks. Experimental re-
sults show that SRDDGAN is superior to existing diffusion model-based methods in terms of PSNR and
perceptual quality indicators, while achieving It achieves a fast sampling speed, approximately 11 times
that of the existing diffusion model SR3, making it more suitable for real-world applications. In addi-
tion, SRDDGAN also introduces a low-resolution (LR) encoder module to more effectively utilize the
information in low-resolution images and use it as conditional input to improve the model’s fidelity and
detail recovery. In summary, SRDDGAN proposes a new single image super-resolution (SISR) method
by combining the advantages of denoising diffusion models and GANs, which can significantly increase
the sampling speed while maintaining image quality, and improve Generate sample diversity. SRDIG
[34] is a paper that explores how to combine the denoising diffusion model to simultaneously handle the
motion deblurring and super-resolution problems of images. This work targets the common motion blur
problem in low-resolution (LR) images and attempts to enhance the image resolution while restoring its
details. The proposed method achieves competitive sample quality and diversity compared to diffusion
model-based image super-resolution models when handling dynamic blur and super-resolution tasks. In
particular, compared to diffusion models such as SR3, the sampling process only requires four steps and
is approximately 11 times faster. Compared with traditional GANs, the proposed model achieves sig-
nificant improvements in training stability and sample diversity while maintaining competitiveness in
sample fidelity. Work using the DDGAN network has done sufficient experiments on remote sensing
images, medical images, etc., showing the extremely high sampling speed of this model. In summary,
countless neural network-related studies have proven the effectiveness of using DDPM and LDM struc-
tures, so that when using neural networks, conditional constraints are used as guidance instead of directly
establishing linear mappings to effectively face the complex degradation of the real world. . A series of
image super-resolution task models are focusing on how to better integrate low-resolution information
and location information. These studies show that better ways to extract information and better integrate
this information into the denoising process will significantly improve the quality of the generation, that
is, better prediction of the image content in the zero domain part. Therefore, we should make innovations
in the extraction and fusion of condition information, so that we can better generate images.

2.3 Video Super-Resolution Task of Diffusion Model

Video Super Resolution (VSR) technology is a method of improving video resolution. It can enhance
low-resolution video to high-resolution video, thereby providing more details and clarity. With the de-
velopment of display technology, people have higher and higher requirements for video quality, and high-
definition and even ultra-high-definition videos have becomemainstream. However, due to limitations of
shooting equipment, storage space, and transmission bandwidth, much video content still exists at lower
resolutions. VSR technology effectively improves the viewing experience of these low-resolution videos
through hardware or software methods. The development background of video super-resolution technol-
ogy is closely related to image super-resolution technology. With the vigorous development of artificial
intelligence, image super-resolution technology has achieved remarkable results. Video super-resolution
technology is further developed on this basis. It not only needs to deal with the resolution improvement of
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single-frame images, but also needs to consider the temporal continuity and motion compensation issues
between frames in the video sequence. The application of diffusion models in the field of video super-
resolution has become a research hotspot in recent years [35–43]. These models can establish mapping
relationships between different resolutions by simulating the diffusion process of data, thereby achiev-
ing conversion from low-resolution images to high-resolution images. The ECDP [44] model aims to
reduce time consumption and improve the efficiency of super-resolution image generation through the
conditional diffusion process and probabilistic flow sampling technology. Experimental results show
that ECDP significantly reduces model inference time while maintaining image quality. The DistriFu-
sion [45] model aims at the computational cost of high-resolution image generation. DistriFusion takes
advantage of the parallelism betweenmultiple GPUs and divides the model input into multiple patches for
processing, which reduces the computational cost and makes the model more efficient and faster. SinSR
[46] proposed a single-step super-resolution generation method that accelerates the diffusion-based SR
process by deriving a deterministic sampling process from state-of-the-art methods. This method not only
improves the inference speed, but also reaches a level comparable to multi-step methods in performance.
The ResShift [47] article improves the conversion efficiency by constructing aMarkov chain to move the
residuals in the conversion process of high-resolution images to low-resolution images. ResShift achieves
performance comparable to or better than current state-of-the-art methods with only 15 sampling steps.
Among the current studies on video diffusion models, the most important are Sora and Google’s Image
Video network, which have their own advantages. The core of Sora is a diffusion-based Transformer
model, which achieves video generation through the following steps: Video compression network: com-
press the original video into a latent spatiotemporal representation. Spatiotemporal latent patches: extract
a series of latent spatiotemporal patches from the compressed video. Its core is a diffusion Transformer
model, which starts from a frame full of visual noise and gradually denoises it to generate a video. As
an innovative technology, Sora demonstrates the great potential of AI in the field of video generation. It
can not only simulate motion and interaction in the physical world, but also handle complex scenes in
the digital world. Imagen Video [48] is a text-to-video generation model developed by Google, which
converts text prompts into high-definition videos through a cascaded diffusion model. This technology
can generate high-definition video clips up to 5.3 seconds long with a resolution of 1280×768 and a frame
rate of 24fps. The core of Imagen Video is a cascaded diffusion model composed of multiple sub-models,
including a text encoder, a basic video diffusion model, a spatial super-resolution model, and a temporal
super-resolution model, with a total of 11.6 billion parameters. The generation process includes multiple
steps. First, an initial video is generated based on the text prompt, and then the resolution and frame rate
of the video are improved through a series of spatial and temporal super-resolution models. Although
Imagen Video has made significant progress in experimental results, it still faces some challenges, includ-
ing the use and creation of datasets. Future development directions may include improving the quality
and duration of video generation, enhancing the generalization ability of the model, and exploring new
application scenarios. Imagen Video demonstrates the potential of AI in understanding and generating
complex video content, and research in this area still has broad prospects. The above two networks are
structurally modified in the image super-resolution network LDM tomeet the requirements of video tasks,
which also shows that this task is closely related to the image task. In summary, video-related tasks are
still an emerging field. Relevant research shows that we need to focus on several issues in video process-
ing: First, we need to let the machine learn the temporal correlation from the same video; second, we
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need the model to generate coherent, temporally connected images to form a video. The study improved
some layers of the model to 3D layers, making the model perceptual; and introduced optical flow to assist
the model in understanding the changes in action postures brought about by time. In general, the diffu-
sion model is gaining momentum in the field of super-resolution. It has not only become a hot topic in
current research, but also has great potential in model optimization and innovation. With the continuous
advancement of technology, the diffusion model has achieved remarkable results in quality improvement
and detail enhancement. Scholars are working to further improve the diffusion model and explore new
algorithms and strategies in order to achieve more accurate and efficient processing results in the field of
image super-resolution. The research prospects in this field are broad, indicating that there will be more
breakthroughs in image processing technology in the future.
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3 Research Methodology

3.1 Overview

To reduce the complexity of both model design and training while fully leveraging the expressive capa-
bilities of large-scale pre-trained diffusion models, we adopt a text-to-video latent diffusion model as the
backbone of our video super-resolution (VSR) framework. This approach allows us to reuse the power-
ful generative priors of diffusion models trained on large-scale datasets, without retraining the backbone
network. Instead of modifying the original architecture or introducing complex task-specific modules,
we design a lightweight conditional adapter that connects the task-specific input to the model’s native
cross-attention interface in a plug-and-play manner.

As shown in Figure 3.1, the framework operates over a sequence of noisy latent variables zt across t
diffusion steps. At each step, the UNet performs noise estimation guided by external conditional signals.
Unlike conventional diffusionmodels that rely on textual embeddings, our framework uses low-resolution
video frames xLR as the only condition source. Each frame is independently encoded using a frozen
Vision Transformer (ViT-base-patch16-224), which extracts patch-level semantic features and maintains
consistent representations across frames.

These visual features are then passed through a learnable adapter module that transforms them into
pseudo-text tokens, structurally aligned with the language embeddings used during original pre-training.
The resulting token sequences are injected into the cross-attention blocks of the frozen UNet as encoder
hidden states, enabling the model to interpret visual input as if it were textual conditioning. This ap-
proach maintains full compatibility with the original model architecture while introducing only minimal
additional parameters.

To validate the generalization ability of the proposed conditional framework, we compare two represen-
tative UNet backbones:

• UNet (upscale) [49]: A task-specific architecture integrating a pre-trained image-level Latent Dif-
fusion Model (LDM) with a self-trained 3D convolutional block, optimized for VSR.

• UNet (ali) [50]: A general-purpose diffusion backbone from the Ali team, with no VSR-specific
architectural enhancements, used to evaluate the transferability of the adapter module.

We also adopt the pre-trained Variational Autoencoder (VAE) from the Upscale-A-Video framework as
the latent encoder-decoder. This VAE employs a 3D architecture optimized for temporal information
and incorporates a Spatial Feature Transform (SFT) layer to inject structural information from the low-
resolution input during decoding, improving spatial fidelity and reconstruction accuracy.

During training, we freeze both the UNet and VAE, and optimize only the adapter. This ensures that
the original generative capabilities of the backbone remain intact. The training follows the standard
diffusion paradigm by minimizing the noise prediction loss across denoising steps. Through this setup,
the adapter learns to condition the model effectively, aligning visual semantics with the learned language-
based representation space, and enabling high-quality video super-resolution with minimal computational
overhead.
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Figure 3.1: Overall model structure

3.2 Adapter-Based Conditioning Design

To enable the effective adaptation of a pre-trained text-to-video latent diffusion model for the video super-
resolution (VSR) task, we propose a conditional modeling framework centered around an adapter-driven
design. The core motivation behind this approach is to repurpose the powerful generative capabilities
of large-scale diffusion models—originally trained with natural language conditioning—by introducing
an intermediate representation that reformats visual input into a language-compatible embedding space.
This allows the model to be applied to image-to-video or video-to-video tasks in a zero-shot or few-shot
setting without modifying its original architecture or retraining its backbone components.

As illustrated in Figure 3.2, the adaptation pipeline begins with the encoding of each frame in the low-
resolution input video using a frozen Vision Transformer (ViT-base-patch16-224). This module operates
in a frame-wise manner, transforming each 80× 80 frame into a sequence of patch-level feature tokens.
These features preserve high-level semantic content and structural information, ensuring consistent rep-
resentation across temporal dimensions while avoiding entanglement with low-level pixel noise. The use
of a frozen ViT also guarantees that the visual features remain stable and comparable across frames and
across videos, contributing to temporal coherence.

To reconcile the discrepancy between visual embeddings and the language-based conditioning interface
expected by the pre-trained diffusion model, we introduce a lightweight, learnable adapter module po-
sitioned after the ViT encoder. This adapter is responsible for transforming the ViT-generated visual
token sequences into pseudo-text tokens—feature embeddings that simulate the statistical and positional
patterns of textual representations learned during the original model’s training. Through this transforma-
tion, the adapter effectively “masks” the visual origin of the data, allowing the cross-attention layers in
the UNet backbone to interpret them as if they were language tokens.

Importantly, this transformation is entirely non-invasive to the original architecture: neither the ViT en-
coder nor the UNet decoder nor the VAE are structurally modified. The adapter operates as a modality
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Figure 3.2: Conditional model architecture.Frame-wise image tokens extracted by ViT are fused by
the adapter and mapped into the language space, serving as encoder hidden states for U-Net cross-
attention.

translator, bridging vision and language at the representation level rather than through structural integra-
tion. The resulting pseudo-text tokens are injected directly into the cross-attention blocks of the frozen
UNet at each denoising step of the diffusion process. In doing so, they provide effective guidance for
frame reconstruction and upsampling, conditioned on the semantic content of the input video, rather than
natural language prompts.

This plug-and-play conditioning mechanism enables the diffusion model to function as a generic condi-
tional generator, extending its application from text-to-video generation to visual super-resolutionwithout
extensive retraining. It also provides an elegant decoupling between modality and architecture, which is a
key factor in enabling cross-task generalization. Because the conditioning pathway is separated from the
core generative pathway, different types of tasks (e.g., video inpainting, frame interpolation, stylization)
can be supported simply by modifying or re-training the adapter, without affecting the backbone model.

Overall, our approach demonstrates how the conditioning modality can be flexibly reinterpreted with-
out architectural redesign, unlocking the versatility of pre-trained generative models. The adapter not
only enables compatibility but also enhances the scalability, modularity, and efficiency of video super-
resolution systems built upon powerful diffusion backbones.

Our training pipeline enables pseudo-language conditioning by optimizing an adapter module that trans-
forms visual inputs into language-aligned representations. Specifically, we simulate the forward diffusion
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process by adding Gaussian noise to high-resolution video frames xHR at timestep t:

zt =
√
ᾱt · xHR +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I). (3.1)

Meanwhile, the low-resolution input xLR is processed by a pre-trained and frozen Vision Transformer
and Adapter to obtain a pseudo-text condition embedding:

τθ(xLR) = Adapter (ViT(xLR)) . (3.2)

The denoising U-Net then predicts the added noise using the noisy latent and the pseudo-text condition:

ϵ̂ = ϵθ(zt, t, τθ(xLR)). (3.3)

The training objective is defined as:

LLDM = ExHR,xLR,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, τθ(xLR))∥2

]
. (3.4)

During inference, the model starts fromGaussian noise zT ∼ N (0, I) and progressively denoises through
the learned diffusion steps conditioned on τθ(xLR) to generate the high-resolution output.

3.3 Evaluation Metrics

To comprehensively evaluate the performance of the proposed method in the video super-resolution
(VSR) task, we adopt four widely recognized quantitative evaluation metrics. These metrics are carefully
chosen to cover multiple aspects of video quality, including pixel-level fidelity, structural preservation,
perceptual realism, and temporal consistency. By leveraging this multi-faceted evaluation scheme, we
aim to provide a thorough and objective assessment of the effectiveness of our approach.

PSNR (Peak Signal-to-Noise Ratio): PSNR is a traditional yet important metric for evaluating image
and video restoration quality. It measures the average logarithmic ratio between the maximum possi-
ble pixel value and the mean squared error (MSE) between the generated frame and its corresponding
high-resolution ground-truth frame. Higher PSNR values indicate lower distortion and better pixel-wise
accuracy. While PSNR is sensitive to subtle pixel-level changes, it does not always correlate well with
human perception, especially for perceptual or semantic distortions.

SSIM (Structural Similarity Index): SSIM is a perceptual metric that evaluates the similarity between
two images based on structural information rather than absolute pixel differences. It compares local
patterns of pixel intensities after normalizing for luminance, contrast, and structure, thereby providing a
more perceptually aligned assessment of visual quality. SSIM is particularly effective at capturing local
distortions and structural degradations, making it a valuable complement to PSNR in assessing the quality
of reconstructed frames.

LPIPS (Learned Perceptual Image Patch Similarity): LPIPS is a deep learning-based perceptual simi-
larity metric that compares image patches using feature activations from pre-trained convolutional neural
networks, such as AlexNet or VGG. Unlike PSNR and SSIM, which rely on pixel-level statistics, LPIPS
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captures high-level semantic differences that are more consistent with human visual perception. Lower
LPIPS values indicate greater perceptual similarity to the reference images, making it a crucial metric for
evaluating the realism and naturalness of generated content.

Ewarp (Temporal Consistency Metric): Temporal consistency is a critical aspect of video generation
tasks. Ewarp evaluates the stability and coherence of motion and structure across consecutive video
frames. It computes a temporal warping error by extracting frame-wise features using a VGG16 backbone
and estimating how well temporal correspondences align between the generated video and the reference
sequence. Lower Ewarp scores suggest better frame-to-frame consistency, reduced flickering artifacts,
and more temporally stable outputs.

Together, these four metrics offer a comprehensive evaluation framework: PSNR and SSIM assess the
spatial reconstruction accuracy and structural fidelity of individual frames; LPIPS measures the percep-
tual alignment with human visual judgment; and Ewarp evaluates the temporal dynamics and inter-frame
consistency of generated video sequences. By jointly analyzing these metrics, we can obtain a holistic
understanding of our method’s performance in enhancing both the spatial and temporal aspects of video
quality, thereby validating its robustness and practical effectiveness in real-world video super-resolution
scenarios.

3.4 Summary

In this work, we propose a simple yet effective conditioning framework tailored for the video super-
resolution (VSR) task, built upon a powerful pre-trained text-to-video latent diffusion model. Rather
than redesigning the entire network architecture or introducing substantial structural modifications, we
focus on maximizing the utility of the existing backbone through a minimal yet expressive conditional
mechanism. Our core idea is to seamlessly adapt visual inputs — specifically low-resolution multi-frame
sequences— to the conditioning interface of the latent diffusion model, originally designed for text-based
guidance.

To achieve this, we introduce a novel adapter-based conditioning module that efficiently encodes spa-
tiotemporal information across video frames. In our framework, each frame in the input video sequence
is first processed individually using a frozen Vision Transformer (ViT), which extracts rich semantic rep-
resentations from each frame without any fine-tuning. These per-frame features are then aggregated and
fused through a lightweight adapter network designed to capture both spatial and temporal dependencies,
while maintaining computational efficiency. The output of the adapter is a set of transformed embeddings
that align with the language embedding space expected by the pre-trained diffusion model.

These pseudo-language embeddings are then injected into the UNet-based denoising network through its
existing cross-attention layers. Importantly, this design does not require any modification to the architec-
ture of the backbone components — namely, the UNet and the Variational Autoencoder (VAE) used in
the latent diffusion model. As a result, our framework preserves the integrity and stability of the original
model while enabling it to perform video super-resolution tasks guided by visual context, rather than
textual input.

The key strength of our approach lies in its modularity, parameter-efficiency, and simplicity. By lever-
aging fixed, high-quality pre-trained components and introducing only a lightweight adapter for task-
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specific conditioning, our framework minimizes the overhead typically associated with fine-tuning or
structural expansion. It also avoids the need for elaborate loss function design or handcrafted supervision
signals. Despite its simplicity, our method demonstrates strong performance in generating high-resolution
video sequences with both perceptual quality and temporal consistency.

This design paradigm not only enhances the practicality and scalability of diffusion-based VSR but also
highlights the potential of repurposing large-scale generative models across diverse vision tasks through
adaptable and interpretable interfaces.
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4 Experimental Results and Discussion

4.1 Experimental Results

4.1.1 Training Details

Considering the computational limitations associated with high-resolution video data and the resource-
intensive nature of diffusion model inference, we adopt a center cropping strategy to preprocess the raw
video inputs. This cropping ensures uniform spatial dimensions across all samples while retaining the
most informative regions of each frame. Specifically, the input low-resolution (LR) video clips are resized
to dimensions of 80× 80× 8, where 80× 80 denotes the spatial resolution and 8 indicates the number of
frames in each temporal clip. Correspondingly, the high-resolution (HR) targets are cropped and resized
to 320× 320× 8, establishing a consistent 4× spatial upscaling ratio.

To train our model, we utilize paired LR-HR video sequences from a high-quality video super-resolution
dataset. The objective is to learn a robust mapping from the degraded LR space to the HR domain while
preserving both spatial detail and temporal consistency. In alignment with our architectural philosophy of
minimal intervention, we freeze the entire UNet backbone and train only the conditional input module —
comprising the frozen Vision Transformer (ViT) for feature extraction and a lightweight adapter network
for conditional embedding generation.

The training follows the standard inference pipeline of latent diffusion models. Each training iteration
simulates the reverse diffusion process by performing 30 denoising steps, where at each step, the UNet
predicts the noise component to be removed. The conditional module provides guidance through the
injection of visual conditioning information into the cross-attention modules of the UNet, enabling the
model to adapt the generic generative process to the specific VSR task context.

Optimization is performed using the Adam optimizer with an initial learning rate of 1×10−7. A batch size
of 1 is used due to GPU memory constraints, especially considering the multi-frame nature of the input.
To enhance convergence efficiency and improve training stability, we incorporate a cosine learning rate
scheduler, which gradually reduces the learning rate in a smooth and non-linear fashion. Additionally,
we adopt an early stopping mechanism to prevent overfitting and unnecessary computation. The early
stopping criterion is based on validation loss, with a patience of 2 epochs. If the validation loss fails
to improve significantly over two consecutive evaluation periods, the training process is automatically
terminated.

As illustrated in Figure 4.1 and Figure 4.2, both the training and validation loss curves exhibit a steady
downward trend throughout the training process. This consistent decrease indicates that the model is
effectively learning the underlying spatial and temporal correlations from the training data. Furthermore,
the close alignment between training and validation losses suggests good generalization capability and
the absence of severe overfitting. These observations collectively demonstrate that the proposed con-
ditional module, despite its lightweight design, is capable of effectively guiding the diffusion process
to reconstruct high-quality video sequences under the constraints of limited training and computational
budgets.
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Figure 4.1: loss

Figure 4.2: validation loss
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Figure 4.3: Post-Processing Strategies for Enhancing Raw VAE Output

4.1.2 Comparison With Different Post-color correction methods

The initial raw outputs generated by the pre-trained Variational Autoencoder (VAE), as used in our
diffusion-based video super-resolution (VSR) framework, frequently exhibit suboptimal visual quality.
In particular, we observe two consistent issues: (1) inconsistent color representation across frames, lead-
ing to temporal flickering and unrealistic tone variations; and (2) noticeable noise artifacts, especially in
low-texture or dark regions, which degrade the perceptual clarity of reconstructed videos. These artifacts
undermine the visual fidelity of the final output and limit the practical applicability of the system, espe-
cially in scenarios requiring high perceptual quality, such as media production or broadcast enhancement.

To address these issues, we initially investigated a model-level solution by introducing a trainable resid-
ual layer appended to the end of the pre-trained VAE decoder. The goal was to allow a limited degree of
fine-tuning, correcting residual errors in generated frames without retraining the entire VAE. However,
empirical results demonstrated that this approach was largely ineffective. Most layers of the pre-trained
VAE had already converged to near-optimal weights during large-scale pretraining. Consequently, gra-
dients from the residual layer had negligible influence on the output quality. Moreover, the training
loss curve during fine-tuning failed to show meaningful or consistent downward trends, indicating poor
optimization dynamics and limited capacity for improvement through shallow architectural modification.

Given these limitations, and considering the substantial computational cost of retraining or partially reini-
tializing the VAE backbone, we shifted our focus to post-processing techniques as a practical and low-
cost alternative for improving output quality. This decision was further motivated by the fact that post-
processing methods are modular, task-agnostic, and can be applied during inference without affecting
model structure or training time.

As shown in Figure 4.3, we systematically evaluated a set of post-processing strategies targeting twomain
aspects: (1) correction of inter-frame color inconsistency, and (2) reduction of high-frequency noise. We
explored both traditional image enhancement techniques and modern denoising filters. In particular, we
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Figure 4.4: Effect of Denoising Initialization Strategies on Video Generation Quality

tested adaptive histogram equalization, color transfer based on frame statistics, and a range of denois-
ing approaches including bilateral filtering, Gaussian blur, non-local means (NLM), and wavelet-based
smoothing.

All tests were conducted under identical conditions to ensure fair comparison: the same video dataset,
a fixed number of diffusion steps (t = 30), and identical pre-trained UNet and VAE components. This
controlled setting allowed us to isolate the impact of each post-processing technique.

Among all evaluated configurations, we found that a hybrid strategy combining wavelet-based color cor-
rection and non-local means filtering yielded the best results. This combination effectively suppresses
noise while preserving fine details and edge sharpness. Moreover, it significantly improves visual co-
herence between consecutive frames by stabilizing chromatic distributions over time. Qualitative results
indicate a clear enhancement in realism and perceptual smoothness, especially in challenging regions
such as skin tones, sky gradients, and motion boundaries.

In summary, while simple fine-tuning strategies failed to resolve quality issues arising from pre-trained
VAE outputs, post-processing techniques provide a lightweight yet effective alternative. Without modify-
ing or retraining the backbone, suchmethods can substantially improve the perceptual quality of diffusion-
based VSR outputs, offering practical value in real-world deployment scenarios.

4.1.3 Comparison With Different Denoising Initialization Strategies

To investigate the influence of denoising initialization strategies on the quality of generated videos, we
conducted a comparative experiment using two different approaches to define the starting point of the
denoising process within the diffusion pipeline.

See Figure 4.4,In the first approach, we passed pure Gaussian noise through the VAE encoder to obtain an
encoded latent representation, whichwas then used as the initial noisy input for theU-Net-based denoising
process. In the second approach—the standard setting—we directly sampled random Gaussian noise as
the input for U-Net without encoding.

The visual outcomes from these two strategies were notably different. Using the encoder-processed noise
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Figure 4.5: Effect of Diffusion Steps on Visual Quality and Efficiency

as the starting point led to clearer and sharper reconstructions, preserving more fine-grained details in
the generated frames. However, this approach also introduced more visible noise artifacts, especially in
homogeneous regions of the image. On the other hand, the standard approach, which initializes denoising
directly from unstructured noise, produced videos that were overall smoother and more visually coherent,
but at the cost of reduced spatial sharpness and more blurring of fine details.

These results highlight a trade-off between perceptual clarity and visual smoothness depending on the
choice of initialization. While encoder-based initialization enhances structural fidelity, it also amplifies
noise, whereas random noise initialization results in more stable and artifact-free outputs at the cost of
detail degradation. This observation provides useful insight into the role of initialization in diffusion-
based video generation, and suggests potential for hybrid or adaptive strategies depending on specific
task requirements.

4.1.4 Comparison With Different Inference Timestep

As shown in Figure 4.5, we conduct a series of controlled experiments to investigate how the number of
diffusion steps affects both the visual quality of generated frames and the corresponding inference time.
Specifically, we evaluate multiple settings by varying the number of denoising steps t while keeping all
other model parameters fixed, including the dataset, the pre-trained VAE and U-Net backbones, and the
inference resolution.

From the visual comparisons, we observe that increasing the diffusion steps leads to a noticeable im-
provement in reconstruction sharpness and the preservation of fine image structures. In particular, higher
values of t enable the model to better refine high-frequency details and suppress artifacts such as blurring
or texture inconsistency, which are often present in lower-step outputs. This improvement, however, is
accompanied by a significant increase in inference time, as each step requires a full forward pass through
the denoising network, and the diffusion process is inherently iterative.

To quantitatively analyze this trade-off, we measure the average per-frame inference time under different
step settings (e.g., t = 10, t = 30, t = 100, t = 200). Our findings reveal that while configurations
with t = 100 or t = 200 indeed achieve marginally better visual fidelity, the perceptual improvement
becomes increasingly less significant beyond a certain threshold (typically after t = 30). Meanwhile, the
computational cost grows linearly with the number of steps, making large-step configurations impractical
for real-time or resource-constrained applications.

Taking both visual quality and efficiency into account, we select t = 30 as the default configuration for
our final model. This choice provides a favorable balance: the generated outputs are visually coherent
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Figure 4.6: Qualitative comparison of visual results generated using different combinations of VAE
and U-Net architectures. The figure demonstrates the impact of architectural choices on reconstruction
clarity, detail preservation, and artifact suppression.

and rich in detail, while the inference time remains within an acceptable range for practical deployment.
Our analysis underscores the importance of step count tuning in diffusion-based video generation and
highlights t = 30 as a sweet spot that combines stability, clarity, and performance.

4.1.5 Comparison With Different Unet And VAE

To gain deeper insight into the role of individual components within the backbone architecture for video
super-resolution (VSR), we conducted a comprehensive set of comparative experiments across different
combinations of U-Net and VAE designs. All experiments were conducted under consistent conditions,
with the number of diffusion inference steps fixed to 30. This setup ensures a fair evaluation by isolating
architectural effects from other variables such as sampling depth or optimization parameters.

We examined two distinct U-Net architectures:

• Upscale-U-Net: A specialized U-Net variant developed for video super-resolution tasks, incorpo-
rating multi-scale upsampling and temporal feature aggregation mechanisms.

• Ali-U-Net: A general-purpose U-Net architecture derived from a pre-trained text-to-video diffu-
sion model developed by the Ali team. It was originally not tailored for super-resolution, making
it a suitable candidate for evaluating the generalizability of our conditioning framework.

In parallel, we assessed two different VAE configurations:

• Standard 3D VAE: A baseline latent encoder-decoder that reconstructs video frames directly from
latent variables using a 3D convolutional structure.

• SFT-guided VAE: An enhanced variant that incorporates low-resolution inputs through a Spatial
Feature Transform (SFT) module, allowing additional structural guidance to be injected during the
decoding process.

As illustrated in Figure 4.6, all combinations of U-Net and VAE were evaluated under the same condi-
tional setup, where the visual input was processed using a frozen ViT and a lightweight adapter module.
This ensured that variations in performance could be attributed solely to differences in the U-Net and
VAE architectures.

Experimental results reveal that the SFT-guided VAE consistently outperforms the standard VAE across
all U-Net settings. It produces sharper image details, smoother and more continuous textures, fewer
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visual artifacts, and superior temporal coherence. These findings validate the effectiveness of integrating
structural priors via SFT and highlight the SFT-VAE’s role in improving reconstruction quality, especially
in low-frequency and global structure restoration.

Interestingly, we observe that when paired with our unified conditional model, the performance disparity
between different U-Net architectures becomes marginal. Despite its lack of VSR-specific design, Ali-
U-Net achieves perceptual quality and structural fidelity comparable to the more specialized Upscale-
U-Net. This outcome underscores the strength and versatility of our adapter-based conditional model,
which effectively enables general-purpose backbones to perform well on highly structured visual tasks
like super-resolution.

Overall, these experiments highlight a complementary relationship between the VAE and the conditional
adapter. The VAE—particularly the SFT-augmented variant—plays a crucial role in reconstructing global
structure and maintaining low-frequency consistency across frames. Meanwhile, the conditional model
excels at enhancing high-frequency details such as fine textures, edge sharpness, and semantic alignment
through cross-modal guidance. Although the quantitative improvements from the adapter are relatively
modest, its consistent cross-architecture compatibility and plug-and-play design confirm its value as a
generic modality interface.

In conclusion, we identify the VAE and the conditional adapter as two core components in the generative
pipeline for video super-resolution. They contribute at different but complementary levels: the VAE
handles the structure-aware reconstruction, while the conditional model focuses on fine-grained detail
enhancement, together enabling high-quality video generation under the diffusion paradigm.

4.1.6 Long-Term Temporal Consistency Evaluation

Experiment: Compare different frames PSNR (dB) ↑ SSIM ↑ LPIPS ↓
frames = 2 22.666 0.665 0.404
frames = 8 23.163 0.673 0.390
frames = 16 23.178 0.670 0.395
frames = 32 23.670 0.686 0.378
frames = 64 23.488 0.659 0.411
frames = 90 23.565 0.654 0.414

Table 4.1: Ablation study on the number of input frames.

As shown in Table 4.1,To further assess the robustness and temporal stability of our proposed framework,
we conduct a dedicated experiment focusing on the generation of long video sequences, specifically
evaluating outputs spanning 100 consecutive frames. Generating temporally coherent content over such
an extended range presents a significant challenge for generative models, particularly for diffusion-based
architectures, which are known to be sensitive to accumulated noise, subtle stochastic variations, and lack
of explicit temporal modeling.

In this experiment, we maintain all core settings unchanged, including the pre-trained VAE and U-Net
backbones, as well as the number of diffusion steps (t = 30). Our goal is to determine whether the model
can sustain perceptual consistency and structural continuity across a longer temporal window without
additional supervision or architectural modification.
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Qualitative results indicate that, while minor frame-to-frame inconsistencies and residual noise can still
be observed—such as small fluctuations in color tones or fine textures—the overall generation remains
temporally coherent. The primary object structures, scene layouts, andmotion trajectories are consistently
preserved across frames, with no observable abrupt changes, object deformation, or temporal flickering.
Notably, the transitions between frames appear smooth, and themodel avoids the typical drift or instability
that often emerges when generative models are applied recursively over extended sequences.

These findings suggest that our approach is capable of maintaining a high level of temporal consistency
even in challenging long-sequence scenarios. This robustness likely stems from the implicit regulariza-
tion effects introduced by the VAE’s latent encoding, combined with the structured noise conditioning of
the diffusion process. Despite the absence of explicit temporal constraints or recurrent designs, the model
demonstrates strong generalization in preserving both short- and long-term temporal relationships.

In summary, this experiment provides compelling evidence that our model not only generates high-quality
individual frames but also exhibits reliable temporal performance when extended to longer video se-
quences. This capability is particularly important for practical applications such as video restoration,
animation synthesis, and scientific visualization, where temporal smoothness is critical to user experi-
ence and downstream utility.

4.1.7 Comparison With VSR Methods

To evaluate the effectiveness of our proposed adapter-based conditional model for video super-resolution
(VSR), we conducted systematic comparisons across the REDS, UDM10, and VID4 benchmark datasets.
We adopt four standard evaluation metrics — PSNR, SSIM, Ewarp, and LPIPS — and benchmarked
against several representative VSR methods, including BasicVSR++, IART, RealESRGAN, RealViT-
Former, ResShift, SDX4, and VRT. Additionally, qualitative visual results were provided to demonstrate
the perceptual quality and detail restoration capabilities of different methods.

Dataset Metrics BasicVSR++[51] IART[52] Real-ESRGAN[53] RealViTFormer[54] ResShift[55] SDX4[56] VRT[57] Ours

REDS

PSNR ↑ 25.401 24.367 22.617 22.851 22.468 20.963 24.391 23.457
SSIM ↑ 0.738 0.732 0.661 0.683 0.677 0.609 0.731 0.688
Ewarp ↓ 0.007 1.02 1.762 0.544 0.883 11.83 0.401 0.329
LPIPS ↓ 0.196 0.29 0.365 0.253 0.265 0.325 0.317 0.317

UDM10

PSNR ↑ 25.756 23.749 23.149 23.248 23.581 21.401 23.636 24.607
SSIM ↑ 0.716 0.726 0.353 0.707 0.721 0.571 0.725 0.727
Ewarp ↓ 0.118 0.382 0.491 0.237 0.117 4.389 0.329 1.780
LPIPS ↓ 0.237 0.332 0.353 0.315 0.314 0.438 0.335 0.317

VID4

PSNR ↑ 20.124 17.935 17.527 17.848 17.618 17.342 17.952 19.092
SSIM ↑ 0.543 0.377 0.351 0.375 0.376 0.315 0.378 0.485
Ewarp ↓ 1.861 5.459 6.023 3.339 0.309 6.607 0.534 0.335
LPIPS ↓ 0.468 0.706 0.749 0.652 0.658 0.652 0.504 0.504

Table 4.2: Quantitative comparison of different VSR methods across the REDS, UDM10, and VID4
datasets.Higher PSNR and SSIM values indicate better reconstruction performance, while lower LPIPS
and Ewarp(10−3) values indicate better perceptual quality and temporal consistency. The results are
evaluated at the 80→320 resolution setting. Bold and underline denote the best result and the second-
best one, respectively.

As shown in Table 4.2, despite leveraging a pre-trained text-to-video diffusion model without any archi-
tecturalmodification, ourmethod achieves competitive performance among task-specific super-resolution
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Figure 4.7: Visual comparison of super-resolution results using the same resolution setting. To ensure
a fair evaluation, frames from the same time index were selected across different methods for each
dataset. The results highlight the superior capability of our approach in preserving fine textures and
high-frequency details, particularly in challenging regions with complex structures or motion.

models. While it does not outperform baseline methods on the REDS and UDM10 datasets in terms
of distortion-based metrics such as PSNR and SSIM, our approach achieves the second-best results on
the VID4 dataset with respect to SSIM and LPIPS. This demonstrates the effectiveness of our adapter-
based conditioning in preserving structural details and perceptual quality, particularly in challenging low-
resolution scenarios.

As shown in Figure 4.7,The qualitative visual results further support these findings. Compared to baseline
methods, which often suffer from texture blurring, edge artifacts, or loss of fine details under complex
degradations, our adapter-based conditioning provides consistent guidance for the denoising process.
Without relying on handcrafted loss functions or specialized network designs, the proposed framework
demonstrates the ability to preserve fine-grained textures and structural consistency. These results vali-
date the feasibility and generalization capability of our adapter design for repurposing pre-trained diffu-
sion models toward video super-resolution tasks.

Although our method does not consistently outperform task-specific super-resolution models in terms of
quantitative metrics, these distortion-based indicators may not fully capture perceptual quality, especially
under challenging degradations. As illustrated by the qualitative comparisons in Figure 4.7, our approach
demonstrates superior visual fidelity, with clearer textures, sharper edges, and fewer artifacts compared to
baseline methods. These visual results highlight that the proposed adapter-based conditioning effectively
guides the pre-trained diffusion model to recover fine-grained structural details that are often overlooked
by models optimized primarily for distortion-based objectives. Importantly, this is achieved without
introducing heavy architectural modifications or additional complex network components, relying instead
on a lightweight adapter design that ensures efficient conditioning with minimal computational overhead.

This suggests that while numerical scores provide one perspective on performance, perceptual quality—
reflected in human-observable visual improvements—remains a critical factor, where our approach shows
significant advantages despite its simplicity and efficiency.
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Figure 4.8: Qualitative comparison of video super-resolution results on different datasets.

4.1.8 Ablation Study

This experiment aims to evaluate the adaptability of the proposed conditional model to video super-
resolution (VSR) tasks under different backbone architectures. We selected representative samples from
three commonly used video datasets—VID4, REDS, and UDM10—and tested the trained conditional
model by integrating it into two types of backbone networks: first,a U-Net architecture specifically de-
signed for super-resolution tasks. second,a U-Net originally developed for text-to-video generation. By
applying a unified conditional model (ViT-based visual feature extraction combined with an adapter map-
ping to the language space), we guide both backbone types to perform VSR, and systematically assess
their output quality.

As shown in Table 4.3, experimental results show that across all datasets, even when the backbone is
not explicitly designed for super-resolution (such as the U-Net used for text-to-video generation), the
model can still produce high-resolution video frames with good perceptual quality and structural details
under the guidance of the conditional model. In some metrics, it even outperforms the dedicated super-
resolution backbone. This demonstrates that the proposed conditional model possesses strong semantic
feature extraction capability, cross-task transferability, and backbone adaptability, enabling effective VSR
reconstruction without requiring any modification to the backbone network.

However, it should be noted that the improvements in quantitative metrics after adding the conditional
model are relatively limited, particularly for traditional image reconstruction metrics such as PSNR and
SSIM. We attribute this to three main reasons:

-Strong baseline backbone limits performance gain: The employed U-Net backbones already exhibit
robust structure modeling and detail reconstruction capabilities in super-resolution tasks, even without
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Dataset Method PSNR (dB) ↑ SSIM ↑ Ewarp (10−3) ↓ LPIPS ↓

VID4

condition(×)+ali 19.037 0.468 0.449 0.548
condition(✓)+ali 19.053 0.472 0.335 0.551
condition(×)+upscale 19.096 0.486 0.986 0.533
condition(✓)+upscale 19.092 0.485 0.534 0.504

REDS

condition(×)+ali 23.423 0.683 0.279 0.343
condition(✓)+ali 23.386 0.684 0.329 0.341
condition(×)+upscale 23.427 0.688 0.180 0.317
condition(✓)+upscale 23.457 0.688 0.401 0.317

UDM10

condition(×)+ali 24.529 0.724 0.453 0.320
condition(✓)+ali 24.253 0.719 0.114 0.315
condition(×)+upscale 24.619 0.720 1.910 0.323
condition(✓)+upscale 24.607 0.727 1.780 0.317

Table 4.3: Quantitative comparison of different UNet backbones with or without the conditional model
on three benchmark datasets. The evaluation metrics include PSNR, SSIM, Ewarp, and LPIPS. It is
worth noting that these results are obtained from the corresponding video samples shown in the above
qualitative comparison figure, rather than the average performance over the entire dataset. Therefore,
this table better reflects the real reconstruction performance of different methods in typical scenarios.

conditional input. Therefore, the performance improvement brought by the conditionalmodel is relatively
marginal, primarily contributing to fine-tuning and semantic correction.

-Lightweight design of the conditional model: Our method uses a ViT to extract visual features from
the low-resolution video and maps them to the language space via an adapter to support cross-attention.
This design does not introduce additional attention modules or explicit control mechanisms. As such, its
contribution is relatively light in the generation path and mainly serves as a guiding signal to aid detail
recovery and structural alignment.

-Input resolution limits representation and evaluation: Input resolution limits representation and evalua-
tion: Due to computational constraints, the low-resolution input was set to 80×80. Such low resolution
restricts the richness of visual features, limiting the adapter’s ability to extract semantic information for
effective guidance. Furthermore, lower resolution inputs introduce more noise, leading to noisier outputs
and larger metric fluctuations—especially in PSNR and SSIM—thus narrowing the potential performance
gains of the conditional model.

To further verify the effectiveness of the conditionalmodel, we conducted a comparative experiment using
higher-resolution inputs (increasing from 80×80 to 128×128) on the same datasets and video samples.As
shown in Table 3, the results show that the reconstruction metrics improved significantly with higher
resolution, and the model achieved more stable performance in terms of visual detail.

Specifically, in the comparison between models with and without conditional guidance, we observed
that the conditional model effectively enhances edge detail generation and significantly reduces common
artifacts and noise—such as ”droplet-like” edge artifacts often found in unconditional outputs, as shown
in Figure. 4.9. The generated structures became smoother and more natural. This further confirms that
the proposed adapter successfully maps visual inputs to the language space, enabling models originally
intended for text input to be adapted to image/video-conditioned generation tasks, demonstrating strong
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Figure 4.9: Qualitative comparison of video super-resolution results with or without conditional input
(input resolution: 128×128, output resolution: 512×512

Dataset Method PSNR (dB) ↑ SSIM ↑ Ewarp (10−3) ↓ LPIPS ↓

UDM10 512output+condition (✓) 26.829 0.797 1.26 0.201
512output+condition (×) 26.946 0.797 1.38 0.206

Table 4.4: Quantitative comparison of condition model on UDM10 dataset with 512 × 512 output reso-
lution.

scalability and practical applicability.

4.1.9 Comparison with Different Adapter Layer Design

Experiment PSNR ↑ SSIM ↑ Ewarp ↓ LPIPS ↓

linear-linear 22.017 0.584 0.150 0.358
crossattention-transformer-linear 21.910 0.581 0.386 0.352
crossattention-linear-linear 21.932 0.584 0.281 0.351

Table 4.5: Comparison of different fusion strategies in the Adapter Layer.

To further enhance the temporal consistency of generated video sequences, we investigate improvements
to the temporal modeling capacity of the Adapter Layer. While our proposed framework demonstrates
strong spatial reconstruction performance—yielding detailed and sharp frames—the outputs still display
minor but noticeable frame-to-frame flickering, especially in regions involving rapid motion, occlusion,
or fine-grained textures. These inconsistencies negatively impact perceptual stability and are most ap-
parent during continuous playback.

We hypothesize that this temporal instability arises primarily from the limited capacity of the current
adapter design to model temporal dependencies across frames. Given that the adapter plays a central
role in aggregating multi-frame input features and encoding them into a unified conditional signal for the
diffusion model, any weakness in its temporal modeling capacity can directly affect global consistency
during generation. Importantly, since the backbone UNet is frozen and does not include explicit temporal
modeling mechanisms (e.g., temporal convolutions or 3D attention), the burden of preserving motion
coherence falls disproportionately on the adapter.

To address this challenge, we explore a series of more expressive fusion strategies, specifically targeting
the initial projection stage of the adapter. The default design uses a simple linear projection to compress
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per-frame visual features into a unified sequence-level embedding. To improve upon this, we experiment
with two advanced alternatives:

1. Cross-Attention Fusion: We introduce a cross-attention layer that computes pairwise attention
across all frame embeddings, enabling the adapter to learn relational dependencies between frames
in a non-local fashion.

2. Transformer Fusion: We stack multiple layers of temporal self-attention (Transformer blocks)
on top of the per-frame embeddings, allowing the adapter to model both short- and long-range
temporal relationships with high expressivity.

These mechanisms are designed to explicitly encode motion continuity and temporal structure at the
adapter level, with the goal of reducing temporal drift and visual artifacts across frames.

However, as reported in Table 4.5, experimental results reveal that these more complex temporal fusion
strategies do not yield significant improvements. The baseline dual linear-layer configuration consistently
achieves superior or comparable performance across multiple evaluation metrics. In particular, it delivers
the highest PSNR and SSIM values, as well as the lowest Ewarp scores—indicating better temporal
consistency—while maintaining a significantly lower computational overhead.

Surprisingly, the Transformer- and attention-based adapters, despite their expressive capacity, occasion-
ally lead to degraded perceptual performance as reflected by slightly increased LPIPS scores. We attribute
this to two possible factors. First, the added depth and parameter count may cause overfitting to subtle
inter-frame noise or amplify temporal inconsistencies rather than suppress them. Second, in the absence
of global temporal supervision from the backbone UNet, the adapter may struggle to maintain coherent
motion dynamics independently.

These findings suggest that while the adapter is highly effective for capturing spatial structure and en-
hancing high-frequency visual details, it is fundamentally limited in its ability to regulate global temporal
coherence. This limitation is not necessarily a flaw in the adapter itself, but rather a consequence of task
delegation: the adapter is best suited as a local conditioning module rather than a global temporal pro-
cessor. Therefore, expecting the adapter to fully resolve long-range motion inconsistencies—without
support from the backbone—is an unrealistic goal.

In light of this analysis, and considering the trade-off between performance, interpretability, and computa-
tional efficiency, we adopt the dual linear-layer design as the default configuration of the Adapter Layer.
It offers a favorable balance: minimal training cost, strong visual quality, and excellent compatibility
with various frozen diffusion backbones. More importantly, it preserves the plug-and-play modularity
that defines our framework, enabling future extensions with temporal-aware backbones, external flow
alignment modules, or recurrent conditioning structures.

These findings also motivate future exploration of more principled temporal modeling strategies, such
as integrating lightweight motion estimation modules into the diffusion process, or introducing recurrent
state tracking in the adapter to capture scene dynamics over time.

4.1.10 Computational Complexity

Table 4.6 presents a comprehensive comparison of several representative video super-resolution (VSR)
methods in terms of inference steps, inference time per frame, and the number of trainable param-
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eters. The selected methods span both GAN-based and diffusion-based paradigms, including Real-
ESRGAN [53], SwinIR-GAN [58], LDM [4], StableSR [?], and VideoLDM [?]. Our proposed method is
reported in two configurations: one using the aliased UNet variant and another employing a lightweight
UNet for upscaling.

Traditional GAN-based models such as Real-ESRGAN and SwinIR-GAN operate with only a single
inference step and exhibit extremely fast inference speeds (0.08s/frame and 0.12s/frame, respectively)
with relatively small model sizes (16.70M and 28.01M trainable parameters). These models benefit
from highly optimized feedforward designs and often rely on task-specific architectures or handcrafted
enhancements to achieve competitive visual quality. However, their generalization capability may be
limited when applied to unseen domains or cross-task scenarios.

In contrast, diffusion-based models, particularly those based on latent denoising frameworks (e.g., LDM
and StableSR), typically require a large number of iterative steps (up to 200) to achieve high-quality recon-
struction. This leads to substantially higher inference times (e.g., 5.25s/frame for LDM and 15.16s/frame
for StableSR), as well as significantly larger parameter counts. For instance, StableSR contains approx-
imately 149.91M trainable parameters, while the full LDM pipeline—including the UNet, VAE, and
conditioning module—can exceed 1.51B parameters.

Our method strikes a balance between these two extremes by reusing a powerful pre-trained text-to-
video diffusion backbone and introducing only a lightweight conditional adapter for VSR. Specifically,
the conditional module includes a frozen Vision Transformer (ViT) encoder (86.57M parameters) and
a compact, trainable adapter consisting of only 2.14M parameters. This is in stark contrast to the large
interpolation module used in VideoLDM, which contains over 1.5B trainable parameters. In total, the
aliased version of our method has 1.601B parameters, while the lightweight upscaling variant reduces
this to 0.892B—making it a more resource-efficient option for practical deployment.

Despite its compact design and limited number of trainable components, our method achieves strong per-
formance across standard VSR benchmarks. This is achieved by efficiently guiding the denoising process
at each diffusion step using the adapted visual features, without the need for deep temporal alignment net-
works or handcrafted attention mechanisms. The results underscore the effectiveness of adapter-based
conditioning and support our central hypothesis: that high-quality video super-resolution is attainable
through smart conditioning strategies and principled reuse of foundation models, rather than through
excessive architectural engineering.

Model type Real-ESRGAN[53] SwinIR-GAN[58] LDM[59] StableSR[60] VideoLDM[37] Ours (ali) Ours (upscale)
Model type GAN GAN Diffusion Diffusion Video Diffusion Video Diffusion Video Diffusion
Inference step 1 1 200 200 30 30 30
Time (s/frame) 0.08 0.12 5.25 15.16 / 30.099 8.632
Trainable params 16.70M 28.01M 113.62M 149.91M 3.114B 1.601B 0.892B

Table 4.6: Comparison of inference time, parameter count, and model types across different VSR ap-
proaches. For video LDM, the size of each component is: UNet (1.52B) + VAE (84M) + condition
(1.51B). For our method, the size of each component is: UNet ali (1.41B) / UNet upscale (691.04M) +
VAE (113.78M) + condition (ViT 86.57M + trainable 2.14M).
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4.2 Discussion/ Interpretation

To comprehensively evaluate the effectiveness and generalizability of our proposed adapter-based video
super-resolution (VSR) framework, we conducted extensive experiments from multiple perspectives, in-
cluding inference configuration, model components, temporal consistency, and comparative benchmarks.
The results provide compelling evidence supporting both the technical soundness and practical value of
our method.

Firstly, in terms of color restoration, we explored several post-processing strategies for correcting color
shift or dullness in generated video frames. After empirical testing, the wavelet-based enhancement
method was ultimately adopted as it demonstrated superior fidelity and stability across diverse video
scenes, especially in restoring subtle textures and color transitions. This enhancement module com-
plements our diffusion-based generation and significantly improves the perceptual realism of the final
output.

Secondly, we performed a comparative analysis of different diffusion inference initialization strategies,
specifically contrasting standard Gaussian noise input with noise passed through the encoder module.
The results indicate that initializing the inference with encoder-processed noise yields better convergence
and enhanced frame quality. This suggests that the encoder-transformed latent preserves more structural
priors that aid in stable reconstruction.

Additionally, we experimented with different numbers of diffusion steps (t) and observed that using
t = 30 provides a good trade-off between reconstruction quality and computational efficiency. Fewer
steps may lead to incomplete denoising, while too many steps increase inference time without significant
quality gain. Our selected configuration ensures both practicality and output fidelity.

In the evaluation of different backbone architectures, we compared two representative UNet designs—
one specialized for VSR and one trained for text-to-video generation—as well as two VAE variants. The
results show that the choice of UNet has limited impact on performance, with both backbones achiev-
ing comparable reconstruction quality. However, the SFT-guided VAE consistently outperformed the
standard 3D-VAE, especially in restoring high-frequency details. This highlights the importance of inte-
grating structural cues during decoding in VSR tasks.

To assess temporal consistency, we applied our model to long-duration video sequences, and qualitative
visualizations show that our method maintains consistent structure and motion across frames. While
minor flickering may occasionally occur, the overall coherence demonstrates the temporal robustness of
our framework.

In the quantitative and qualitative comparison with state-of-the-art VSR methods across REDS, UDM10,
and VID4 datasets, our method achieves competitive or superior results without modifying the backbone
network. These results confirm that our framework can function as a plug-and-play alternative, achieving
performance on par with dedicated VSR architectures while offering greater reusability and flexibility.

Finally, we conducted a detailed ablation study to isolate the contribution of our adapter-based condi-
tional module. The results show that removing the adapter significantly reduces the model’s ability to
reconstruct fine-grained textures and high-frequency edges, validating that our pseudo-text conditioning
mechanism is critical for high-fidelity generation. The adapter not only bridges the modality gap but also
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injects essential guidance signals into the denoising process.

In summary, these experimental findings collectively demonstrate the robustness, efficiency, and prac-
ticality of our proposed approach. By enabling zero-modification reuse of large-scale text-to-video dif-
fusion models, and by introducing an effective and lightweight cross-modal conditioning strategy, our
framework offers a promising solution for general-purpose VSR applications under real-world condi-
tions.

41



5 Conclusion and Recommendations

5.1 Conclusion

In this study, we proposed a simple yet effective adapter-based conditional modeling framework for video
super-resolution (VSR), which enables the reuse of large-scale pre-trained text-to-video latent diffusion
models without introducing structural modifications to the backbone. Our method projects multi-frame
low-resolution video inputs into a language-aligned embedding space via a lightweight adapter, allow-
ing pseudo-text conditioning through the original cross-attention mechanisms. This design leverages
the expressive power of the diffusion backbone while maintaining architectural simplicity and training
efficiency.

Extensive experiments conducted on multiple datasets and diffusion backbones demonstrate that our
method achieves competitive performance compared to task-specific VSR models. Notably, it does so
with significantly fewer parameters and no handcrafted loss terms or additional supervision, underscoring
its modularity and practicality. A key finding from our analysis is the adapter’s strong contribution to the
restoration of high-frequency details—particularly in regions with sharp contours and complex textures—
which highlights the importance of effective high-frequency feature extraction in diffusion-based video
restoration pipelines.

In addition to quantitative performance, our framework exhibits strong generalization capability, espe-
cially in data-limited scenarios such as historical video restoration or in-the-wild enhancement tasks. This
characteristic makes our approach suitable for real-world applications where fine-tuning is infeasible or
annotated ground-truth data is scarce.

Nonetheless, several limitations remain. The current adapter does not explicitly model temporal dynam-
ics, which can lead to subtle flickering in sequences with rapid motion or long durations. Furthermore,
our work focuses on a specific class of pre-trained diffusion models and does not yet address broader
classes of generative architectures. Finally, while the method is evaluated on standard benchmarks, fur-
ther validation on domain-specific datasets (e.g., surveillance footage, medical imaging) is needed to
assess robustness in diverse practical environments.

Our study contributes to the growing body of work that aims to adapt foundation models to diverse
downstream tasks. It shows that pre-trained text-to-video diffusion models can be effectively repurposed
for low-level video restoration via lightweight conditional adaptation, opening new opportunities for
unifying vision-language modeling and video generation under a common framework.

5.2 Future Work

Based on our findings, we identify several promising directions for future research to further improve the
proposed framework and extend its applicability.

First, the current adapter can be enhanced to better model and extract high-frequency visual information,
which has been shown to play a crucial role in the success of our method. This could involve integrating
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frequency-aware modules, multi-scale attention mechanisms, or hybrid convolution-transformer archi-
tectures to enrich the representational capacity of the conditional embedding.

Second, explicit modeling of temporal coherence remains an open challenge. Future work may incor-
porate optical flow estimation, recurrent feature alignment, or temporal self-attention into the adapter
to ensure smooth transitions and structural consistency across frames. This is particularly important for
applications involving long video sequences or fast-moving content.

Third, while our method shows strong generalization to diverse video data, it is primarily evaluated on
benchmark datasets. Future experiments can explore domain-specific settings such as low-light video en-
hancement, stylized video restoration, or culturally diverse media content, where scene structure, texture
patterns, or motion statistics may differ significantly.

Additionally, adapting the framework to resource-constrained environments (e.g., mobile devices, edge
deployment) is a valuable research direction. Techniques such as adapter pruning, quantization-aware
training, or distillation of conditional modules could be explored to achieve efficient inference while
maintaining high perceptual quality.

Finally, we envision a broader unification of cross-modal conditional modeling. In the long term, the
adapter-based framework could serve as a generic conditional interface for a variety of video genera-
tion tasks—including editing, inpainting, and caption-guided transformation—leveraging the common
backbone of large-scale diffusion models.
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